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A unified approach to controlling the diffraction of light
carrying orbital angular momenta (OAM) is developed and
experimentally verified in this Letter. This approach allows
one to specify not only the number of diffraction maxima,
their spatial frequencies, and the intensity distribution
between them, but also the OAM in each maximum. It is
verified that the approach can be used for structuring both
single and multiple beams carrying OAMs. Simulations
reveal phase singularities in structured beams. In addition,
the approach makes it possible to shape the light in regular
and irregular two-dimensional arrays with addressing the
OAMs at each site. This approach offers new opportunities
for singular optics. ©2020Optical Society of America

https://doi.org/10.1364/OL.389019

The light beams carrying the orbital angular momentum
(OAM) l~ per photon are the beams with an azimuthal phase
dependence of exp(ilφ) [1–3], where ~ is the Planck’s constant
divided by 2π . They are also known as optical vertices, which
appear as isolated zero-intensity spots possessing the topologi-
cal charges l of a helical phase. They can be simply formed by
imposing an exp(ilφ) phase mask onto a Gaussian laser beam
by using spatial light modulators [4,5], spiral phase plates [6], q -
plates [7], etc. The OAM carrying light beams are promising for
optical manipulations (optical tweezers) [8–11], in which the
angular momentum of light is converted to the particle momen-
tum, high-resolution imaging [12,13], high-dimensional
quantum cryptography [14], and optical communications [15–
20]. Depending on the topological charge l of the helical phase,
the OAM beams can be quantified as different orthogonal states.
Since the OAM states depend on neither the wavelength nor the
polarization, OAM carrying beams can be used to enhance the
information capacity of optical channels by OAM multiplexing
[17,19]. More recently, it was reported on generation of single
beams with a superposition of the orbital angular momenta
[21,22]. In recent work [23], a simple analytical method of
diffraction pattern formation was elaborated and experimen-
tally proved. This approach makes it possible to form a discrete
diffraction pattern consisting of a set of fixed-order diffraction
maxima using a quasiperiodic diffraction grating. This method
can be extended to the case of diffraction of the light beams
carrying the OAM. In [24], a quasi-periodic structure with

the one-dimensional (1D) long-range translational symmetry
characterized by a pair of fixed spatial constants and topological
charges was investigated. As shown in [25], four sets of spatial
periods and OAMs are promising for free-space multicasting,
in which digital signals are encoded to a time-varying series of
different OAM states in each diffraction order and transmitted
from a transmitter to multiple receivers. A special interest in
the field represents creation of two-dimensional (2D) arrays
of OAM beams [26,27]. Although the creation of 2D arrays
of OAM beams is in progress, the ongoing method of their
construction is quite complicated and adopted for creation of
regular arrays only. Therefore, it is important to develop a simple
and straightforward method to tailor a desired diffraction pat-
tern of light beams carrying a single OAM or superposition of
the OAMs with or without 1D or 2D translation symmetry.

In this Letter, a unified approach to tailor diffraction of the
light beams carrying the OAMs is developed and experimentally
verified. This approach allows one to create 1D and 2D spatial
arrays of light beams by addressing the OAM states. A limit
case of the high-dimensional multiplication of a light beam
with a specific OAM state is considered. This approach may
provide new opportunities for structuring light with optical
singularities.

To design a light beam with desired spatial characteristics,
a phase mask was imposed onto a Gaussian laser beam. The
complex modulation function of an arbitrary phase mask
(hologram) is

t(r, φ)= e−i8(r,φ), (1)

where 8(r, φ) is the phase modulation function, r ∈ (x , y ) is
the radius vector, andφ is the azimuth angle.

The phase modulation function of the binary hologram can
be described as

8(r, φ)=80 +18 · sgn
(∑

an cos [Gnr+ lnφ]
)

. (2)

Here,80 is the average phase,18 is the maximum deviation of
the phase from its average value 80, an is the amplitude of the
nth spatial harmonic, Gn is the reciprocal lattice vector (RLV),
ln is the topological charge, and sgn(ψ)= |ψ |/ψ is the signum
function of the argument ψ . The terms cos(Gn) provide a
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Fig. 1. Schematic of the experimental setup: helium–neon laser,
He–Ne; spatial light modulator, SLM; lens, L; and CCD camera C.

long-range translational symmetry, while ln can be considered as
topological defects.

In the proof-of-concept experiments, we used the experi-
mental setup shown in Fig. 1. The binary phase modulation
(BPM) pattern was calculated using Eq. (2) and loaded into a
2D phase-only spatial light modulator (SLM, PLUTO-NIR-
011, Holoeye, the spatial resolution is 1920× 1080 pixels, and
the pixel pitch is 8µm). The SLM active area was illuminated by
the He–Ne laser radiation (λ= 543 nm and a full width at half
maximum of 544 µm). The diffraction pattern was projected
by a lens with f = 10 cm onto a CCD matrix of a laser beam
profiler (LBP-1, Newport, the pixel sizes are 9.05× 8.3 µm2).

In the degenerate case [Gn = 0 in Eq. (2) for all n], only zero
order will appear, and the intensity distribution will depend on
the topological charges ln . Figures 2 and 3 present the numer-
ically calculated and experimental intensity profiles for the
beam corresponding to two terms under the sum in Eq. (2).
The intensity distribution in the far-field was calculated using
the Fresnel–Kirchhoff diffraction equation [28]. It can be seen
that the calculated intensity distributions are in good agreement
with the experimental results. All the phase masks in Figs. 2
and 3 have the horizontal symmetry (due to the parity of the
cosine function) and, therefore, all the corresponding inten-
sity distributions obey such a symmetry. In addition, some of
phase masks have a vertical inversion axis [see, e.g., Figs. 2(c)
and 2(d)], which determines the symmetry axis of the cor-
responding intensity distribution. In addition, for the low

Fig. 2. Binary phase modulation patterns (a)–(d), calcu-
lated (e)–(h), and experimental (i)–(l) diffraction patterns for
G1 = G2 = 0 rad · µm−1 and (l1, l2): (e, i) (1, 2); (f, j) (2, 3);
(g, k) (1, 3); and (h, l) (3, 5).

Fig. 3. Binary phase modulation patterns (a)–(d), calcu-
lated (e)–(h), and experimental (i)–(l) diffraction patterns for
G1 = G2 = 0 rad · µm−1 and (l1, l2): (e, i) (5, 20); (f, j) (10, 20);
(g, k) (15, 20); and (h, l) (18, 23).

orbital momenta (Fig. 2), the number of azimuthal intensity
minima and maxima exactly corresponds to the number of 2π
increments on the phase mask. For the higher orbital angular
momenta (Fig. 3), the intensity distributions resemble the
diffraction on quasi-periodic gratings [23] or the transmission
spectra of quasiperiodic photonic crystals [29]. In contrast to
the gratings, where there is the spatial modulation, the angular
(azimuthal) modulation takes place. Nevertheless, similar to the
case of quasi-periodic gratings, a quasiperiod of these modula-
tion superpositions is a reciprocal value of the highest common
factor of the modulation frequencies. Here, the role of angular
modulation frequencies is played by the OAMs l1 and l2. For
example, in Figs. 3(a) and 3(c), the highest common factor is 5
and, in both cases, we can see five bright rays diverging from the
center that divide the diffraction pattern into identical sectors.
Additionally, analysis of calculated phase profiles of these beams
reveals the presence of phase singularities as shown in Figs. 4(a)
and 4(c) for the binary phase modulation pattern presented in
Fig. 2(d). Moreover, intensity distribution in such points tends
to zero as shown in Figs. 4(b) and 4(d). These features together
indicate the presence of local optical vertices, although their
origin is difficult to correspond to the appropriate topological
charges in the phase modulation function. The local optical
vertices are divided into positive (l =+1) and negative (l =−1)
ones. In particular, it can be seen that the calculated phase dis-
tribution has horizontal symmetry, and the phase is twisted
around the points on opposite sides from the axis of symmetry.
Thus, the vertices from opposite sides have opposite topological
charges. It implies that the total OAM is zero, since positive and
negative vertices compensate each other.

Each combination of orbital angular momenta (ln) leads to
the formation of a unique diffraction pattern. This approach is
not limited to two elements in sum, but can be easily expanded
to 3, 4, or any other number of terms, which has been exper-
imentally confirmed. Thus, an almost infinite number of
possible combinations with the non-repeating intensity
distribution can be obtained.

At Gn 6= 0, a set of different diffraction orders would appear
in the pattern. For convenience, we consider the case of three ele-
ments in the sum, so that Eq. (2) takes the form
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Fig. 4. Calculated phase (a), (c) and intensity (b), (d) distributions
for the parameters (l1 = 3, l2 = 5). Red and blue circles represent local
optical vertices with positive and negative topological charges, respec-
tively; (c), (d) are regions of interest from plots (a), (b).

8(x , φ)=80 +18 · sgn(a1 cos[G1x + l1φ]

+ a2 cos[G2x + l2φ] + a3 cos[G3x + l3φ]). (3)

In this case, there would be three pronounced maxima cor-
responding to three Gn values, and each maximum would
have a corresponding OAM equal to ln (Fig. 5). The extraor-
dinary results were observed at any two RLV equal to each
other. It could be expected that, in this case, the maximum at
the corresponding spatial frequency obeys the OAM super-
position. In fact, these maxima are distorted and, moreover,
the remainder maxima with other spatial frequencies are dis-
torted as well. According to the trigonometric formulas, the
sum of cosine in Eq. (3) can be represented as the modulation
of cos[ (G1+G2)

2 x + (l1+l2)
2 φ] by cos[(G1−G2)

2 x + (l1−l2)
2 φ], if

G1 =G2; then, the second cosine would be independent of x .

Thus, it will produce the azimuthal modulation on the entire
BPM pattern.

It is reasonable to form regular and irregular 2D arrays of
beams carrying specific OAMs. For this purpose, Eq. (2) can be
rewritten in the form

8(x , y , φ)=80 +18 · sgn
(∑

(an cos[Gx
n x ]

+ cos[Gy
n y + lnφ])

)
. (4)

Thus, the BPM pattern from Eq. (4) will not only multiply
the incident beam, but also set specific OAMs for each spatial
frequency. In general, the term lnφ in Eq. (4) can be added to
any cosine (x or y ) or both of them simultaneously. Although
in the latter case the symmetry axis would not coincide with the
x - and y -axis, instead, they would be inclined by an angle cor-
responding to the ratio between Gx

n and Gy
n . In addition, in this

case, the OAM for each spatial frequency will be a superposition
of l x

n and l y
n .

The greater the number of maxima in each order, the lower
their intensities, while the intensity of the zero non-diffracted
order remains unchanged. Therefore, for better observation of
the diffraction pattern, the central zero maximum was blocked.

A regular pattern can be obtained if we take Gn with equal
spacings. For example, the regular pattern shown in Fig. 6(a) was
obtained at Gx

= 410; 935; 1460; 1985 rad · µm−1(spacing
is 525) and Gy

= 415; 840; 1265; 1690; 2115 rad · µm−1

(spacing is 425). If the spacing is equal to G1, then the first order
of the second spatial frequency will intersect with the second
order of the first frequency, and the distortion will occur. The
intensity distributions for the BPM pattern with random Gx

n
and Gy

n are shown in Fig. 6(b). Although, one must be careful
not to allow different maxima to intersect. Otherwise, these
maxima will be strongly distorted, as in the 1D case. In both
cases, for the regular and irregular 2D arrays, topological charge
ln was random from 1 to 4. The larger the topological charge,
the wider the circle; therefore the intensity will be spread over
the larger area, and for better observation, the amplitudes were
chosen to be an = 0.25+ ln/6.

Fig. 5. Calculated (a)–(d) and experimental (e)–(h) diffraction patterns for G1 = 0.0436 rad · µm−1, G2 = 0.0714 rad · µm−1, and
G3 = 0.1121 rad · µm−1, and for a set of parameters (a1, l1; a2, l2; a3, l3): (a), (e) (0.5, 1; 0.5, 0; 1, 2); (b), (f ) (0.5, 0; 0.5, 1; 1, 2);
(c), (g) (0.5, 1; 1.1, 3; 1, 2); and for (d), (h) G1 = 0.0436 rad · µm−1, G2 = G3 = 0.1121 rad · µm−1 (0.5, 0; 1, 3; 1, 2).
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Fig. 6. Experimental diffraction patterns for regular (a) and irregu-
lar (b) 2D array of beams. Insets: 2D binary phase masks.

In conclusion, we elaborated and experimentally proved in
this Letter a unified approach to controlling the diffraction of
beams carrying the orbital angular momentum. Despite some
limitations, this analytical approach allows one to control a
number of diffraction maxima with the specified orbital angular
momenta, intensity distribution between them, and their angu-
lar positions by choosing appropriate reciprocal lattice vectors,
their amplitudes, and topological charges of a hologram. This
analytical method is applicable to creation of 1D and 2D arrays
of OAM beams and may provide new opportunities for singular
optics.
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