УДК 535.31, 535.343.2, 535.555, 539.216.2

Е. М. Аверьянов

ОПТИЧЕСКАЯ АНИЗОТРОПИЯ И ОРИЕНТАЦИОННЫЙ ПОРЯДОК ОДНООСНЫХ ПЛЕНОК СОПРЯЖЕННЫХ ПОЛИМЕРОВ

Институт физики им. Л. В. Киренского, ФИЦ КНЦ СО РАН, Академгородок, д. 50, строение № 38, 660036 Красноярск, Россия. E-mail: aver@iph.krasn.ru

Для одноосной пленки сопряженного полимера с макромолекулами в виде наборов субъединиц разной длины установлена связь компонент $\varepsilon_{(1,2)j}(\omega)$ диэлектрической функции $\varepsilon_j(\omega) = \varepsilon_{1j}(\omega) + i\varepsilon_{2j}(\omega)$ с параметром ориентационного порядка σ дипольных моментов молекулярных переходов, отвечающих изолированной полосе поглощения света с поляризацией вдоль (j = ||) и нормально ($j = \bot$) оптической оси пленки. Новые методы определения σ реализованы для пленки полимера P3OT с плоскостной ориентацией субъединиц и известными зависимостями $\varepsilon_{(1,2)j}(\omega)$ в областях прозрачности и низкочастотного электронного поглощения. Учтена анизотропия компонент $f_j(\omega) = 1 + L_j[\varepsilon_j(\omega) - 1]$ тензора локального поля. Экспериментальные значения компонент L_j тензора Лорентца для пленки P3OT определены с использованием зависимостей $\varepsilon_{1j}(\omega)$ в видимой области прозрачности. Показано совместное влияние длины и ориентационного порядка субъединиц, а также динамических диполь-дипольных взаимодействий между субъединицами (эффектов локального поля) на положение максимумов полос $\varepsilon_{2j}(\omega)$.

Ключевые слова: сопряженные полимеры, РЗОТ, анизотропные полимерные пленки, ориентационный порядок, эффекты локального поля.

DOI: 10.18083/LCAppl.2020.1.53

E. M. Aver'yanov

OPTICAL ANISOTROPY AND ORIENTATION ORDER OF UNIAXIAL FILMS OF CONJUGATED POLYMERS

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 50 Akademgorodok, building № 38, Krasnoyarsk, 660036, Russia. E-mail: aver@iph.krasn.ru

The uniaxial film of conjugated polymer with macromolecules as a set of subunits of different lengths was studied. For this film, the connection between the components $\varepsilon_{(1,2)j}(\omega)$ of the dielectric function $\varepsilon_{i}(\omega) = \varepsilon_{lj}(\omega) + i\varepsilon_{2j}(\omega)$ and the orientation order parameter σ was established. The orientation order parameter σ of the dipole moments of molecular transitions corresponds to an isolated absorption band of light with polarization along (j = ||) and across $(j = \bot)$ the optical axis of the film. New methods have been implemented for determining σ of the P3OT polymer film. The P3OT polymer film is characterized by a planar orientation of subunits and known dependences $\varepsilon_{(1,2)j}(\omega)$ in the regions of transparency and low-frequency electron absorption. The anisotropy of the components $f_{j}(\omega) = 1 + L_{j}[\varepsilon_{j}(\omega) - 1]$ of the local-field tensor was taken into account. The experimental values of the components L_{j} of the Lorentz tensor for the P3OT film were determined using the dependences $\varepsilon_{l,j}(\omega)$ in the visible transparency region. The combined effect of the length and orientation order of the subunits, as well as dynamic dipole-dipole interactions between subunits (local-field effects) on the position of the maxima of the $\varepsilon_{2j}(\omega)$ bands was shown.

Key words: conjugated polymers, P3OT, anisotropic polymer films, orientation order, local-field effects.

[©] Аверьянов Е. М., 2020

Введение

Элементная база современной фотоники и оптоэлектроники включает аморфные одноосные пленки сопряженных полимеров на изотропной подложке с оптической осью n, перпендикулярной подложке [1-6]. Такие пленки обычно получают при центробежном растекании гелевого раствора полимера по поверхности вращающейся подложки [1-6] с последующим испарением растворителя. Нанометровые толщины аморфных пленок меньше диаметра статистического клубка макромолекулы в растворе, и жесткоцепные макромолекулы сопряженных полимеров в пленке нельзя считать одноосными. Их реалистичной моделью является представление в виде совокупности линейных сегментов [1] или конформационных субъединиц [7] разного сорта μ, которые различаются длиной ξ_μ (числом мономеров полимерной цепи, охваченных π-электронным сопряжением) и пространственной ориентацией их продольных осей l_µ. Неоднородность субъединиц по длине ξ_μ проявляется в различии их параметров ориентационного порядка S_u относительно **n**; в неоднородности сил осцилляторов $F_q(\xi_{\mu})$ и частот $\omega_q(\xi_{\mu})$ электронных и колебательных переходов, связанных с субъединицами; в неоднородности тензоров поляризуемости γ(ξ_μ) субъединиц; в различии анизотропных стерических, дисперсионных и резонансных взаимодействий между субъединицами разного сорта. Все эти особенности проявляются в физических свойствах пленок, адекватное описание которых актуально для понимания и применения данных материалов.

Прежде всего, это касается оптических и спектральных свойств, которые характеризуются компонентами $\varepsilon_{i}(\omega) = \varepsilon_{1i}(\omega) - i\varepsilon_{2i}(\omega)$ диэлектрической проницаемости и компонентами $n_i^*(\omega) = n_i(\omega) - \omega$ ik_i(ω) комплексного показателя преломления пленок в областях прозрачности и электронного или инфракрасного поглощения света с поляризацией вдоль (i = ||) и нормально ($i = \bot$) оси **п**. Для фотоники и оптоэлектроники важны видимая область прозрачности и область низкочастотных полос электронного поглощения, которые отвечают электронным π-π*-переходам с дипольным моментом перехода \mathbf{d}_{π} , близким к направлению оси \mathbf{l}_{μ} субъединицы. Параметрами упорядоченности направлений \mathbf{d}_{π} относительно **n** служат средние по ансамблю субъединиц величины $d_{\pi\theta} = \langle |\mathbf{d}_{\pi}|^2 \sin^2\theta \rangle / \langle |\mathbf{d}_{\pi}|^2 \rangle$ [1] и $S = \langle 3\cos^2\theta - 1 \rangle / 2$, где $|\mathbf{d}_{\pi}(\xi)|$ – матричный элемент

дипольного момента перехода $\mathbf{d}_{\pi}(\xi)$, θ – угол между \mathbf{d}_{π} и **n**. Для оценок $d_{\pi\theta}$ и *S* обычно используются компоненты $k_j(\omega)$ в рамках выражений $d_{\pi\theta}^+ = 2/(D_k + 2)$ [1, 3, 5, 6], $S^+ = (D_k - 1)/(D_k + 2)$ [2, 3] либо компоненты $\varepsilon_{2j}(\omega)$ [4–6] и соотношение $S^{\#} = (D_{\varepsilon} - 1)/(D_{\varepsilon} + 2)$. Здесь $D_k = k_{\parallel}^{\max}/k_{\perp}^{\max}$, $D_{\varepsilon} = \varepsilon_{2\parallel}^{\max}/\varepsilon_{2\perp}^{\max}$, значения k_j^{\max} и ε_{2j}^{\max} отвечают максимумам полос $k_j(\omega)$ и $\varepsilon_{2j}(\omega)$ для исследуемого электронного перехода.

Выражения для $d_{\pi\theta}^+$, S^+ , $S^\#$ не отражают неоднородности субъединиц по длине, ориентационной упорядоченности и спектральным свойствам, а последовательный вывод этих выражений в литературе отсутствует. Далее, эти выражения отвечают модели пленки как ориентированного газа субъединиц, поскольку не учитывают анизотропных взаимодействий между субъединицами и обусловленных этими взаимодействиями поправок на анизотропию локального поля световой волны в анизотропной пленке. Наконец, корректное использование величин k_j^{max} для определения *S* ограничено полосами низкой интенсивности [8].

В работе [8] были предложены и реализованы для одноосной молекулярной пленки новые методы определения *S* с использованием зависимостей $\varepsilon_{(1,2)}(\omega)$ в области изолированных полос поглощения произвольной интенсивности. Целями данной работы являются: обобщение этих методов для одноосных полимерных пленок в рамках модели макромолекул как совокупности неоднородных субъединиц с учетом эффектов локального поля; демонстрация этих методов для пленки сопряженного полимера *poly(3-octylthiophene)* (P3OT) с известными зависимостями $\varepsilon_{(1,2)}(\omega)$ в областях прозрачности и низкочастотного электронного поглощения [4].

Компоненты ε_j(ω) для полимерной пленки

Рассмотрим аморфную одноосную полимерную пленку, в единице объема которой находится Nстатистически подобных макромолекул, помеченных индексом v и содержащих по N_{μ}^{ν} одноосных субъединиц сорта μ . Среднее число последних, приходящихся на макромолекулу, равно $N_{\mu} = (1/N) \Sigma_{\nu} N_{\mu}^{\nu}$. Среднее число всех субъединиц, приходящихся на макромолекулу, равно $N_s = \Sigma_{\mu} N_{\mu}$.

Концентрация субъединиц сорта μ в пленке равна $x_{\mu} = N_{\mu}/N_s$. Тензор поляризуемости γ_{μ} субъединицы в собственной системе координат характеризуется продольной (γ_t^{μ}) и поперечной (γ_t^{μ}) компонентами, или средним значением $\gamma_m^{\mu} = (\gamma_l^{\mu} + 2\gamma_l^{\mu})/3$ и анизотропией $\Delta \gamma_{\mu} = \gamma_l^{\mu} - \gamma_l^{\mu}$. Значения $N, N_{\mu^{\nu}}, N_{\mu}$, N_s зависят от состояния пленки и условий ее приготовления. В системе осей *j* эллипсоида рефракции пленки компоненты γ_j^{μ} , усредненные по одноосному ансамблю всех субъединиц сорта μ в единице объема пленки, имеют вид

$$\gamma_{\parallel}{}^{\mu} = \gamma_{m}{}^{\mu} + 2\delta\gamma_{\mu}/3, \qquad \gamma_{\perp}{}^{\mu} = \gamma_{m}{}^{\mu} - \delta\gamma_{\mu}/3. \tag{1}$$

Здесь $\delta \gamma_{\mu} = \gamma_{\parallel}{}^{\mu} - \gamma_{\perp}{}^{\mu} = S_{\mu} \Delta \gamma_{\mu}, S_{\mu} = \langle 3\cos^2\theta_{\mu} - 1 \rangle / 2, \theta_{\mu} - 0 \rangle$ угол между осями \mathbf{l}_{μ} и **n**. Скобки $\langle \dots \rangle$ означают усреднение по всем субъединицам сорта µ в единице объема пленки. Различие величин S_µ для субъединиц разного сорта отражает корреляцию между значениями θ_μ и ξ_μ. Можно ожидать, что из-за анизотропных стерических эффектов плотной упаковки субъединиц и анизотропных дисперсионных взаимодействий между субъединицами при аксиальной (плоскостной) ориентации субъединиц в пленке более длинным субъединицам отвечают меньшие значения θ_μ с более высокими значениями $S_{\mu} > 0$ (более высокие значения θ_{μ} с $S_{\mu} < 0$). Усредненные компоненты поляризуемости, приходящиеся на одну субъединицу в макромолекуле (γ_i^s) и на одну макромолекулу в пленке (γ_i), даются соотношениями

$$\gamma_j^s = \Sigma_\mu x_\mu \gamma_j^\mu, \qquad \gamma_j = N_s \gamma_j^s. \tag{2}$$

Величина $\delta \gamma = \gamma_{\parallel} - \gamma_{\perp} = N_s \Sigma_{\mu} x_{\mu} S_{\mu} \Delta \gamma_{\mu}$ является характеристикой анизотропных свойств субъединиц и их ориентационной упорядоченности в пленке.

Одноосная полимерная пленка с неоднородными субъединицами как структурными элементами подобна нематической смеси молекул разного сорта. При анализе проблемы локального поля для полимерной пленки можно использовать подход, развитый и подтвержденный ранее для нематических смесей [9, 10]. Компоненты $E_j^{\mu}(\omega) = f_j^{\mu}(\omega)E_j(\omega)$ локального поля световой волны, действующего на субъединицы сорта μ , связаны с компонентами $E_j(\omega)$ макроскопического поля световой волны в пленке через компоненты

$$f_j^{\mu}(\omega) = 1 + L_j^{\mu}[\varepsilon_j(\omega) - 1]$$
(3)

тензора локального поля и компоненты L_{j}^{μ} тензора Лорентца ($\Sigma_{j}L_{j}^{\mu} = 1$). Компоненты $\varepsilon_{j}(\omega)$ для пленки даются выражением

$$\varepsilon_{j}(\omega) - 1 = 4\pi N N_{s} \Sigma_{\mu} x_{\mu} \gamma_{j}^{\mu}(\omega) f_{j}^{\mu}(\omega).$$
(4)

Введем для пленки эффективный тензор локального поля с компонентами

$$f_j(\omega) = \sum_{\mu} x_{\mu} f_j^{\mu}(\omega) = 1 + L_j[\varepsilon_j(\omega) - 1], \qquad (5)$$

где компоненты эффективного тензора Лорентца имеют вид

$$L_j = \Sigma_{\mu} \chi_{\mu} L_j^{\mu}, \qquad \Sigma_j L_j = \Sigma_{\mu} \chi_{\mu} (\Sigma_j L_j^{\mu}) = 1.$$
 (6)

Подстановка (3) в (4) с использованием выражений $\gamma_j^{\mu} = \gamma_j^{s} + \delta \gamma_j^{\mu}, \quad L_j^{\mu} = L_j + \delta L_j^{\mu}, \quad f_j^{\mu} = f_j + \delta L_j^{\mu}(\varepsilon_j - 1)$

и компонент (2) при учете $\Sigma_{\mu}x_{\mu}\delta\gamma_{j}^{\mu} = \Sigma_{\mu}x_{\mu}\delta L_{j}^{\mu} = 0$ приводит к соотношению

$$\varepsilon_j - 1 = 4\pi N \gamma_j [1 - 4\pi N N_s (\gamma_j^s L_j + \Sigma_\mu x_\mu \delta \gamma_j^\mu \delta L_j^\mu)]^{-1}.$$
(7)

Неравенства $x_{\mu} < 1$, $|\delta \gamma_{j}^{\mu}| << \gamma_{j}^{s}$, $|\delta L_{j}^{\mu}| << L_{j}$ позволяют пренебречь суммой $\Sigma_{\mu} x_{\mu} \delta \gamma_{j}^{\mu} \delta L_{j}^{\mu}$ знакопеременных слагаемых по сравнению с членом $\gamma_{j}^{s} L_{j}$. В результате получаем

$$\varepsilon_j(\omega) - 1 = 4\pi N \gamma_j(\omega) [1 - 4\pi N \gamma_j(\omega) L_j]^{-1}.$$
 (8)

При анализе оптических и спектральных свойств эту формулу удобно использовать в эквивалентной форме

$$\varepsilon_{j}(\omega) - 1 = 4\pi N \gamma_{j}(\omega) f_{j}(\omega)$$
(9)

с функцией $f_j(\omega)$ (5). Формулы (8), (9) совпадают по форме с их аналогами для одноосных молекулярных сред [8–10]. Специфика полимерной пленки отражена в выражениях для γ_j (2), f_j (5) и L_j (6).

Интенсивность полос поглощения, анизотропия локального поля и параметры порядка

Дадим наиболее общий вывод поправок на анизотропию локального поля к интегральному значению $\alpha_j = \int \alpha_j(\omega) d\omega = (2/c) \int k_j(\omega) \omega d\omega$ коэффициента поглощения полимерной пленки для изолированной полосы поглощения, *c* – скорость света в вакууме. Субъединицы имеют одинаковый набор переходов, которые помечены индексом *q* и характеризуются частотой $\omega_q(\xi_{\mu})$, силой осциллятора $F_q(\xi_{\mu})$ и углом $\beta_q(\xi_{\mu})$ между ортом **d**_{*q*} дипольного момента перехода и осью **l**_µ. Для π - π *-переходов рост длины ξ_{μ} субъединицы ведет к росту $F_q(\xi_{\mu})$ и снижению $\omega_q(\xi_{\mu})$, $\beta_q(\xi_{\mu})$ [11, 12]. При одноосном распределении направлений **d**_{*q*} относительно оси **l**_µ имеем

$$\gamma_m{}^{\mu}(\omega,\xi_{\mu}) = (e^2/3m)\Sigma_q F_q(\xi_{\mu})\rho_q(\omega,\xi_{\mu}),$$

$$\Delta\gamma_{\mu}(\omega,\xi_{\mu}) = (e^2/m)\Sigma_q F_q(\xi_{\mu})S_{\beta q}(\xi_{\mu})\rho_q(\omega,\xi_{\mu}).$$
(10)

Здесь е и m – заряд и масса электрона, $S_{\beta q}(\xi_{\mu}) = [3\cos^2\beta_q(\xi_{\mu}) - 1]/2$, функция

$$\rho_q(\omega,\xi_{\mu}) = [\omega_q^2(\xi_{\mu}) - \omega^2 + i\omega\Gamma_q(\xi_{\mu})]^{-1} \qquad (11)$$

характеризует форму полосы поглощения для *q*-го перехода. Используем величины (10) в формулах (1), (2) и рассмотрим изолированную полосу поглощения, которой отвечает переход с функцией $\rho(\omega, \xi_{\mu})$ и параметрами $F(\xi_{\mu})$, $S_{\beta}(\xi_{\mu})$, $\omega_{0}(\xi_{\mu})$, $\Gamma(\xi_{\mu})$. В окрестности этой полосы компоненты $\gamma_{j}(\omega)$ можно представить в виде

$$\gamma_j(\omega) = \gamma_{bj} + [\omega_p^2/4\pi N] \langle F_j(\xi) \rho(\omega, \xi) \rangle, \qquad (12)$$

где фоновые значения γ_{bj} обусловлены другими переходами, $\omega_p = (4\pi N N_s e^2/m)^{1/2}$. Здесь и далее для произвольной функции $Y(\xi_{\mu})$ полагаем $\langle Y(\xi) \rangle = \Sigma_{\mu} x_{\mu} Y(\xi_{\mu})$. Компоненты $F_j(\xi_{\mu})$ даются выражением

$$F_{j}(\xi_{\mu}) = F(\xi_{\mu})[1 + c_{j}S_{\mu}(\xi_{\mu})S_{\beta}(\xi_{\mu})]/3, \qquad (13)$$

где $c_{\parallel} = 2$, $c_{\perp} = -1$. Введем фоновые значения $\varepsilon_{bj} = 1 + 4\pi N \gamma_{bj} f_{bj}$, $f_{bj} = 1 + L_j(\varepsilon_{bj} - 1)$, и с учетом (9) преобразуем формулу (12) к следующему виду

$$[\varepsilon_j(\omega) - 1]/f_j(\omega) = (\varepsilon_{bj} - 1)/f_{bj} + \omega_p^2 \langle F_j(\xi)\rho(\omega,\xi)\rangle.$$
(14)

Отсюда следует выражение

$$\varepsilon_{j}(\omega) = \varepsilon_{bj} + \frac{\omega_{p}^{2} f_{bj}^{2} \langle F_{j}(\xi) \rho(\omega, \xi) \rangle}{1 - u_{j} \langle F_{j}(\xi) \rho(\omega, \xi) \rangle}, \qquad (15)$$

где $u_j = \omega_p^2 f_{bj} L_j$. Используя здесь представление $\rho = \rho_1 - i\rho_2$, получаем $\epsilon_{1i}(\omega) = \epsilon_{bi} + \epsilon_{1i}(\omega)$

$$+\frac{\omega_p^2 f_{bj}^2 \{\langle F_j \rho_1 \rangle - u_j [\langle F_j \rho_1 \rangle^2 + \langle F_j \rho_2 \rangle^2]\}}{[1 - u_j \langle F_j \rho_1 \rangle]^2 + [u_j \langle F_j \rho_2 \rangle]^2}, \quad (16)$$

$$\varepsilon_{2j}(\omega) = \frac{\omega_p^2 f_{bj}^2 \langle F_j \rho_2 \rangle}{[1 - u_j \langle F_j \rho_1 \rangle]^2 + [u_j \langle F_j \rho_2 \rangle]^2}.$$

Показатель преломления $n_j(\omega)$ связан с этими функциями соотношением

$$n_j = (1/2^{1/2}) [\epsilon_{1j} + (\epsilon_{1j}^2 + \epsilon_{2j}^2)^{1/2}]^{1/2}.$$
 (17)

Функции р_{1,2} имеют вид

$$\rho_{1}(\omega,\xi_{\mu}) = \frac{\omega_{0}^{2}(\xi_{\mu}) - \omega^{2}}{[\omega_{0}^{2}(\xi_{\mu}) - \omega^{2}]^{2} + \omega^{2}\Gamma^{2}(\xi_{\mu})},$$

$$\rho_{2}(\omega,\xi_{\mu}) = \frac{\omega\Gamma(\xi_{\mu})}{[\omega_{0}^{2}(\xi_{\mu}) - \omega^{2}]^{2} + \omega^{2}\Gamma^{2}(\xi_{\mu})}.$$
(18)

При $\omega >> \omega_0(\xi_{\mu})$ имеем $\langle F_j \rho_1 \rangle \approx -\langle F_j \rangle / \omega^2$, $\langle F_j \rho_2 \rangle \approx \langle F_j \Gamma \rangle / \omega^3$ и $|\langle F_j \rho_1 \rangle| >> \langle F_j \rho_2 \rangle$. Учет этих соотношений в (16), (17) дает для данной области частот зависимость

$$n_j(\omega) = n_{bj} - (\omega_p f_{bj})^2 F_j / (2\omega^2 n_{bj}).$$
 (19)

Здесь $n_{bj} = (\varepsilon_{bj})^{1/2}$ и $F_j = \langle F_j(\xi) \rangle$. С другой стороны, функции $n_j(\omega)$ и $\alpha_j(\omega)$ связаны соотношением Крамерса – Кронига, которое в области выбранной полосы можно представить в виде [9]

$$n_j(\omega) = n_{bj} + \frac{c}{\pi} P \int \frac{\alpha_j(\omega')}{{\omega'}^2 - \omega^2} d\omega' \,. \tag{20}$$

Здесь главное значение интеграла берется в пределах исследуемой полосы поглощения. При $\omega >> \omega_0(\xi_{\mu})$ и $\omega >> \omega_{\alpha j}$, где $\omega_{\alpha j}$ – максимум полосы $\alpha_j(\omega)$, соотношение (20) сводится к следующему

$$n_j(\omega) = n_{bj} - c\alpha_j / (\pi \omega^2).$$
 (21)

Сравнение формул (19) и (21) дает связь

$$\alpha_j = \frac{\pi \omega_p^2 f_{bj}^2}{2cn_{bj}} F_j, \qquad (22)$$

не зависящую от формы и положения полос $\alpha_j(\omega)$. Компоненты F_j имеют вид

$$F_{\parallel} = F(1+2\sigma)/3, \quad F_{\parallel} = F(1-\sigma)/3.$$
 (23)

Параметр порядка

$$\sigma = \langle F(\xi)S(\xi)S_{\beta}(\xi)\rangle/F$$
(24)

учитывает корреляцию между ориентационным порядком направлений **d** и силой осциллятора исследуемого перехода для субъединиц разной длины ξ , $F = \langle F(\xi) \rangle$ – среднее значение силы осциллятора данного перехода для анизотропной пленки. Покомпонентное суммирование выражений (22) с учетом (23) дает

$$F = \frac{2c}{\pi\omega_p^2} \left(\frac{n_{b\parallel}}{f_{b\parallel}^2} \alpha_{\parallel} + \frac{2n_{b\perp}}{f_{b\perp}^2} \alpha_{\perp} \right).$$
(25)

В изотропном состоянии пленки значения $N_{\mu i}$ (N_{si}) и $x_{\mu i}$ могут отличаться от N_{μ} (N_s) и x_{μ} . Для этого состояния величина $F_i = \langle F(\xi) \rangle_i = \Sigma_{\mu} x_{\mu i} F(\xi_{\mu})$ дается выражением

$$F_i = \frac{6cn_{bi}}{\pi\omega_{pi}^2 f_{bi}^2} \alpha_i \,. \tag{26}$$

Здесь $\omega_{pi} = (4\pi N_i N_{si} e^2/m)^{1/2}$, N_i – число макромолекул в единице объема изотропной пленки, $n_{bi} = (\varepsilon_{bi})^{1/2}$, $f_{bi} = (\varepsilon_{bi} + 2)/3$, $\alpha_i = \int \alpha_i(\omega) d\omega$.

Отношения $D_1 = \alpha_{\parallel}/\alpha_{\perp}$ и $D_2 = \alpha_{\perp}/\alpha_i$ определяют связь

$$F/F_i = (D_1g_1 + 2)D_2g_2/3 \tag{27}$$

с поправками

$$\mathbf{g}_{1} = \frac{n_{b\parallel} f_{b\perp}^{2}}{n_{b\perp} f_{b\parallel}^{2}}, \qquad \mathbf{g}_{2} = \frac{n_{b\perp} N_{i} N_{si} f_{bi}^{2}}{n_{bi} N N_{s} f_{b\perp}^{2}}.$$
 (28)

Отношение N_i/N равно отношению плотностей этих сред. В качестве первого приближения в (28) можно принять $N_s \approx N_{si}$. Значения $D_{1,2}$ позволяют определить параметр σ из следующих выражений

$$\sigma' = \frac{D_1 g_1 - 1}{D_1 g_1 + 2}, \quad \sigma'' = 1 - \frac{F_i}{F} D_2 g_2.$$
(29)

Равенство $\sigma' = \sigma''$ выполняется при корректных значениях $g_{1,2}$ и F_i/F [9]. Приближение $g_{1,2} = 1$ приводит к заметному различию $\sigma' \neq \sigma''$ [9], которое является нефизическим и указывает на некорректность этого приближения.

Учет пропорциональности $F(\xi_{\mu}) \propto |\mathbf{d}_{\pi}(\xi)|^2$ [11] позволяет выразить параметр $d_{\pi\theta}$ [1] в виде

$$d_{\pi\theta} = 2(1-\sigma)/3 = 2/(D_1g_1+2).$$
 (30)

Соотношение $d_{\pi\theta}^+ = 2/(D_k + 2)$ [1, 3, 5, 6] отвечает приближениям $g_1 = 1$ и $D_1 = D_k$. Последнее справедливо для полос поглощения достаточно низкой интенсивности [8, 9]. В общем случае имеем

$$\sigma \neq S = \langle S(\xi)S_{\beta}(\xi) \rangle, \quad d_{\pi\theta} \neq \langle \sin^2\theta \rangle = 2(1-S)/3. \quad (31)$$

Равенство $\sigma = S$ выполняется для переходов с $F(\xi_{\mu}) =$ const. Формула $S^+ = (D_k - 1)/(D_k + 2)$ [2, 3] отвечает приближениям $F(\xi_{\mu}) =$ const, $g_1 = 1$, $D_1 = D_k$. Для π - π^* -переходов с $S_{\beta}(\xi_{\mu}) \approx 1$ зависимостью S_{β} от ξ_{μ} в (24) можно пренебречь. Для таких переходов определяется величина $\sigma = S_{\beta}\langle F(\xi)S(\xi)\rangle/F$. Если к тому же $F(\xi_{\mu}) =$ const, то $\sigma = S = S_{\beta}\langle S(\xi)\rangle$ с величиной $\langle S(\xi)\rangle = \Sigma_{\mu}x_{\mu}S_{\mu}$. Для π - π^* -переходов в молекулярных пленках при $N_s = N_{si} = 1$ и $F = F_i$ имеем $\sigma = S$.

Зависимости ε_(1,2)(ω) и параметры порядка

Для изолированной полосы поглощения можно определить интегральное значение

$$I_j = \int \varepsilon_{2j}(\omega) \omega d\omega = c \int \alpha_j(\omega) n_j(\omega) d\omega.$$
(32)

Для получения I_j с функцией $\varepsilon_{2j}(\omega)$ (16) заметим, что при $\omega >> \omega_0(\xi_{\mu})$, зависимость $\varepsilon_{1j}(\omega)$ (16) имеет вид

$$\varepsilon_{1j}(\omega) = \varepsilon_{bj} - (\omega_p f_{bj})^2 F_j / \omega^2.$$
(33)

Отсюда следует формула (19). С другой стороны, функции $\varepsilon_{1j}(\omega)$ и $\varepsilon_{2j}(\omega)$ связаны соотношением Крамерса – Кронига, которое в области выбранной полосы можно представить в виде [9]

$$\varepsilon_{1j}(\omega) = \varepsilon_{bj} + \frac{2}{\pi} P \int \frac{\omega' \varepsilon_{2j}(\omega')}{{\omega'}^2 - \omega^2} d\omega'.$$
(34)

При $\omega >> \omega_{2j}$, где ω_{2j} – максимум полосы $\varepsilon_{2j}(\omega)$, соотношение (34) сводится к следующему

$$\varepsilon_{1j}(\omega) = \varepsilon_{bj} - 2I_j / \pi \omega^2. \tag{35}$$

Сравнивая формулы (33) и (35) между собой и с формулой (22), получаем соотношения

$$I_j = \pi(\omega_p f_{bj})^2 F_j / 2 = c n_{bj} \alpha_j. \tag{36}$$

Сравнение правых частей формул (32) и (36) дает выражение

$$n_{bj} = (1/\alpha_j) \rfloor \alpha_j(\omega) n_j(\omega) d\omega, \qquad (37)$$

которое также следует при подстановке зависимости (20) в интеграл $\int \alpha_j(\omega) n_j(\omega) d\omega$. Используя отношение $D_3 = I_{\parallel}/I_{\perp}$, имеем

$$\sigma''' = (D_3 g_3 - 1)/(D_3 g_3 + 2), \quad g_3 = (f_{b\perp}/f_{b\parallel})^2.$$
 (38)

При перекрытии крыльев исследуемой полосы электронного поглощения с другими полосами определение значений α_j , I_j для исследуемой полосы затруднительно, а при определении σ целесообразно использовать экстремальные значения функций $\varepsilon_{(1,2)j}(\omega)$ в пределах ширины полосы $\varepsilon_{2j}(\omega)$. В формуле (15) положим

$$\langle F_j(\xi)\rho(\omega,\xi)\rangle = K_j F_j \langle \rho(\omega,\xi)\rangle_j \equiv K_j F_j \rho_j(\omega)$$
(39)

и используем формулу (A13) из раздела статьи «Дополнение» (см. ниже) для функции $\rho_j(\omega) = (\omega_{0j}^2 - \omega^2 + i\Gamma_j\omega)^{-1}$, в которой величины ω_{0j} и Γ_j даются формулами (A9). В результате имеем

$$\varepsilon_j(\omega) = \varepsilon_{bj} + A_j / (\omega_j^2 - \omega^2 + i\Gamma_j \omega). \tag{40}$$

Здесь $A_j = K_j F_j (\omega_p f_{bj})^2$, $\omega_j^2 = \omega_{0j}^2 - \omega_p^2 f_{bj} L_j K_j F_j$. Из формулы (40) следуют выражения

$$\varepsilon_{1j}(\omega) = \varepsilon_{bj} + A_j(\omega_j^2 - \omega^2)/[(\omega_j^2 - \omega^2)^2 + \Gamma_j^2 \omega^2],$$

$$\varepsilon_{2j}(\omega) = A_j \Gamma_j \omega / [(\omega_j^2 - \omega^2)^2 + \Gamma_j^2 \omega^2].$$
(41)

Подстановка этой функции $\varepsilon_{2j}(\omega)$ в интеграл (32) и сравнение результата $I_j = A_j \pi/2$ с формулой (36) дает $K_j = 1$. Корни $\omega_{1j}^{\pm} = (\omega_j^2 \pm \Gamma_j \omega_j)^{1/2}$ уравнения $d\varepsilon_{1j}(\omega)/d\omega = 0$ позволяют определить величины

$$2\omega_j^2 = (\omega_{1j}^+)^2 + (\omega_{1j}^-)^2,$$

$$_i = \Gamma_j / 2\omega_j = [(\omega_{1j}^+)^2 - (\omega_{1j}^-)^2] / 4\omega_j^2.$$
(42)

Корням ω_{1i}^{\pm} отвечают значения

$$\varepsilon_{1j}^{\max} = \varepsilon_{1j}(\omega_{1j}) = \varepsilon_{bj}[1 + 2a_j/(1 - \kappa_j)],$$

$$\varepsilon_{1j}^{\min} = \varepsilon_{1j}(\omega_{1j}^+) = \varepsilon_{bj}[1 - 2a_j/(1 + \kappa_j)], \quad (43)$$

где $a_j = A_j/(4\Gamma_j\omega_j\varepsilon_{bj})$. Отсюда получаем

$$\varepsilon_{bj} = \left[\varepsilon_{1j}^{\max} + \varepsilon_{1j}^{\min} - \kappa_j (\varepsilon_{1j}^{\max} - \varepsilon_{1j}^{\min}) \right] / 2, \quad (44)$$

$$a_j = (\varepsilon_{1j}^{\max} - \varepsilon_{1j}^{\min})(1 - \kappa_j^2)/4\varepsilon_{bj}.$$
 (45)

Из-за сильной дисперсии $\varepsilon_{1j}(\omega)$ в окрестности ω_j для определения ε_{bj} более предпочтительно использование формулы (44), чем использование соотношения $\varepsilon_{1j}(\omega_j) = \varepsilon_{bj}$, при известном из выражения (42) значении ω_j .

Параметр $a_j \propto A_j \propto F_j$ характеризует интенсивность полос поглощения и особенности изменения функций $\varepsilon_{1j}(\omega)$, $n_j(\omega)$ и $k_j(\omega)$ в области этих полос. Величины $a_j \ll 1$ соответствуют полосам поглощения низкой интенсивности с $\varepsilon_{1j}^{\min} > 0$. Корни ω_{cj}^{\pm} уравнения $\varepsilon_{1j}(\omega) = 0$ выражаются формулой

$$(\omega_{cj}^{\pm})^{2} = \omega_{j}^{2} + \Gamma_{j}\omega_{j}[\nu_{j} \pm (\nu_{j}^{2} - 1)^{1/2}], \qquad (46)$$

где $v_j = 2a_j - \kappa_j$. Полосам средней интенсивности отвечают значения $v_j = 1$ и $a_j = (1 + \kappa_j)/2$, при которых зависимости $n_j(\omega)$ и $k_j(\omega)$ касаются в точке $\omega_{cj}^- = \omega_{cj}^+ = \omega_{1j}^+$ с $\varepsilon_{1j}^{\min} = 0$. Более высоким значениям a_j отвечает интервал $\omega_{cj}^- < \omega < \omega_{cj}^+$, в котором $n_j(\omega) < k_j(\omega)$ и $\varepsilon_{1j}(\omega) < 0$. При $\kappa_j << 1$ величины $a_j \approx 1$ характерны для интенсивных полос поглощения с $\varepsilon_{1j}^{\min} < 0$ и $|\varepsilon_{1j}^{\min}| \approx \varepsilon_{1j}^{\max}/3$.

Связь $a_j \propto A_j(\sigma)$ позволяет использовать для определения σ измеряемые величины, пропорциональные величине a_j . Использование отношения $R_1 = (\epsilon_{1\parallel}^{\max} - \epsilon_{1\parallel}^{\min})/(\epsilon_{1\perp}^{\max} - \epsilon_{1\perp}^{\min})$ с учетом (45) дает

$$\sigma_{1} = \frac{R_{1}p_{1} - 1}{R_{1}p_{1} + 2}, \quad p_{1} = \frac{\omega_{\parallel}\Gamma_{\parallel}(1 - \kappa_{\parallel}^{2})f_{b\perp}^{2}}{\omega_{\perp}\Gamma_{\perp}(1 - \kappa_{\perp}^{2})f_{b\parallel}^{2}}.$$
 (47)

Максимум ω_{2j} полосы $\varepsilon_{2j}(\omega)$ выражается формулой

$$\omega_{2j}^2 = (\omega_j^2/3)[1 - 2\kappa_j^2 + 2(1 - \kappa_j^2 + \kappa_j^4)^{1/2}]. \quad (48)$$

При $\kappa_j^2 \ll 1$ отсюда следует

$$\omega_{2j} = \omega_j (1 - \kappa_j^2)^{1/2}.$$
 (49)

В том же приближении для $\varepsilon_{2j}^{\max} = \varepsilon_{2j}(\omega_{2j})$ имеем

$$\varepsilon_{2j}^{\max} = 4a_j \varepsilon_{bj} / (1 - \kappa_j^2)^{1/2}.$$
 (50)

С учетом этого отношение $R_2 = \varepsilon_{2\parallel}^{\max} / \varepsilon_{2\perp}^{\max}$ позволяет записать

$$\sigma_2 = \frac{R_2 p_2 - 1}{R_2 p_2 + 2}, \quad p_2 = \frac{\omega_{\parallel} \Gamma_{\parallel} (1 - \kappa_{\parallel}^2)^{1/2} f_{b\perp}^2}{\omega_{\perp} \Gamma_{\perp} (1 - \kappa_{\perp}^2)^{1/2} f_{b\parallel}^2}.$$
 (51)

Соотношения $\sigma_2^* = \sigma_2(p_2 = 1) = S^\# \neq S$ проясняют смысл параметра $S^\#$, который соответствует параметру порядка *S* для переходов с $F(\xi_{\mu}) = \text{const. Co-гласие значений } \sigma_{1,2}$ определяется точностью связи

$$\varepsilon_{2j}^{\max} = (\varepsilon_{1j}^{\max} - \varepsilon_{1j}^{\min})(1 - \kappa_j^2)^{1/2}, \qquad (52)$$

следующей из (45), (50). Равенство $\varepsilon_{2j}(\omega_j) = 4a_j\varepsilon_{bj}$ и отношение $R_3 = \varepsilon_{2\parallel}(\omega_{\parallel})/\varepsilon_{2\perp}(\omega_{\perp})$ дают

$$\sigma_{3} = \frac{R_{3}p_{3} - 1}{R_{3}p_{3} + 2}, \qquad p_{3} = \frac{\omega_{\parallel}\Gamma_{\parallel}f_{b\perp}^{2}}{\omega_{\perp}\Gamma_{\perp}f_{b\parallel}^{2}}.$$
 (53)

Соотношение $k_j^{\max} \propto a_j$ выполняется при значениях $a_j \leq 0,25$ [8], когда справедливо выражение

$$k_j^{\max} \approx 2n_{bj}a_j.$$
 (54)

С отношением $R_4 = k_{\parallel}^{\max}/k_{\perp}^{\max}$ получаем

$$\sigma_4 = \frac{R_4 p_4 - 1}{R_4 p_4 + 2}, \qquad p_4 = \frac{\omega_{\parallel} \Gamma_{\parallel} n_{b\parallel} f_{b\perp}^2}{\omega_{\perp} \Gamma_{\perp} n_{b\perp} f_{b\parallel}^2}.$$
 (55)

Выражения $\sigma_4^* = \sigma_4(p_4 = 1) = S^+ \neq S$ показывают, что параметр S^+ соответствует по смыслу (но не по величине) параметру порядка *S* для переходов с $F(\xi_{\mu}) = \text{const.}$

Используя отношение $R_5 = a_{\parallel}/a_{\perp}$, имеем

$$\sigma_{5} = \frac{R_{5}p_{5} - 1}{R_{5}p_{5} + 2}, \qquad p_{5} = \frac{\omega_{\parallel}\Gamma_{\parallel}\varepsilon_{b\parallel}f_{b\perp}^{2}}{\omega_{\perp}\Gamma_{\perp}\varepsilon_{b\perp}f_{b\parallel}^{2}}.$$
 (56)

Таким образом, для одноосных пленок сопряженных полимеров рассмотренные методы дают для дипольного момента \mathbf{d}_{π} электронного перехода комбинированный параметр порядка σ (24), который учитывает корреляцию между ориентационным порядком продольных осей \mathbf{l}_{μ} субъединиц, силой осциллятора перехода и ориентацией \mathbf{d}_{π} относительно \mathbf{l}_{μ} , что обусловлено зависимостью этих факторов от длины ξ_{μ} субъединиц.

Проверка полученных соотношений

Экспериментальная проверка представленных результатов проведена для пленок сопряженного полимера *poly(3-octylthiophene)* (P3OT) с показанной ниже структурной формулой мономера:

Для этих пленок толщиной 38–72 нм, полученных методом центрифугирования раствора полимера (*spin coating*) на подложках Si [4], известны зависимости $\varepsilon_{(1,2)j}(E)$ от энергии $E = \hbar \omega$ фотона, измеренные методом эллипсометрии в видимой области прозрачности и низкочастотных полос электронного поглощения ([4], Fig. 1).

Определение компонент L_j . Для пленки РЗОТ компоненты L_{\perp} , $L_{\parallel} = 1 - 2L_{\perp}$ определялись методом [13] по зависимостям $\varepsilon_{1j}(E) = \varepsilon_j(E)$ в видимой области прозрачности [4]. С учетом соотношения $\varepsilon_{\perp} > \varepsilon_{\parallel}$ использовались параметры $\varepsilon_m = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3$, $Q = (\varepsilon_{\perp} - \varepsilon_{\parallel})/(\varepsilon_m - 1)$ и величины

$$r = 1 - \frac{2Q^{2}(\varepsilon_{m} - 1)}{3(3 - Q)(\varepsilon_{m} + 2)}, \quad d = \frac{3(\varepsilon_{m} - 1)}{4\pi N\gamma_{m}(\varepsilon_{m} + 2)} - r,$$
$$d_{1} = \frac{2rQ^{2}}{(3 + Q)(3 - 2Q)}, \quad d_{2} = d_{1}[(6 - Q)/Q]^{2}. \quad (57)$$

Здесь $\gamma_m = (\gamma_{\parallel} + 2\gamma_{\perp})/3$ – средняя поляризуемость макромолекулы в пленке. Искомое значение L_{\perp} дается выражением

$$L_{\perp} = L_{\perp} + [(\varepsilon_m + 2)/12(\varepsilon_m - 1)] \times \\ \times \{ (d_1 d_2)^{1/2} + d - [(d_1 - d)(d_2 - d)]^{1/2} \}.$$
(58)

Значение $L_{\perp}^* = (3 - 2Q)/[3(3 - Q)]$ отвечает равенству $f_{\parallel} = f_{\perp}$ компонент $f_j = 1 + L_j(\varepsilon_j - 1)$. При заданном состоянии пленки, помеченном индексом *T*, в формулы (57) входит неизвестная функция $d(\lambda, T)$, зависящая от неизвестной функции $\gamma_m(\lambda, T)$, где λ – длина световой волны. При известных значениях $\varepsilon_j(\lambda_i, T)$ для реперов λ_i (i = 1 - p) в видимой области прозрачности функция $d(\lambda, T)$ в интервале $\lambda_1 - \lambda_p$ аппроксимируется полиномом

$$d(\lambda,T) = a_0(T) + a_1(T)\lambda + \ldots + a_s(T)\lambda^s.$$
(59)

Величина $L_{\perp}(T)$ не зависит от λ и состоянию T отвечают s + 2 неизвестных $\{L_{\perp}^{(s)}, a_0 - a_s\}$. Они находятся из системы s + 2 = p уравнений (58), каждое из которых соответствует одному из реперов λ_i . Критерием адекватности используемого в (59) приближения служит согласие значений $L_{\perp}^{(s)}$ с величинами $\langle L_{\perp}^{(s-1)} \rangle$, усредненными по значениям $L_{\perp}^{(s-1)}$, которые отвечают возможным сочетаниям p - 1 реперов λ_i из набора $\lambda_1 - \lambda_p$ [13]. Для пленки РЗОТ

приведенные в таблице реперы λ_i отвечают значениям $E_i = 1,9; 1,8; 1,7; 1,5$ и 1,2 эВ. Использование табличных значений $\varepsilon_i(\lambda_i)$ [4] дало величины $L_{\perp}^{(3)} = 0,1$ и $\langle L_{\perp}^{(2)} \rangle = 0,141 \pm 0,022$ [14]. Различие $L_{\perp}^{(3)}$ и $\langle L_{\perp}^{(2)} \rangle$ составляет около двух стандартных отклонений величин $L_{\perp}^{(2)}$ от $\langle L_{\perp}^{(2)} \rangle$ и показывает, что значение s = 3 в формуле (59) завышено. Ввиду этого далее принято адекватное значение $L_{\perp} = \langle L_{\perp}^{(2)} \rangle$ с соответствующей ошибкой.

Таблица. Реперы λ_i (мкм) и значения $\varepsilon_j(\lambda_i)$ для определения компоненты L_{\perp} ; экспериментальные значения $E_{1j}^{\pm} = \hbar \omega_{1j}^{\pm}$, $E_{2j} = \hbar \omega_{2j}$ (эВ), $\varepsilon_{1\parallel}(E_{1j}^{\pm})$, ε_{2j}^{\max} для пленки РЗОТ [4] и параметры, рассчитанные по формулам (42) – (45), (54)

Table. Reference points λ_i (µm) and values of $\varepsilon_j(\lambda_i)$ for determining of the component L_{\perp} ; experimental values $E_{1j}^{\pm} = \hbar \omega_{1j}^{\pm}$, $E_{2j} = \hbar \omega_{2j}$ (eV), $\varepsilon_{1\parallel}(E_{1j}^{\pm})$, ε_{2j}^{\max} for the P3OT film [4], and parameters calculated by the equations (42) – (45), (54)

λ_i	0,653	0,689	0,729	0,827	1,033
8	2,481	2,451	2,422	2,374	2,354
£⊥	3,830	3,471	3,267	3,053	2,937
$E_{1\parallel}^{-}$	$E_{1\parallel}^+$	E_\parallel	κ_\parallel	$E_{2\parallel}$	$\hbar\Gamma_{\parallel}$
2,18	2,90	2,58	0,139	2,55	0,72
$\epsilon_{1\parallel}{}^{max}$	$\epsilon_{1\parallel}^{min}$	$\epsilon_{b\parallel}$	a_{\parallel}	$\epsilon_{2\parallel}{}^{max}$	$k_{\parallel}^{ m max}$
2,595	2,289	2,421	0,031	0,300	0,096
$E_{1\perp}^{-}$	$E_{1\perp}^+$	E_{\perp}	κ_{\perp}	$E_{2\perp}$	$\hbar\Gamma_{\perp}$
2,12	2,70	2,43	0,119	2,35	0,58
$\epsilon_{1\perp}{}^{max}$	$\epsilon_{1\perp}{}^{min}$	$\epsilon_{b\perp}$	a_{\perp}	$\epsilon_{2\perp}{}^{max}$	k_{\perp}^{\max}
3,957	1,617	2,648	0,218	2,100	0,710

Усреднение величин $L_{\perp}^{*}(\lambda_{i})$ по пяти реперам λ_{i} дает параметр $\eta = \langle L_{\perp}^{*}(\lambda_{i}) \rangle$ [14], характеризующий молекулярно-оптическую и структурную анизотропию пленки в видимой области прозрачности. Корреляция $L_{\perp}(\eta)$ позволяет упорядочить экспериментальные значения L_{\perp} для одноосных сред различной природы [14]. При этом значения η и вид функции $L_{\perp}(\eta)$ зависят от плотности заполнения плоскости подложки структурными элементами пленки. Для пленок известных сопряженных полимеров с жесткими стержнеобразными макромолекулами корреляция $L_{\perp}(\eta)$ хорошо аппроксимируется функцией [14]

$$P_1^*(\eta) = 1/3 + 3,473(\eta - 1/3).$$
 (60)

Для пленки РЗОТ с подобными макромолекулами и значением $\eta = 0,276 \pm 0,014$ формула (60) дает величину $L_{\perp} = 0,134 \pm 0,049$, близкую к $\langle L_{\perp}^{(2)} \rangle$.

Определение значений σ_n . Полосе вибронного поглощения пленки РЗОТ с $\hbar\omega_{2\parallel} = E_{2\parallel} = 2,55$ и $\hbar\omega_{2\perp} = E_{2\perp} = 2,35$ эВ [4] и указанными в таблице значениями $\varepsilon_{2j}^{\max} = \varepsilon_{2j}(E_{2j})$ отвечает направление \mathbf{d}_{π} вдоль цепи сопряжения мономеров в субъединице. Зависимости $\varepsilon_{1j}(E)$ в области этой полосы характеризуются представленными в таблице экспериментальными значениями E_{1j}^{\pm} и $\varepsilon_{1j}(E_{1j}^{\pm})$, для которых по формулам (42)–(45) рассчитаны приведенные там же параметры E_j и $\hbar\Gamma_j$ (эВ), κ_j , ε_{bj} , и a_j . Полученные величины $a_j \leq 0,25$ позволили использовать формулу (54) для расчета приведенных в таблице значений k_j^{\max} .

Полученным значениям L_j и табличным величинам для пленки РЗОТ отвечают значения $p_{1-3} = 0,489 \pm 0,058$; $p_4 = 0,469 \pm 0,058$ и $p_5 = 0,449 \pm 0,050$. Их существенное отличие от $p_n = 1$ в модели ориентированного газа показывает неадекватность последней, что проявляется в различии величин $\sigma_n^* = \sigma_n(p_n = 1)$ для разных *n* и заниженных значениях $|\sigma_n^*|$. В результате имеем $\sigma_{1,3}^* = -0,408$; $S_{2,5}^* = -0,400$ и $\sigma_4^* = -0,405$, тогда как совпадающие значения $\sigma_{1,3-5} = -0,454 \pm 0,005$ согласуются с $\sigma_2 = -0,449 \pm 0,006$.

При $R_n \approx 0,13 - 0,14$ (n = 1 - 5) для рассматриваемой полосы поглощения РЗОТ значения σ_n отличаются от ${\sigma_n}^*$ на 11–13 %. Для полос с более высокими R_n это различие может стать значительным. Для функций $\sigma_n(R_n, p_n)$ одинакового вида разность $\delta\sigma_n = \sigma_n - {\sigma_n}^*$ дается выражением

$$\delta \sigma_n = \frac{3R_n(p_n - 1)}{(R_n + 2)(R_n p_n + 2)}.$$
 (61)

Для сильно поляризованных полос поглощения с $R_n << 2$, как для пленки РЗОТ, величина $\delta \sigma_n \approx 3R_n(p_n - 1)/4$ возрастает с ростом R_n и снижением $p_n < 1$. Для слабо поляризованных полос с $R_n \approx 1$ из (61) следует $\delta \sigma_n \approx (p_n - 1)/(n_n + 2)$ и учет реальных поправок $p_n \neq 1$ может качественно изменить интерпретацию природы этих полос по сравнению с интерпретацией в рамках приближения $p_n = 1$.

Соотношение величин $\omega_{\parallel,\perp}$. При $\kappa_j^2 \ll 1$ соотношение величин $\omega_{2\parallel,\perp}$ в формулах (48), (49) определяется соотношением значений $\omega_{\parallel,\perp}$. Разность $\delta\omega = \omega_{\parallel} - \omega_{\perp} = \delta_0 + \delta_1$ характеризуется слагаемыми

$$\delta_0 = (\omega_{0\parallel}^2 - \omega_{0\perp}^2)/(\omega_{\parallel} + \omega_{\perp}),$$

$$\delta_1 = \frac{\omega_p^2 F}{3(\omega_{\parallel} + \omega_{\perp})} [L_{\perp} f_{b\perp} (1 - \sigma) - L_{\parallel} f_{b\parallel} (1 + 2\sigma)]. \quad (62)$$

Величина δ_0 отражает зависимость $\omega_0(\xi_\mu)$ и корреляцию между переменными ξ_μ и θ_μ для субъединиц сорта μ , или зависимость $S_\mu(\xi_\mu)$. Значение $\delta_0 \neq 0$ может иметь место при малой концентрации примесных макромолекул сопряженного полимера в анизотропной (растянутой) полимерной матрице с аксиальным или плоскостным одноосным ориентационным порядком субъединиц, когда динамическими (резонансными и квазирезонансными) диполь-дипольными взаимодействиями субъединиц можно пренебречь.

Значение δ₁ определяется анизотропией динамических диполь-дипольных взаимодействий между субъединицами и отражает баланс факторов, которые зависят от поляризации перехода (знак и величина S_{β}), характера и степени дальнего ориентационного порядка субъединиц (знак и величина $\langle S(\xi) \rangle$), анизотропии координационного окружения субъединиц на мезоскопических масштабах (L_i) и анизотропии действующего на них локального поля (L_i, f_{bi}) . При $\langle S(\xi) \rangle \neq 0$ для переходов с $S_\beta = \sigma = 0$ величина $\delta_1 \neq 0$ определяется анизотропией компонент L_i и f_{bi} . С другой стороны, при $\sigma \neq 0$ и взаимной компенсации слагаемых в квадратных скобках (62) возможно $\delta_1 = 0$, что отмечалось ранее для полосы электронного перехода в напыленной на подложку анизотропной молекулярной пленке с гомеотропной ориентацией **n** [8].

С учетом выражений для а_і и (42) получаем

$$\frac{\omega_p^2 F}{3} = \frac{B_j \Gamma_j \omega_j}{f_{bj}^2 (1 + c_j \sigma)} = B_j \frac{(\omega_{1j}^+)^2 - (\omega_{1j}^-)^2}{2f_{bj}^2 (1 + c_j \sigma)}.$$
 (63)

Здесь $B_j = 4a_j \varepsilon_{bj}$, $c_{\parallel} = 2$, $c_{\perp} = -1$. Табличные данные и экспериментальные значения L_j , $\sigma_{1,3-5}$ при обеих поляризациях *j* дают для пленки РЗОТ одну величину $\hbar \delta_1 = 0,035$ эВ. С учетом $\hbar \delta \omega = E_{\parallel} - E_{\perp} = 0,15$ эВ получаем $\hbar \delta_0 = 0,115$ эВ, так что динамические диполь-дипольные взаимодействия вносят небольшой вклад в значения $\hbar \delta \omega$ и $E_{2\parallel} - E_{2\perp} = 0,2$ эВ для пленки РЗОТ.

Можно также определить вклад этих взаимодействий в разность $\omega_{0j} - \omega_j \approx (\omega_{0j}^2 - \omega_j^2)/(2\omega_j)$. С учетом (63) имеем

$$\omega_{0j} - \omega_j = B_j L_j \; \frac{(\omega_{1j}^+)^2 - (\omega_{1j}^-)^2}{4\omega_i f_{bi}}.$$
 (64)

С данными таблицы отсюда получаем $\hbar(\omega_{0\parallel} - \omega_{\parallel}) = 0,038$ и $\hbar(\omega_{0\perp} - \omega_{\perp}) = 0,076$ эВ. Соотношение этих величин отражает более сильное влияние резонансных взаимодействий дипольных моментов d_{π} электронных переходов на ω_{\perp} , чем на ω_{\parallel} , что обусловлено плоскостной ориентацией субъединиц и моментов d_{π} в пленке РЗОТ.

Выводы

Представленные результаты дополняют современные методы исследования структуры и свойств анизотропных полимерных пленок новыми методами определения их ориентационного порядка и количественной интерпретации спектральных проявлений межсегментных взаимодействий с использованием зависимостей $\varepsilon_{(1,2)}(\omega)$ в областях прозрачности и электронного или инфракрасного поглощения без ограничений на интенсивность полос поглощения.

К новым результатам для одноосных пленок сопряженных полимеров с макромолекулами в виде наборов субъединиц, неоднородных по длине и спектральным свойствам, относятся:

- выражения для компонент $\varepsilon_j(\omega) = \varepsilon_{1j}(\omega) + i\varepsilon_{2j}(\omega)$ тензора диэлектрической проницаемости, компонент $f_j(\omega) = 1 + L_j[\varepsilon_j(\omega) - 1]$ тензора локального поля и компонент L_j тензора Лорентца;
- введение для дипольных моментов переходов **d**_π параметра ориентационного порядка σ, ко- торый учитывает корреляцию ориентацион- ного порядка продольных осей **l**_μ субъединиц с силой осциллятора перехода и ориентацией **d**_π относительно **l**_μ;
- установление связи σ с интегральными компонентами α_j коэффициента поглощения пленки и экстремальными значениями функций ε_{(1,2)j}(ω), что дает основу новых методов определения σ;
- выяснение смысла используемых в литературе параметров ориентационного порядка для моментов $\mathbf{d}_{\pi} (d_{\pi\theta} \, \mathrm{u} \, d_{\pi\theta^+} [1, 3, 5, 6], S^+ [2, 3] \, \mathrm{u} \, S^\# [4-$ 6]) и приближений, которые неявно используются при определении этих параметров;
- вывод зависимостей $\omega_j(\omega_{0j}, L_j, f_{bj}, \sigma)$ и $\omega_{2j}(\omega_j, \kappa_j)$.

Проверка предложенных методов определения σ для анизотропной пленки сопряженного полимера РЗОТ с известными зависимостями $\epsilon_{(1,2)j}(\omega)$ [4] в видимой области прозрачности и низкочастотных полос электронного поглощения подтвердила эффективность этих методов. Новые результаты для данной системы включают:

- значения компонент L_j и констатацию согласия величины L_⊥(η) с зависимостью (60) для анизотропных пленок других сопряженных полимеров с жесткими макромолекулами;
- значения ħω_j, ħΓ_j, κ_j, ε_{bj}, a_j для исследованной полосы поглощения пленки РЗОТ;
- значения σ для низкочастотного электронного перехода РЗОТ с учетом анизотропии компонент L_j, ε_{bj}, f_{bj}, Γ_j, κ_j;
- разделение и количественное определение двух вкладов в расщепление ω_{||} – ω_⊥ (ω_{2||} – ω_{2⊥}), обусловленных зависимостью ω_j(ξ) от длины субъединиц и резонансными диполь-дипольными взаимодействиями между субъединицами.

Все это открывают перспективы более глубокого исследования структуры и свойств анизотропных пленок сопряженных полимеров при использовании зависимостей $\varepsilon_{(1,2)}(\omega)$.

Дополнение

Рассмотрим следствия неоднородности распределения субъединиц по длине ξ , пренебрегая зависимостью $\Gamma(\xi)$ на фоне существенной зависимости $\omega_0(\xi)$ для π - π^* -переходов в сопряженных полимерах и их олигомерах [11, 12]. Соответствие между ξ и $\omega_0(\xi)$ для рассматриваемого перехода позволяет в формуле (39) заменить усреднение $\langle \rho(\omega,\xi) \rangle_j$ по распределению ξ усреднением по частотам $w = \omega_0(\xi)$ с функцией распределения Лорентца

$$P_{j}(w) = (\delta_{j}/2\pi)[(w - w_{j})^{2} + \delta_{j}^{2}/4]^{-1}.$$
 (A1)

Эта функция упрощает процедуру усреднения по сравнению с функцией распределения Гаусса и дает аналитический результат в удобной для последующего использования форме. К тому же различие этих функций распределения на удаленных от их максимума крыльях несущественно для интересующих нас особенностей изменения $\varepsilon_{(1,2)j}(\omega)$ в пределах ширины полосы $\varepsilon_{2j}(\omega)$.

Различие максимумов w_j и полуширин δ_j для направлений *j* вдоль и нормально оси **n** для анизотропной аморфной пленки учитывает наличие корреляции между переменными ξ_{μ} и θ_{μ} для субъединиц сорта μ . Более длинным субъединицам с более низкими значениями *w* для переходов с $S_{\beta}(\xi_{\mu}) \approx 1$ при аксиальной (плоскостной) ориентации субъединиц в пленке отвечают меньшие значения θ_{μ} с более высокими $S_{\mu} > 0$ (более высокие значения θ_{μ} с $S_{\mu} < 0$). Это приводит к различию значений w_j и δ_j для разных направлений *j*.

Усредненная функция $\rho_j(\omega) = \langle \rho(\omega, w) \rangle_j$ дается выражением

$$\rho_j(\omega) = \int_{-\infty}^{\infty} P_j(w) (w^2 - \omega^2 + i\Gamma\omega)^{-1} dw \quad (A2)$$

и определяется методом вычетов при переходе к комплексной переменной z = w и представлению

$$D_j(\omega) = (\delta_j/2\pi) \oint \Phi(z) dz \tag{A3}$$

с функцией $\Phi(z) = 1/h(z)$, где

$$h(z) = (z^2 - \omega^2 + i\Gamma\omega)[(z - w_j)^2 + \delta_j^2/4].$$
 (A4)

Выберем контур интегрирования в (А3), охватывающий действительную ось и верхнюю полуплоскость. Выразим функцию $\Phi(z)$ в виде $\Phi(z) = \sum_k [(z - z_k)h'(z_k)]^{-1}$ через корни z_k уравнения h(z) = 0 и значения производной $h'(z_k)$ в этих точках. Интеграл

$$\oint \Phi(z) dz = (2\pi i) \Sigma_k \operatorname{Res}_{z=z_k} \Phi(z)$$
 (A5)

определяется суммой вычетов

$$\operatorname{Res}_{z=z_k} \Phi(z) = 1/h'(z_k) \tag{A6}$$

функции $\Phi(z)$ в точках z_k . В верхней полуплоскости лежат значения

$$z_1 = w_j + i\delta_j/2, \quad z_2 = -(\omega^2 - i\Gamma\omega)^{1/2}.$$
 (A7)
В результате получаем

$$h'(z_1) = i\delta_j [w_j^2 - \delta_j^2/4 - \omega^2 + i(w_j\delta_j + \Gamma\omega)].$$
 (A8)

В области $\omega \approx w_j$ можно в круглых скобках формулы (A8) положить $w_j = \omega$ и использовать обозначения

 $ω_{0j}^2 = w_j^2 - \delta_j^2/4, \quad \Gamma_j = \delta_j + \Gamma.$ (A9) C учетом этого имеем

$$h'(z_1) = i\delta_j(\omega_{0j}^2 - \omega^2 + i\Gamma_j\omega).$$
(A10)

Выражение

$$h'(z_2) = -2(\omega^2 - i\Gamma\omega)^{1/2} [w_j^2 + \delta_j^2/4 + \omega^2 + 2w_j(\omega^2 - i\Gamma\omega)^{1/2} - i\Gamma\omega]$$
(A11)

при $(\Gamma/\omega)^2 \ll 1$ и $(\omega^2 - i\Gamma\omega)^{1/2} \approx \omega - i\Gamma/2$ сводится к следующему

$$h'(z_2) = -(2\omega - i\Gamma)[(w_j + \omega)^2 + \delta_j^2/4 - 2i\Gamma\omega].$$
 (A12)

При $(\delta_j/w_j)^2 \ll 1$ в области $\omega \approx w_j \approx \omega_{0j}$ выполняется соотношение $h'(z_2) >> h'(z_1)$ и можно пренебречь вычетом при $z = z_2$ по сравнению с вычетом при $z = z_1$. В результате имеем

$$\rho_j(\omega) = (\omega_{0j}^2 - \omega^2 + i\Gamma_j\omega)^{-1}.$$
 (A13)

Таким образом, неоднородность распределения субъединиц полимерных цепей по длине ξ и частоте $\omega_0(\xi)$ перехода проявляется в смещении максимума ω_{0j} функции $\rho_j(\omega)$ и изменении ее полуширины Γ_j при сохранении формы зависимости от ω .

Список литературы / References

- McBranch D., Campbell I.H., Smith D.L., Ferraris J.P. Optical determination of chain orientation in electroluminescent polymer films. *Appl. Phys. Lett.*, 1995, 66 (10), 1175–1177. DOI: 101063/1.113848.
- Sturm J., Tasch S., Niko A., Leising G., Toussaere E., Zyss J., Kowalczuk T.C., Singer K.D., Scherf U., Huber J. Optical anisotropy in thin films of a blue electroluminescent conjugated polymer. *Thin Solid Films*, 1997, **298** (1–2), 138–142.

DOI: 10.1016/S0040-6090(96)09159-6.

- Campoy-Quiles M., Etchegoin P.G., Bradley D.D.C. On the optical anisotropy of conjugated polymer thin films. *Phys. Rev. B.* 2005, **72** (4), 045209.
 DOI: 101103/PhysRevB.72.045209.
- Zhokhavets U., Goldhahn R., Gobsch G., Schlierfke W. Dielectric function and one-dimensional description of the absorption of poly(3-octylthiophene). *Synth. Met.*, 2003, **138** (3), 491–495.
 DOI: 10.1016/S0379-6779(02)00502-7.
- Gurai M.C., DeLongchamp D.M., Vogel B.M., Lin E.K., Fisher D.A., Sambasivan S., Richter L.J. Measuring molecular order in poly(3-alkylthiophene) thin films with polarizing spectroscopies. *Langmuir*, 2007, 23 (2), 834–842. DOI: 10.1021/la0618972.
- DeLongchamp D.M., Klin R.J., Fisher D.A., Richter L.J., Toney M.F. Molecular characterization of organic electronic films. *Adv. Mater.*, 2011, 23 (5), 319–337. DOI: 10.1002/adma.201001760.
- Scholes G.D., Rumbles G. Excitons in nanoscale systems. *Nature Mater.*, 2006, 5 (9), 683–696.
 DOI: 10.1038/nmat1710.
- 8. Аверьянов Е. М. Новые методы исследования ориентационного порядка одноосных молекулярных пленок на основе оптических данных // Жидк. крист. и их практич. использ. 2020. Т. 20, № 1. С. 41–46. [Aver'yanov E.M. New methods for studying the orientation order of uniaxial molecular films on the base of optical data. *Liq. Cryst. and their Appl.*, 2020, **20** (1), 41–46. **DOI:** 10.18083/LCAppl.2020.1.41].

- Аверьянов Е. М. Эффекты локального поля в оптике жидких кристаллов. Новосибирск : Наука, 1999, 552 с. [Aver'yanov E.M. Effects of local field in optics of liquid crystals. Novosibirsk : Nauka, 1999, 552 p. (in Russ.). DOI: 10.13140/RG.2.1.4720.6882].
- 10. Аверьянов Е. М. Молекулярно-оптическая и структурная анизотропия нематической смеси Е7 // Жидк. крист. и их практич. использ. 2019. Т. 19, № 1. С. 42–51. [Aver'yanov E.M. Molecular-optical and structural anisotropy of the nematic mixture E7. Liq. Cryst. and their Appl., 2019, **19** (1), 42–51. **DOI:** 10.18083/LCAppl.2019.1.42].
- 11. Barford W. Electonic and Optical Properties of Conjugated Polymers. Oxford : Clarendon Press, 2005, 262 p.
- Gierschner J., Cornil J., Egelhaaf H.-J. Optical bandgaps of π-conjugated organic materials at the polymer limit: experiment and theory. *Adv. Mater.*, **19** (1), 173– 191. **DOI:** 10.1002/adma.200600277.
- 13. Аверьянов Е. М. Анизотропия локального поля световой волны в квазидвумерных объектах «мягкой

материи» // ЖЭТФ. 2010. Т. 137, № 4. С. 705–720. [Aver'yanov E.M. Local-field anisotropy of a light wave in quasi-two-dimensional soft-matter objects. *JETP*, 2010, **110** (4), 622–636. **DOI:** 10.1134/S1063776110040102].

 Аверьянов Е. М. Анизотропия локального поля в анизотропных пленках сопряженных полимеров // ФТТ. 2011. Т. 53, № 9. С. 1832–1840. [Aver'yanov E.M. Anisotropy of the local field in anisotropic films of conjugated polymers. *Phys. Sol. St.*, 2011, **53** (9), 1933– 1942. **DOI:** 10.1134/S1063783411090046].

> Поступила 7. 02.2020 г. Received 7.02.2020 Принята 21.02.2020 г. Accepted 21.02.2020