04,11

Толеранс-фактор для соединений класса хантитов

© М.С. Молокеев^{1,2}, С.О. Кузнецов¹

 ¹ Сибирский федеральный университет, Красноярск, Россия
 ² Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
 E-mail: msmolokeev@mail.ru

Поступила в Редакцию 3 июня 2020 г. В окончательной редакции 3 июня 2020 г. Принята к публикации 26 июня 2020 г.

Проведен анализ 85 соединений со структурой типа хантита $RM_3(BO_3)_4$, где R = редкоземельный элемент (Y, La–Lu), M = Al, Sc, Cr, Fe, Ga. Анализ структур позволил выявить критические смещения атомов при фазовом переходе $R32 \leftrightarrow P3_121$, и установить, как этими критическими смещениями можно управлять посредством вариации ионных радиусов. В итоге выведен толеранс-фактор и его пороговое значение, ниже которого структура стабильна в фазе R32, а выше — в искаженной фазе $P3_121$. Формула апробирована на более 30 соединениях типа хантита и дала хорошее согласие. Поэтому ее можно с уверенностью применять для прогноза новых соединений. На данный момент толеранс-фактор позволил выявить закономерности в хантитах, которые ранее были неизвестны.

Ключевые слова: хантиты, толеранс-фактор, фазовый переход, стабильность структуры, кристаллическая структура.

DOI: 10.21883/FTT.2020.11.50108.120

1. Введение

В последние десятилетия кристаллы бората представляют большой интерес благодаря широкому разнообразию структур [1]. Бораты оптически прозрачны в широком спектральном диапазоне, обладают хорошей химической и механической стабильностью. Бораты со структурой хантита (хантит — CaMg₃(CO₃)₄, пространственная группа R32) представляют значительный интерес из-за ценных магнитоэлектрических [2,3] и спектроскопических [4–6] свойств, перспективных для технических применений. Общая формула ханитоподобных боратов: $RM_3(BO_3)_4$, где R = редкоземельный элемент (Y, La–Lu), M = Al, Sc, Cr, Fe, Ga.

Тип кристаллической структуры RM₃(BO₃)₄ зависит от химического состава и условий кристаллизации (таблица). В каждой структуре выделяют три типа координационных полиэдров: тригональные призмы RO₆, октаэдры МО₆ и полиэдры ВО₃ в форме треугольников. В наиболее распространенной фазе с симметрией R32 существует один RO₆, один MO₆ и два BO₃ в независимой части ячейки (рис. 1). Помимо R32 фазы существуют упоминания о тригональных Р3121, РЗ21 и моноклинных фазах С2/с, Сс, С2. Однако для хантитов до сих пор не предложена количественная мера, позволяющая оценить формирование той или иной фазы, и делать быстрый прогноз симметрии. Обычно такое мерой является толеранс-фактор — показатель стабильности и искажения кристаллических структур [7]. Первоначально он использовался только для описания структуры перовскита [8], но теперь, например, факторы

толерантности также используются для ильменита [9], гранатов [10], пирохлоров [11] и халькогенидов с общей формулой ABCX₃ [12].

В настоящей работе нами предложен толеранс-фактор для определения стабильности фазы R32 хантитоподобных кристаллов, а также его пороговое значение, при котором происходит переход в P3₁21-фазу. Выведенная формула может быть используема для прогноза симметрии фазы, а, следовательно, и некоторых свойств вещества, используя информацию только о предполагаемой химической формуле.

2. Методика

Для выявления закономерностей образования различных фаз хантитов было решено собрать информацию

Рис. 1. Кристаллическая структура $RM_3(BO_3)_4$ в фазе R32. Независимая часть ячейки выделена кругом.

Пространственная группа	Ln	М	IR Ln (Å)	IR Me (Å)	<i>t-</i> фактор
R32	Nd	Al	1.109	0.535	1.603
<i>R</i> 32	Eu	Al	1.066	0.535	1.633
R32	Gd	Al	1.053	0.535	1.642
R32	La	Fe	1.160	0.645	1.644
R32	Nd	Ga	1.109	0.620	1.663
R32	Y	Al	1.019	0.535	1.666
R32	Но	Al	1.015	0.535	1.669
R32	Er	Al	1.004	0.535	1.677
R32	Nd	Fe	1.109	0.645	1.680
R32	Tm	Al	0.994	0.535	1.684
R32	Eu	Cr	1.066	0.615	1.689
R32	Yb	Al	0.985	0.535	1.690
R32	Y _{0.5} Bi _{0.5}	Fe	1.095	0.645	1.690
R32	Gd	Cr	1.053	0.615	1.699
R32	Sm	Fe	1.079	0.645	1.701
R32	La	Sc	1.160	0.745	1.715
R32	Gd	Fe	1.053	0.645	1.720
R32	Ce	Sc	1.143	0.745	1.727
R32	Tb	Fe	1.040	0.645	1.729
R32	Er	Cr	1.004	0.615	1.733
R32	Er	Fe	1.004	0.645	1.754
P3 ₁ 21	Y _{0.94} Bi _{0.06}	Fe	1.028	0.645	1.737
<i>P</i> 3 ₁ 21	Dy	Fe	1.027	0.645	1.738
<i>P</i> 3 ₁ 21	Ho _{0.963} Bi _{0.037}	Fe	1.021	0.645	1.742
P3121	Nd	Sc	1.109	0.745	1.751

Список основных соединений хантитов с общей химической формулой $LnM(BO_3)_4$ из баз данных COD и ICSD. (Сортировка соединений выполнена по увеличению толеран-фактора (*t*-фактор) и выполнена группировка по пространственным группам)

о всевозможных их структурах из баз данных СОД (http://www.crystallography.net/cod/) и ICSD. Было найдено порядка 85 структур при разных температурах синтеза и съемки. Грубо все фазы можно классифицировать на тригональные: R32; P3₁21; P321 и моноклинные: C2/c; Сс; С2. Моноклинные фазы существенно отличаются от тригональных своей структурой и свойствами [13], и они в настоящей работе не рассматривались. Недавние исследования [14] показали, что фаза Р321, наблюдаемая ранее в $NdSc_3(BO_3)_4$, является, скорее всего, ошибочной и для нее выбрана более корректная модель P3121. Именно поэтому наибольший интерес представили фазы R32 и P3₁21, поскольку им принадлежит большинство депонированных структур. Кроме того, стоит отметить, что возможен фазовый переход R32 \leftrightarrow P3₁21 как по температуре, так и по составу, что публиковалось ранее [15-18], поэтому вызывает наибольший интерес по выводу толеранс фактора именно для этих фаз. Используемые в настоящей работе тригональные фазы R32 и P3₁21 (таблица), были исследованы при нормальных условиях. Температурные изменения симметрии мы в настоящей работе не рассматривали, поскольку толеранс-фактор подразумевает влияние лишь геометрических характеристик на симметрию, и нашей целью было выявление закономерностей лишь от состава $RM_3(BO_3)_4$. Стоит отметить, что зависимость температуры фазового перехода $R32 \leftrightarrow P3_121$ от ионных радиусов уже ранее исследовалось [15] и сделан вывод о линейной зависимости $T = A \cdot IR(R) + B$, где A, B коэффициенты, IR(R) — ионный радиус редкоземельного элемента (Y, La-Lu), что частично подтверждено в работе [16].

Для того чтобы установить закономерности преобразования R32 в $P3_121$ было выполнено тщательное сравнение структур TbFe₃(BO₃)₄ в фазах R32(300 K) и $P3_121$ (2 K) [18], при помощи программы ISODISTORT [19]. Обнаружено, что при фазовом переходе борный треугольник B1O₃ и призма TbO₆ не претерпевают особых изменений. Однако треугольник B2O₃ расщепляется на две позиции: B2O₃ и B3O₃, и октаэдр FeO₆ тоже расщепляется на две позиции: Fe1O₆ и Fe2O₆. Согласно анализу мод искажений в ISODISTORT, наибольшее смещение в структуре испытывает атом O2, принадлежащий борному треугольнику B2O₃ (рис. 2). Именно это критическое смещение приводит к изменению симметрии.

Атом О2 находится в полости, ограниченной атомами Fe2-O2-B2-O7-Tb-O₃-B2-O7-Tb-O4 (рис. 2). Сделано предположение, что размер этой полости в направлении наибольшего смещения атома O2 (рис. 2)

Рис. 2. Изменение структуры $TbFe_3(BO_3)_4$ при фазовом переходе из *R*32 (300 K) в *P*3₁21 (2 K). Кругом отмечен атом O2, испытывающий наибольшее смещение при фазовом переходе. Направление смещения при охлаждении показано стрелкой.

должен влиять на стабильность фазы R32. Если полость небольшая, то атому O2 сложно перемещаться, в результате не происходит критического смещения и смены фазы в $P3_121$, т.е. фаза остается R32. Если же полость большая, то атом O2 легко смещается в направлении стрелки и фаза перестает быть R32, и переходит в $P3_121$.

Было решено вычислить размер этой полости исходя из информации об ионных радиусах ионов, составляю-

щих структуру. Из рис. З видно, что эта полость равна разности между длиной верхнего ряда ионов

$$L1 = IR(B) + 2 \times IR(O) + 2 \times IR(M) + IR(O) + IR(B)$$
(1)

и двумя ионными радиусами иона $R: 2 \times L2 = 2 \times IR(R)$. Отношение разности $L1 - 2 \times L2$ к размеру иона кислорода $L3 = 2 \times IR(O)$ и является толеранс-фактором, определяющим симметрию фазы хантита для любого состава

$$t = \frac{L1 - 2 \times L2}{L3}.$$
 (2)

Подставив уравнение (1) в (2) и, сделав упрощения, получим

$$t = \frac{IR(B + 2 \times IR(O) + IR(M) - IR(R))}{IR(O)},$$
 (3)

где $IR(O) = IR(O^{2-}, CN = 6) = 1.42$ Å — ионный радиус иона кислорода, $IR(B) = IR(B^{+3}, CN = 3) = 0.01$ Å ионный радиус иона бора, $IR(M) = IR(M^{3+}, CN = 6)$ = 0.6 - 0.75 (Å) — ионный радиус иона металла, $IR(R) = IR(Ln^{3+}, CN = 8) = 0.8 - 1.7$ (Å) — ионный радиус иона редкоземельного элемента, CN — означает координационное число для конкретного иона. Для ионов редкоземельных элементов *R* в настоящей работе используется координационное число CN = 8, вследствие того, что помимо 6 ближайших атомов кислорода с расстоянием $d(Ln-O) \sim 2.4$ Å, существует еще два атома

Рис. 3. Координационное окружение борного треугольника ВО₃ в $RM_3(BO_3)_4$ — (*a*). Ионы R^{3+} , M^{3+} , B^{3+} , O^2 — представлены сферами с радиусами близкими к ионным радиусам. (*b*) — характерные размеры ионов и основные длины, из которых впоследствии вычисляется толеранс-фактор *t*.

кислорода с расстоянием $d(Ln-O) \sim 2.8$ Å. В результате форма полиэдра является двухшапочной тригональной призмой. Значения ионных радиусов используются по Шеннону [20].

3. Результаты

Для всех исследуемых соединений была вычислен толеранс фактор по формуле (3) и вещества отсортированы в таблице по этому значению t, от минимального значения к максимальному. Такая сортировка разбила группы тригональных фаз на два подкласса, с пограничным значением толеранс фактора $t_0 = 1.737$. Значения факторов меньше этого числа, приводит к фазе R32. Значения больше этого числа, приводит к фазе $P3_121$, за исключением соединения ErFe₃(BO₃)₄ (R32), которое имеет аномально большое значение фактора 1.754. Эта точка (рис. 4) может являться случайным выбросом, и, либо химический состав у этого кристалла другой, либо фаза на самом деле P3₁21, а не R32. Большинство же соединений очень хорошо разделилось на два подкласса, и можно считать, что формула толеранс фактора, действительно содержит информацию об области стабильности R32-фазы.

Анализ формулы (3) вскрывает существующую разницу между вкладами ионов M и R в стабильность R32-фазы $RM_3(BO_3)_4$ соединений. Во-первых, увеличение ионного радиуса R уменьшает толеранс фактор, и приводит к фазе R32, а увеличение ионного радиуса M, наоборот, повышает вероятность реализации искаженной фазы $P3_121$. Во-вторых, IR(M) и IR(R), имеют разные диапазоны значений: IR(M) находится в пределах 0.6-0.75 (Å), а ионный радиус всех возможных R ионов

Рис. 4. Диаграмма распределения фаз R32 (круги) и $P3_121$ (квадраты) известных соединений $RM_3(BO_3)_4$ по ионным радиусам IR(M) и IR(R). Наклонная линия характеризует пограничные соединения, у которых толеранс фактор равен t = 1.737. Все соединения ниже этой линии имеют R32-фазу, а выше — $P3_121$. Только один круг находится не в своей зоне, что может являться выбросом.

находится в пределах 0.8-1.25 (Å) (таблица). Из этого следует то, что ион *R* имеет больший вклад в толеранс фактор *t*, и большее влияние на стабильность фазы *R*32.

Используя эти знания можно сразу предсказать, что соединения с R = La, Pr, Nd, Pm, Sm, Eu будут, вероятнее всего, в R32-фазе, поскольку при любых известных М толеранс фактор будет меньше значения 1.737. В этом легко убедиться рассчитав толеранс фактор для некоторых соединений, которые еще не были получены в реальных экспериментах. Например, рассмотрим соединения с химическим составом PrFe₃(BO₃)₄ и LaAl₃(BO₃)₄, и используем ионные радиусы IR(Pr) = 1.126 Å, IR(Fe) = 0.645 Å И IR(La) = 1.16 Å, IR(Al) = 0.535 Å. B результате получим $t(PrFe_3(BO_3)_4) = 1.668$ и $t(LaAl_3(BO_3)_4) = 1.567$, что гораздо меньше пограничного значения t₀ = 1.737 и скорее всего эти соединения будут существовать при нормальных условиях в фазе R32. Стоит отметить, что для самого хантита $CaMg_3(CO_3)_4$ (IR(Ca) = 1.12 Å, IR(Mg) = 0.72 Å, IR(C) = -0.08 Å, IR(O) = 1.42 Å) TOлеран-фактор равен t = 1.662, поэтому хантит должен существовать в фазе R32, что на самом деле так. Поэтому формула вероятнее всего применима не только к боратам, но и другим соединениям с другим составом.

4. Заключение

В настоящий момент открыто большое количество хантитов $RM_3(BO_3)_4$, но до сих пор не было четкого понимания механизма стабилизации R32-фазы, а также процессов, которые ведут к искажению структуры. В работе было установлено, что поворот лишь одного борного треугольника BO₃ из двух, и как следствие, смещения одного атома кислорода, является наиболее критичным и приводит к фазовому переходу $R32 \leftrightarrow P3_121$. Понимание этого, позволило вывести формулу для толеранс фактора $t = \frac{IR(B+2\times IR(O) + IR(M) - IR(R)}{IR(O)}$, что является значимым вкладом в дальнейшее изучение и предсказание структур класса хантитов.

Были рассчитаны значения толеранс фактора для уже существующих соединений класса хантита, и установлено, что значение $t_0 = 1.737$ является пограничным. Все толеранс-факторы, которые будут превышать данный порог значения, будут соответствовать фазе $P3_121$.Все значения толеранс-фактора меньше 1.737 формируют область стабильности R32-фазы.

Из формулы для толеранс фактора установлено, что чем больше значение ионного радиуса редкоземельного элемента R и меньше значение ионного радиуса металла M, тем более вероятна фаза R32. И наоборот: чем меньше ионный радиус R и больше M, тем больше вероятность существования искаженной фазы $P3_121$ при нормальных условиях.

Прогноз *t*-фактора хорошо описывает расслоение фаз соединений по симметриям, в чем можно убедиться из

таблица и рис. 1. Поэтому можно с уверенностью применять данную формулу для прогноза новых соединений.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Xue, K. Betzler, H. Hesse, D. Lammers. Solid State Commun. 114, 21 (2000).
- [2] J.A. Campá, C. Cascales, E. Gutiérrez-Puebla, M.A. Monge, I. Rasines, C. Ruíz-Valero. Chem. Mater. 9, 237 (1997).
- [3] K.-C. Liang, R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 83, 180417 (2011).
- [4] J.-P. Meyn, T. Jensen, G. Huber. IEEE J. Quantum Electron..30, 913 (1994).
- [5] I. Couwenberg, K. Binnemans, H. De Leebeeck, C. Görller-Walrand. J. Alloys Compd. 274, 157 (1998).
- [6] D.A. Ikonnikov, A.V. Malakhovskii, A.L. Sukhachev, V.L. Temerov, A.S. Krylov, A.F. Bovina, A.S. Aleksandrovsky. Opt. Mater. 37, 257 (2014).
- [7] H. Kronmüller, S. Parkin. General micromagnetic theory. Handbook of magnetism and advanced magnetic materials 1 (2007). 39 c.
- [8] V.M. Goldschmidt. Naturwissenschaften 14, 477 (1926).
- [9] X. Liu, R. Hong, C. Tian. J. Mater. Sci.: Mater. Electron. 20, 323 (2009).
- [10] Z. Song, D. Zhou, Q. Liu. Acta Crystallographica C 75, 1353 (2019).
- [11] R. Mouta, R.X. Silva, C.W.A. Paschoal. Acta Crystallographica B 69, 439 (2013).
- [12] N.O. Azarapin, A.S. Aleksandrovsky, V.V. Atuchin, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, Sh. Mukherjee, A.S. Oreshonkov, O.V. Andreev. J. Alloys Comp. 832, 153134 (2020).
- [13] A.S. Oreshonkov, E.M. Roginskii, N.P. Shestakov, I.A. Gudim, V.L. Temerov, I.V. Nemtsev, M.S. Molokeev, S.V. Adichtchev, A.M. Pugachev, Y.G. Denisenko. Materials 13, 545 (2020).
- [14] E.V. Eremin, M.S. Pavlovskiy, I.A. Gudim, V. Temerov, M. Molokeev, N.D. Andryushin, E.V. Bogdanov. J. Alloys Comp. 828, 154355 (2020).
- [15] Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, A. Alemi. J. Solid State Chem. **172**, 438 (2003).
- [16] E. Moshkina, S. Krylova. I Gudim, M. Molokeev, V. Temerov, M. Pavlovskiy, A. Vtyurin, A. Krylov. Cryst. Growth Des. 20, 1058 (2020).
- [17] M.S. Pavlovskii, N.D. Andryushin. Phys. Solid State 61, 2049 (2019).
- [18] S.A. Klimin, A.B. Kuzmenko, M.A. Kashchenko, M.N. Popova. Phys. Rev. B 93, 054304 (2016).
- [19] H.T. Stokes, D.M. Hatch, B.J. Campbell, D.E. Tanner. J. Appl. Crystallography 39, 607 (2006).
- [20] R.D. Shannon. Acta cryst. A 32, 751 (1976).

Редактор Т.Н. Василевская