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Two-fold variation over the aspect ratio of each disk and distance between disks gives rise to numerous events of
avoided crossing of resonances of individual disks. For these events, the hybridized anti-bonding resonant modes
can acquire a morphology close to the Mie resonant mode with the high orbital momentum of an equivalent sphere.
The Q factor of such resonance can exceed the Q factor of an isolated disk by two orders of magnitude. We show
that dual incoherent counterpropagating coaxial Bessel beams with power 1 mW/µm2 with frequency resonant to
such anti-bonding Mie-like modes result in unprecedented optical binding forces up to tens of nano-Newtons for
silicon micrometer-sized disks. We show also that the magnitude and sign of optical forces depend strongly on the
longitudinal wave vector of the Bessel beams. © 2020 Optical Society of America

https://doi.org/10.1364/JOSAB.402659

1. INTRODUCTION

The response of a microscopic dielectric object to a light field
can profoundly affect its motion. A classic example of this
influence is an optical trap, which can hold a particle in a tightly
focused light beam [1]. When two or more particles are present,
the multiple scattering between the objects can, under certain
conditions, lead to optically bound states. This peculiar mani-
festation of optical forces is often referred to as optical binding
(OB), and it was first discovered by Burns et al. on a system of
two plastic spheres in water in 1989 [2]. Depending on the
particle separation, OB leads to attractive or repulsive forces
between the particles and, thus, contributes to the formation of
stable configurations of particles. The phenomenon of OB can
be realized, for example, in dual incoherent counterpropagating
beam configurations [3–9]. Many researchers have analyzed OB
force quantitatively in theory. Chaumet et al. [10] and Ng et al.
[11] calculated the OB force under illumination of two counter-
propagating plane waves. Čižmár et al. [12] presented the first
theoretical and experimental study of dielectric sub-micrometer
particle behavior and their binding in an optical field generated
by interference of two counterpropagating Bessel beams.

An excitation of the resonant modes with a high Q factor
in dielectric structures results in large enhancement of near
electromagnetic (EM) fields and, respectively, in extremely
large EM forces proportional to squared EM fields. First, sharp
features in the force spectrum, causing mutual attraction or
repulsion between successive photonic crystal layers of dielectric
spheres under illumination of a plane wave, were revealed by

Antonoyiannakis and Pendry [13]. Because of the periodicity
of the structure, each layer is specified by extremely narrow
resonances that transform into sharp resonant bonding and
anti-boding resonances for a close approach of the layers. Also, it
was revealed that the lower frequency bonding resonance forces
act to push the two layers together and the higher frequency
anti-bonding resonance to pull them apart. Later these disclo-
sures we reported for coupled photonic crystal slabs [14], for
coupled asymmetric membranes [15], and two planar dielectric
photonic metamaterials [16] due to the existence of resonant
states with infinite Q factors (bound states in the continuum).

Even two particles can demonstrate precedents of extremely
high Q factor resonant modes owing to the mechanism of
avoided crossing. A good example is the avoided crossing of
whispering-gallery modes (WGMs) in coupled microdisks [17],
which resulted in extremely high enhancement of OB between
coupled WGM spherical resonators [18]. However, the WGM
modes can be excited only in spheres with large radii of order
30 µm. Respectively, the OB force for such massive particles
can turn out to be not so significant. In the present paper, we
offer a solution to the problem by use of two coaxial silicon
disks of micrometer sizes, shown in Fig. 1, whose resonant
modes can have extremely high Q factors in the subwavelength
regime. Owing to two-fold (over the aspect ratio and distance
between disks) avoided crossing of low-order resonances, the
anti-bonding resonant mode acquires a morphology of the
high-order Mie resonant mode of an effective larger sphere with
extremely small radiation losses [19]. We show also that the
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Fig. 1. Two silicon disks with radius a , thickness h , and permittiv-
ity ε = 12 are illuminated by dual counterpropagating mutually inco-
herent Bessel beams with zero azimuthal index m = 0. Light intensity
of each beam 1 mW/µm2.

magnitude and, more interestingly, the sign of the OB force
depend strongly on the wave numbers of the Bessel beams,
which opens additional options to manipulate high index
particles optically.

2. TWO-FOLD AVOIDED CROSSING OF
RESONANCES

The phenomenon of avoided resonance crossing has attracted
interest in photonics by enhancement of the Q factor of res-
onant modes in coupled optical microcavities in the WGM
regime [20,21]. Interest was renewed when high Q resonant
modes were revealed even in isolated dielectric disks showing
high Q factors, owing to the avoided crossing of resonant modes
for variation of the aspect ratio in subwavelength range [22].
Because of the importance of this result, we reproduce that
process in Fig. 2(a). All 2D calculations were performed based
on the aperiodic-Fourier modal method [23], complemented
by COMSOL numerics. Throughout the paper, the radii of
disks are fixed at a = 0.5 µm. At the aspect ratio a/h = 0.71,
the Q factor reaches maximal value around 160 for high index
optical material (Si), as shown in Fig. 2(b). One can see that the
hybridized mode has a morphology very close to the morphol-
ogy of the Mie resonant mode with orbital momentum l = 3
in an equivalent sphere whose volume equals πa2h . This Mie
mode and equivalent sphere are highlighted by a white circle in
the upper inset of Fig. 2(a). The spherical particle has a minimal
surface compared to the given volume and therefore the smallest
radiation losses compared to particles with other shapes. That
explains the peak in the Q factor of the corresponding reso-
nant mode in Fig. 2(b). The multipole conversion from lower
to higher orders of the multipole modes gives an alternative
explanation of minimization of radiation losses [19,24,25].

If this optimal aspect ratio is fixed at a/h = 0.71 and traverses
over the distance between disks, the Q factor is enhanced by
a few times compared to the isolated disk [26]. Evolution of
the resonances and the behavior of the Q factor Q =− Re(ka)

2Im(ka)
are shown in Figs. 2(c) and 2(d), respectively. At L� a , the
resonances are degenerate, marked by a cross in Fig. 2(c). For
an approach of disks, the resonances are split and evolve spirally
so that at some distances, the imaginary parts of hybridized
complex resonant frequencies reach some minima, marked
in Fig. 2(c) by closed circles. The spiral behavior of complex

Fig. 2. (a) Avoided crossing of two TE resonances whose modes are
symmetric relative to z→−z and (b) their Q factors versus the aspect
ratio a/h in isolated silicon disk with dielectric constant ε = 12. Insets
show the profiles of tangential component of electric field Eφ . Crosses
mark the degenerate resonant frequencies and, respectively, the Q fac-
tor of isolated disks. (c), (d) Evolution of resonances and the Q factor
versus distance between disks at a/h = 0.71.

resonant frequencies is a result of radiation of leaky resonant
modes by one disk and consequent scattering by the other.
These scattering processes give rise to the coupling e ikL/L2 that
hybridizes the resonant modes of separate disks as leaky bond-
ing and anti-bonding resonant modes [26]. They are shown
in insets in Fig. 2(c) at left (bonding mode) and right (anti-
bonding mode) at distances at which the Q factor reaches the
maxima, L/h = 1.87 and L/h = 3.16, respectively, as shown in
Fig. 2(d).

3. OPTICAL BINDING FORCES

It is clear that the same mechanism of consequent scattering
processes underlies OB and, respectively, the OB force stimu-
lated by incident Bessel beams. It is reasonable to consider the
OB force of disks with optimized aspect ratio a/h = 0.71 at
distances at which the bonding and anti-bonding resonant
modes show maximal Q factors. We consider the Bessel beams
with TE polarization in the simplest form with zero azimuthal
index m = 0 [27]:

Einc(r , φ, z)= E0eφ exp(±ikzz)J1(kr r ), (1)

where J1 is the Bessel function, kz and kr are the longitudinal
and transverse wave numbers, respectively, with frequency
ω/c = k =

√
k2

r + k2
z , r , φ, and z are the cylindrical coordi-

nates, and eφ is the unit vector of the polarization. The total
system of two disks and applied Bessel beams preserves the axial
symmetry, which allows us to consider the simplest case with
zero azimuthal index m = 0. In order to stabilize both disks in
z direction, we use the approach in which two counterprop-
agating mutually incoherent Bessel beams are applied [3,5],
which is schematically shown in Fig. 1. This allows to neglect
interference between beams and calculate separately the forces
on each disk defined by only the intensity of left/right beams.

Next, we considered the transverse stability of a single disk
at r = 0. Numerical calculations of differences between forces
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produced by the centered Bessel beam and the force produced
by a slightly shifted beam show that the Bessel beams strongly
trap disks at the symmetry axis, i.e., at r = 0 (stable zero-force
points), similar to the case of a sphere [28]. Finally, there is
the problem of angular stability relative to rotation of the
disks. That problem was considered recently by Seberson and
Robicheaux [29] who showed the high angular stability of
a single disk in a Gaussian standing wave. The two counter-
propagating Bessel beams (1) do not carry angular momentum
and therefore are very similar to the Gaussian standing beam.
Therefore, we can assume that there is also angular stability.
This considerably simplifies the further calculation of the OB
force between two disks and allows to consider the optical
forces over the axis of symmetry only. We define the OB force
F→OB = (F1z − F2z)/2, where the indices 1 and 2 note the
disks where the Bessel beam is incident at the left. Owing to
the incoherence of the Bessel beam illuminated from the right,
we have the same expression for F→OB =−F←OB. As a result, we
obtain a doubled value for the OB force FOB = F1z − F2z and
zero optical pressure on both disks. The results of numerical
calculations are presented in Fig. 3, where we can see that the
OB force is sensitive to the resonant frequencies shown by green
solid (bonding) and dashed (anti-bonding) lines. One can see
that the bonding and anti-bonding resonances shown in Fig. 2
that achieve a Q factor above 400 have no significant bright
effect on the OB force, as Fig. 3 shows. We see that the maximal
OB force is enhanced by three orders and reaches a value of up to
1 nano-Newton.

Next, we show in Fig. 2(a) that the antisymmetric resonance
(black dashed line) crosses the symmetric resonance (red solid
line) at a/h = 1.009. These resonances are not coupled in
the isolated disk because of their orthogonality to each other.
However, as soon as the second disk approaches this symmetry,
prohibition is removed. Evolution of these resonances with
distance L between disks is shown in Fig. 4. When the distance
is large enough, the resonances marked by green crosses are
degenerate. Let us define the corresponding modes as ψ1(Er )
and ψ2(Er ), which are shown in Fig. 4 in the upper insets at
L =∞. With the approaching of the disks, these resonant

Fig. 3. OB force between two disks versus the frequency and dis-
tance between centers of disks with radius a = 0.5 µm, aspect ratio
a/h = 0.71, and ε = 12 under illumination of the Bessel beam with
TE polarization and kza = 1. Black solid (dashed) lines show stable
(unstable) distances between disks. Green solid (dashed) lines show
anti-bonding (anti-symmetric) and bonding (symmetric) resonant
frequencies of two disks versus the distance between. F0 = 1 pN.

Fig. 4. Avoided crossing of resonances originated from coupling of
orthogonal resonances of isolated disk shown in Fig. 2(a) for variation
of distance between disks for a = 0.5 µm, a/h = 0.96. Solid (dashed)
lines show anti-bonding (bonding) resonances. Insets show the profiles
of tangential component of electric field Eφ .

modes hybridize as follows [26]:

ψ1,2;s ,a (Er )≈ψ1,2

(
Er⊥, z−

1

2
LEz
)
±ψ1,2

(
Er⊥, z+

1

2
LEz
)
,

(2)
where Ez is the unit vector along the z axis. These modes can
be classified as bonding (symmetrical) or anti-bonding (anti-
symmetrical) resonant modes and are illustrated in Fig. 4 at
L = 5a . However, with a further approaching of the disks, the
approximation (2) ceases to be correct because of the interac-
tion of the resonances ψ1 and ψ2. One can observe noticeable
deformation of these resonant modes at L/h = 2.5 in Fig. 4
and especially at L/h = 1.68. At this distance and the aspect
ratio a/h = 0.96, the anti-bonding resonant mode highlighted
in Fig. 4 by an open circle features an extremely low resonant
width, as marked by a closed circle. Respectively, one can
observe an extremely high peak of the Q factor around 5500 in
Fig. 5 at the vicinity of points L/h = 1.68 and a/h = 0.96. The
further approach of disks until they touch each other at L = h
results in resonant modes surprisingly close to approximation
(2), as the insets in the right side of Fig. 4 show. The reason
for extremely small radiation losses of the anti-bonding mode
at the point of maximal Q factor is related to its morphology,
which is immensely close to the morphology of the Mie resonant
mode with orbital momentum l = 6 of a sphere with volume
π(h + L)a2. That sphere is highlighted in the corresponding
inset in Fig. 4 by an open white circle.

It is worthy to note that this case of extreme enhancement of
the Q factor due to the avoided crossing of orthogonal resonant
modes of isolated disks is not unique. Figure 6, for example,
demonstrates another scenario of the avoided crossing for the
approach of disks with aspect ratio a/h = 1.17, however for
higher lying resonant modes. The right inset shows an anti-
bonding resonant mode that demonstrates an unprecedented
Q factor of 15,000 at L/h = 1.4. Similar to the case shown in
Fig. 4, the reason is that the morphology of the anti-bonding
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Fig. 5. Q factor versus aspect ratio and distance between disks of the
anti-bonding resonant mode (blue line in Fig. 4 highlighted by open
circle).

Fig. 6. (a) Evolution of the higher lying TE resonances in traversing
with the distance between the disks for a = 0.5 µm, a/h = 1.17. Solid
(dashed) lines show anti-bonding (bonding) resonances. (b) Q factor
versus the distance between the disks and their aspect ratio.

resonant mode is close to the Mie resonant mode with l = 8, as
highlighted by a white circle in the right inset in Fig. 6(a).

Figure 7 shows the OB force at a/h = 0.96 in log scale versus
the frequency of the dual Bessel beams and distance L . In order
for the reader to see the extreme behavior of the OB force, we
reproduce the fragment highlighted by a black frame in Fig. 7
as the surface in Fig. 8(a), where one can see that giant OB is
achieved at around 8 nano-Newtons at ka = 2.19, L/h = 1.68,
a/h = 0.96, kza = 0.5. Figure 8(b) shows that this giant peak is

Fig. 7. Binding force between two disks versus the frequency
and distance between centers of disks with aspect ratio a = 0.5 µm,
a/h = 0.96 for the Bessel beam with TE polarization kza = 0.5 for
disks with ε = 12 and radius a = 0.5 µm. F0 = 1 pN.

Fig. 8. OB versus distance between centers of disks at the vicin-
ity of anti-bonding resonance highlighted by black frame in Fig. 7:
(a) kza = 0.5 and (b) kza = 1. Solid lines underneath show bonding
and anti-bonding resonant frequencies versus distance L/h shown in
Fig. 7 by green lines.

split for kza = 1. It is remarkable that the equilibrium distances
between disks is traversed close to the anti-bonding resonance
shown by a solid line.
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Fig. 9. (a) OB force versus distance between disks and longitudinal
wave vector of the Bessel beam kza at the vicinity of anti-bonding res-
onance marked in Fig. 4(b) by open circle ka = 2.19, a/h = 0.96, a =
0.5 µm. (b) Zoomed version of (a). Black solid (dashed) lines show sta-
ble (unstable) distances between disks. F0 = 1 pN.

Also, Fig. 8 shows that the OB forces depend crucially on the
waist of the Bessel beams controlled by the longitudinal wave
number kz. Figure 9 shows that, first, the OB forces oscillate
with distance and kz, which is a result of mutual scattering by
disks that bring the phase e i2kz L [26]. However, this argument is
applicable only when the distance between disks much exceeds
the thickness of the disks. For distances closer, Fig. 9(a) shows an
extremely large contribution of the bonding and anti-bonding
resonances around L/h = 1.75. Moreover, one can see in the
zoomed Fig. 9(b) the collapse of the OB forces at the point
L/h = 1.75, kza = 0.5. Therefore, giant peaks in OB can be
easily manipulated by small changes in parameters of the Bessel
beam: kza and frequency. The case of the Bessel beams resonant
to the higher lying Mie-like resonant mode with l = 8 shown
in Fig. 6(a) with the Q factor 15,000 gives the similar OB force
shown in Fig. 7.

4. SUMMARY

In the present paper, we considered the resonant enhancement
of the OB force of two silicon disks of micrometer size by illumi-
nation of dual incoherent counterpropagating Bessel beams. As
distinct from the case of two dielectric spheres [10,11], the case
of coaxial disks brings a new aspect for the OB force related to

an extremely high Q factor due to the two-fold avoided crossing
of orthogonal resonances over the aspect ratio and distance
between the disks [19]. The corresponding anti-bonding reso-
nant modes of two disks turn out to be close to the Mie resonant
mode with high orbital index l = 6 or even l = 8 of an effective
sphere with volume 4π R3/3= π(h + L)a2, which explains
the extremely high Q factors. An alternative explanation is the
multipole conversion from lower to higher orders of multipole
modes [19,24,25]. For the case of two coaxial silicon disks with
micrometer diameter illuminated by dual coaxial Bessel beams,
we demonstrate a giant OB force in a few tens of nano-Newtons
in the vicinity of anti-bonding resonances. Giant enhance-
ment of optical forces has been reported already [13,14,16],
however, for photonic crystal (PhC) layers and two layers in
the waveguide [30]. It is remarkable that the OB force can be
easily manipulated by counterpropagating Bessel beams. The
OB force is extremely sensitive to frequency. Similar to the case
of PhC layers, the lower frequency bonding resonance forces
act to push the two disks together and the higher frequency
anti-bonding resonance to pull them apart. However, for a fixed
frequency, the sign of the OB force also depends on the waist of
the Bessel beams.
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