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Abstract: We consider refractive index sensing with optical bounds states in the continuum
(BICs) in dielectric gratings. Applying a perturbative approach we derived the differential
sensitivity and the figure of merit of a sensor operating in the spectral vicinity of a BIC.
Optimisation design approach for engineering an effective sensor is proposed. An analytic
formula for the maximal sensitivity with an optical BIC is derived. The results are supplied with
straightforward numerical simulations.
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1. Introduction

Bound states in the continuum (BICs) have revolutionized nanophotonics offering the opportunity
to realize a new class of high throughput sensing devices and improving the control of the
interaction between light and matter at the nanometer scale [1–10]. Strictly speaking, a BIC can
be considered as a resonant mode with an infinite quality factor (Q-factor) in an open cavity. A
BIC has a frequency in the radiation continuum but does not lose energy because of symmetry
mismatch with outgoing waves. The BICs are hosted by a leaky band of high-quality resonances
with Q-factor diverging in the Γ-point [11]. The leaky band with diverging Q-factor, in turn,
induces a collapsing Fano feature in the transmittance spectrum [12–15]. Generally, the position
of these extremely narrow Fano resonances is sensitive to the refractive index of the surrounding
medium allowing to engineer optical sensors with a good sensitivity, S and an excellent figure of
merit (FOM) [16]. The sensitivity is affected by the spatial overlap between the nonradiating
evanescent field and the surrounding cladding, while FOM is proportional to the Q-factor and
ultimately represents the sensor capability to follow tiny changes in the environment refractive
index [17,18]. Among the different geometries of structures supporting BICs, all-dielectric
resonant planar structures, including photonic crystal slabs, periodic arrays and metasurfaces,
have been taken as an alternative to conventional plasmonic sensors due to the possibility to
realize high-performance sensing systems in loss-free media [16,19–23].

The major drawback of the dielectric sensors in comparison with the plasmonic ones is
considerably (approximately five times) less sensitivity [24]. Therefore, it is of key importance
to understand how the sensitivity can be enhanced while keeping high values of the FOM. In this
paper we derive analytical expressions for S and FOM for sensors based on dielectric grating
(DGs). The subwavelength DGs have recently emerged as one of the major set-ups for studying
optical BICs both theoretically [25–31] and experimentally [32,33]. By using a perturbative
approach we find the differential sensitivity and the figure of merit of a DG-sensor operating in
the spectral vicinity of a BIC. The reported analytic results could pave a way for an optimisation
design approach for engineering an effective BIC sensor, in terms of both sensitivity and FOM,
and provide a tool for a better understanding of the physics underlying the mechanism of sensing.
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2. Bound states in the continuum

Here we consider the system shown in Fig. 1(a). It is a dielectric grating (DG) assembled of
rectangular bars. The bars are periodically placed on the glass substrate with period h. We
assume that the incident field is TE polarized, i.e. the electric vector is aligned with the bars as
shown in Fig. 1(a). The propagation of the TE-modes is controlled by the Helmholtz equation for
the x component of the electric field:(︃

∂2

∂y2 +
∂2

∂z2

)︃
Ex + k2ϵEx = 0, (1)

where k is the vacuum wavenumber, and ϵ is the dielectric function. In what follows we assume
that the bars can be made of different dielectric materials such as polycrystalline silicon, Si; and
titanium dioxide, TiO2. The refractive index (RI) of the substrate n0 = 1.5.

Fig. 1. (a) The dielectric grating assembled of rectangular bars on glass substrate. The
plane of incidence y0z is shaded grey. The magenta arrow shows the electric vector of the
incident wave. The geometric parameters are w = 0.5h, b = 0.5h. (b, c) BIC eigenmode
profiles for Si bars as Ey in the y0z-plane with (n(0)c = 1.333) and without (n(0)c = 1) cladding,
correspondingly.

The RI sensor operating principle is detection of the shift in the wavelength of an optical
resonance, λres in response to the change of the RI of the cladding fluid, nc on top of the DG. As
the reference value of the cladding RI we take that of water n(0)c = 1.333. Our finite-difference
time-domain (FDTD) simulations demonstrate that for the set of geometric parameters specified
in the caption to Fig. 1 a Si DG supports a BIC with kh = 2.531. The BIC is observed as a specific
point of the leaky band dispersion with infinite life-time of the resonant mode in the Γ-point (see
e.g. [15]). The field profile of the BIC in the Si DG with cladding fluid is shown in Fig. 1(b). The
BIC clearly falls into the symmetry protected type as it is symmetrically mismatched to the zeroth
order diffraction channel [15]. It is remarkable that the BIC mode profile is robust with respect
to variations of nc as it can be seen from Fig. 1(c), where we demonstrate the field profile of the

Table 1. BICs in dielectric gratings. The values of RI are taken at 1µm. The BIC wavelenghts, λBIC
are measured in the units of h.

Grating material Si Si TiO2 TiO2

Grating RI 3.575 3.575 2.485 2.485

Cladding fluid Yes No Yes No

hk 2.531 2.570 3.448 3.564

λBIC, (p.d.u.) 2.482h 2.445h 1.822h 1.761h
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BIC at kh = 2.570 with no cladding fluid. Notice that the mode profiles are indistinguishable to
the naked eye. This robustness of the mode profile allows for keeping the characteristics of the
sensor with different cladding fluids. The simulations were also run for a DG made of Ti20. The
obtained BIC field profiles are almost identical to those in Fig. 1(b) and Fig. 1(c), and, hence, are
not shown in the paper. The numerical data for both DG materials are collected in Table 1.

3. Refractive index sensing

Although the BIC proper is totally decoupled from the outgoing waves, it is spectrally surrounded
by a leaky band with with a diverging Q-factor. If the DG is illuminated from the far-zone, this
leaky band induces a collapsing Fano feature in the transmittance spectrum. Below we investigate
into application of the collapsing Fano resonance for RI sensing. Two quantities are of major
importance for engineering an effective sensor: the differential sensitivity defined as

S =
dλres
dnc

|︁|︁|︁|︁
nc=n(0)c

, (2)

and the figure of merit (FOM) given by

FOM =
S
W

, (3)

where W is the width of the operating resonance in terms of wavelength. Here we applied
the definition of the FOM used in our previous paper [16]. This definition involves two most
important characteristics – the sensitivity and the linewidth of the operating resonance. The
smaller linewidths are useful for increasing the limit of detection of the sensor, since only
the resonance shifts larger than the linewidths are easily detectable. Thus, the larger FOM is
beneficial.

Here we aim at deriving analytic expressions for both quantities of interest using a perturbative
approach. The perturbative approach utilizes two small parameters: the first is the increment
of the dielectric function ∆ϵc due to the change of the RI of the cladding, and the second is the
angle of incidence θ defined in Fig. 1(a). The solution of Eq. (1) can be written in the form of a
Bloch wave due to the y-axis periodicity

Ex(y, z) = ψ(y, z)eiβy, (4)

where β = k sin(θ) is the propagation constant along the y-axis. After substituting the above into
Eq. (1) and taking into account ∆ϵc one finds(︃

∂2

∂y2 +
∂2

∂z2

)︃
ψ + k2(Lc +Lθ )ψ + k2ϵψ = 0, (5)

where the perturbation operators are given by

Lc = ∆ϵc, (6)

Lθ = 2i
sin(θ)

k
d
dx

− sin2(θ)
d

dx2 . (7)

Notice that Lc and Lθ are independently parametrized with respect to nc and θ. It means that
the contributions of the two operators into the perturbed eigenfrequency are additive in the first
perturbation order.

First let us see the effect of Lc. In general, the application of perturbative approaches to
resonant states in not trivial, since the eigenfields diverge in the far-zone [34–36]. One of the
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possible solutions is the use of the Wigner-Brillouin (WB) perturbation theory [37,38]. The
application of the WB approach requires a very specific normalization condition for the resonant
states involving both "volume" convolution with dielectric function, and "flux" term as a surface
integral over the outer interface of the elementary cell. It can be argued, however, that the BIC
proper is a specific case when the flux term can be dropped off due to the eigenfield vanishing
in the far-zone [39]. Thus, for a single BIC mode the WB perturbation theory yields vacuum
wavenumber

k =
2k(0)

2 + Ic∆ϵc
, (8)

where k(0) is the vacuum wavenumber of the BIC with the reference value of the cladding RI and

Ic =

∫
Sc

(︂
E(BIC)

x

)︂2
dydz (9)

with Sc as the area of the elementary cell occupied by the cladding fluid, and E(BIC)
x as the BIC

eigenfield satisfying the following normalization condition

1 =
∫
S

(︂
E(BIC)

x

)︂2
ϵ(y, z)dydz, (10)

where S is the total area of the elementary cell. Notice that although the integration domains are
infinite both integrals converge due to the eigenfield vanishing in the far-zone.

The normalization condition (10) naturally invites applying the standard Rayleigh-Schrödinger
(RS) perturbative approach following [40]. Remarkably, unlike the WB method the first order RS
approach does not involve any other states rather than the unperturbed state under consideration
[41]. The first order RS solution reads

k = k(0)
(︃
1 −

1
2

Ic∆ϵc

)︃
+ O(∆ϵ2

c ). (11)

We stress again that although the solution (8) does not require smallness of ∆ϵc, it is still
approximate since it neglects contribution of all unperturbed modes other than the BIC. In
contrast the first order non-degenerate RS solution (11) only involves a single mode but requires
smallness of ∆ϵ . Notice though, that Eq. (8) and Eq. (11) coincide up to O(∆ϵ2

c ). Thus, the
Wigner-Brillouin approach truncated to a single eigenstates produces an exact result up to O(∆ϵ2

c ).
Unfortunately, unlike Lc the effect of Lθ can not be described by the single state WB approach.

This is because the perturbed solution is a radiating state and, thus, even in the first order
approximation can not be written through the non-radiating unperturbed BIC. Physically, the
application of Lθ generates the dispersion of the leaky band hosting the BIC in the Γ-point.
Since the band is symmetric with respect to β → −β the dispersion about the Γ-point reads

k = k(0)(1 + αθ2) + O(θ4). (12)

The complex-valued parameter α can be found by fitting to numerical or experimental data.
As it was already mentioned the corrections due to Lc and Lθ are additive in the leading order
because both θ and ∆nc are regarded as small quantities. Thus, using λ = 2π/k, Eq. (8), and
Eq. (12) we obtain the resonant wavelength, λres as

λres = λ
(0)
BIC

(︃
1 +

1
2

Ic∆ϵc − αθ
2
)︃

. (13)

Notice that Eq. (13) explicitly predicts blue shift of the resonant wavelength with positive
∆ϵc in the first perturbation order when α is independent of ∆ϵc. Applying the definition of the
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sensitivity, Eq. (2) one finds
S = λ(0)BICn(0)c Ic. (14)

The above expression for sensitivity exactly coincides with that previously derived by Mortensen,
Xiao, and Pedersen [40] for guided modes in a bulk photonic crystal.

Remarkably, Eq. (14) can also be derived with a straightforward application of the Hellmann-
Feynman (HF) theorem [42]. Notice, though, that the HF theorem strictly requires the problem
to be described by Hermitian operators. In general the radiating boundary conditions break the
hermiticity. However, in the case of the BIC proper the eigenfield is localized about the DG and,
thus, is not affected by the boundary condition in the far-zone.

To derive the FOM we recall that the width W of a high-Q resonance can be written as

W =
λ
(0)
BIC
Q

, (15)

where Q is the quality factor

Q =
k(0)

2ℑ{a}θ2 . (16)

Hence, for the FOM we have

FOM = n(0)c IcQ ∝ θ−2. (17)

Here we would like to mention an alternative definition of the FOM as the product between
the Q-factor and the sensitivity [43]. One can see from Eq. (14) and Eq. (17) that both FOMs
exhibit the same dependence on θ up to a constant prefactor.

Finally, let us discuss the upper limit of the differential sensitivity. By comparing the integral (9)
against Eq. (10) one writes

Ic =
1
ϵc

[︃
1 −

∫
SDG

ϵ(y, z)
(︂
E(BIC)

x

)︂2
dydz

]︃
, (18)

where SDG is the area of the elementary cell occupied by the DG. The quantity Ic reaches its
maximal value, when the integral in Eq. (18) equals to zero. Thus, the maximal differential
sensitivity in the spectral vicinity of an isolated BIC is given by

Smax =
λBIC
nc

. (19)

4. Numerical results

To verify the above findings we run FDTD simulations for computing the transmittance, T as
a function of both k and θ. In Fig. 2(a) we demonstrate the blue shift of the Fano feature with
the increase of the cladding RI. In Figs. 2(b-d) we plotted the shift of the resonant wavelength
∆λres = λ

(0)
res − λres in comparison against Eq. (13) at three different values of θ. On can see

from Figs. 2(b-d) that the data match with deviation only becoming visible at a larger angle of
incidence, θ = 4, (deg), when the higher perturbation orders in θ come into play.

In Table 2 we present the numerical values of differential sensitivity obtained from Figs. 2(b-d)
in comparison against the analytic result Eq. (14). To assess the accuracy of Eq. (14) we calculated
the relative error

δ =
|Stheor − Snum |

2(Stheor + Snum)
· 100%, (20)

where Stheor stands for the theoretical value of the sensitivity found from Eq. (14), while Snum
is used for numerical data. Again one can see a good coincidence with δ>1% only for θ = 4,
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Fig. 2. Blue shift of the resonant frequency. (a) Fano feature in transmittance, T against
the incident wave number, kh and the refractive index of the cladding fluid, nc; the DG is
made of Si and illuminated at the angle of incidence θ = 4, (deg). (b-d) Shift of the resonant
wavelength, ∆λres as a function of nc at three different angles of incidence; DG material and
θ are specified in the subplots.

(deg) with a TiO2 DG. Otherwise the sensitivity remains constant about the normal incidence as
predicted by Eq. (14).

In Fig. 3(a) we show the Fano feature in transmittance collapsing on approach to normal
incidence. The width of the resonances is extracted from the data in Fig. 3(a) and plotted against
θ2 in Fig. 3(b). One can see from Fig. 3(b) that the numerical data comply with Eq. (15) and
Eq. (16) which predict W ∝ θ2. Finally, in Fig. 3(c) we plot the FOM against the angle of
incidence together with fitting curves FOM ∝ θ−2. One can see that the numerical results are in
accordance to Eq. (17).

Table 2. Numerical and theoretical values of sensitivity. RIU stands for refractive index unit.

Grating material Si Si Si TiO2 TiO2 TiO2

θ, (deg) 1 2 4 1 2 4

Stheor, (nm/RIU) 137.2 137.2 137.2 229.7 229.7 229.7

Snum, (nm/RIU) 137.4 137.5 137.8 222.4 233.7 252.3

δ 0.037% 0.052% 0.114% 0.812% 0.429% 2.343%
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Fig. 3. Fano resonance and FOM. (a) Collapsing Fano feature in transmittance, T on
approach to the normal incidence in TiO2 DG; nc = 1.333. (b) Resonant width in terms of
wavelength against θ2. (c) FOM as a function of the angle of incidence. Thin lines show
fitting to FOM ∝ θ−2.

5. Summary and conclusions

The equations derived provide a cue to designing an efficient sensor with an optical BIC. The
expression for sensitivity obtained in this paper is identical to that derived by Mortensen, Xiao,
and Pedersen [40] for bulk photonic crystal underlying the unique properties of BICs among the
leaky modes supported by the grating. In this paper we limited ourselves with in-Γ symmetry
protected TE BICs. We mention in passing that the theory can be directly applied to TM
polarization [44] or non-symmetry protected (accidental) off-Γ BICs [14,45–47]. In the latter
case, the sensor would be operating at oblique incidence. The only theoretical difference is that
the dispersion of the real part of the resonant frequency would be linear in the vicinity of the BIC
point. This, however, would not modify the final expression for the sensitivity Eq. (14). At the
same time, the dispersion of the imaginary part is still parabolic because the radiation loss rates
are non-negative. Thus, FOM ∝ (θ − θBIC)

−2, where θBIC is the incidence angle corresponding
to the off-Γ BIC.

According to Eq. (14), and Eq. (18) the obvious approach for maximising the sensitivity is
either manufacturing the DG of a dielectric with small ϵ or choosing a BIC with the eigenfield
predominantly occupying the free space above the DG. Both design paradigms can be implemented
by solving the eignevalue problem with FDTD method with variation of the geometric parameters.

On the other hand, the FOM can be optimized by operating at near normal incidence. At this
point some comments are due in regard to FOM, Eq. (17) diverging with the decrease of the
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angle of incidence. Experimentally, a zero linewidth cannot be obtained in a realistic set-up due
to three major factors:

(i) material losses due to absorption in the dielectric [48,49];
(ii) fabrication inaccuracies [50]; and
(iii) finiteness of the structure [48,51], as the BIC proper cannot be supported by systems finite

in all spatial dimensions [52].
The effect of all three factors is saturation of FOM on approach to normal incidence. Which of

the three will dominate in the saturation is determined by a specific design of the DG.
Another important aspect is the finite waist of the Gaussian beam illuminating the DG.

Equations (14), and (17) can only be strictly applied to a plane wave, whereas a Gaussian beam is
always a continuum of plane waves propagating to slightly different directions. Miniaturization
of the sensor would imply a tightly focused beam with a broad momentum distribution in the
Fourier plane. This would naturally compromise the FOM, as the scattering channels with larger
angles of incidence become more populated.

Finally, let us discuss whether the limit, Eq. (19) can be overcome. First of all, Eq. (19) is
derived under assumption of smallness of the perturbation operators. Therefore, the sensitivities
larger than Eq. (19) are not strictly forbidden. For example, a larger sensitivity has been recently
reported with surface plasmon-polaritons [53]. The drawback, however, is the drop of the quality
factor due to strong coupling of the eigenmode to the outgoing waves. Thus, the increase of
sensitivity with departure from the BIC proper can be only obtained at the cost of the sensor
FOM. More promising is optimizing the sensitivity while keeping the high FOM intact. This can
be done by breaking the second condition in derivation of Eq. (19), namely, the single mode
approach. One possible route is looking for a BIC in the exceptional points [54–56], which
unavoidably emerge as a result of an intricate interplay between two eigenmodes. The other
possible route is application of BIC existing just below the first Wood’s anomaly in which case
the contribution of the evanescent channels corresponding to the first diffraction order becomes
extremely sensitive to the system’s parameters [17]. The destruction of a BIC in crossing the
Wood’s anomaly inherently implies application of a multimodal perturbative approach since the
contribution of states with finite live-time is required. We speculate that operating in the vicinity
of the Wood’s anomaly may result in a significant gain in sensitivity while keeping diverging the
FOM and quality factor.
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