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Abstract. We discuss chiral structures in self-organizing, arti-
ficial, and biological materials. A review of experimental stu-
dies and recent advances in the localization of light in chiral
structures is given. The behavior of polarized resonant modes in
such structures is examined using the example of a one-dimen-
sional photonic crystal containing liquid crystal materials. The
anomalous spectral shifts of transmission peaks are interpreted
as the contribution of the geometric phase caused by the twisting
of the layers of the liquid crystal. The optical Tamm state
localized at the boundary between chiral and nonchiral mirrors
in the form of a cholesteric layer and a polarization-preserving
anisotropic mirror is analytically and numerically described.
Considerable attention is paid to the presentation of the proper-
ties of localized optical modes in the cholesteric with a resonant
metal-dielectric nanocomposite. New possibilities for control-
ling the properties of the photonic structure are noted, due to the
combination of the dispersion of the resonant medium and the
intrinsic dispersion of the cholesteric. Attention is focused on
controlled hybrid modes in the cholesteric structure formed by
the coupling of localized modes. Possible applications and
further ways of developing the concept of chiral photonic struc-
tures are deliberated.

Keywords: light localization, photonic crystals, chirality, chiral
nematic liquid crystal, Pancharatnam±Berry geometric phase,
avoided crossing of coupled modes, cholesteric liquid crystal,

optical Tamm states, nanocomposite, resonant frequency disper-
sion, hybrid modes

1. Introduction

The term chirality is derived from the Greek word for hand,
weir, to define mirror symmetry breaking. Both an optical
material (in the case of bianisotropy) and a structure with
rotational-translational symmetry (e.g., a spatial helix) can be
chiral. In this review, we confine ourselves to considering
structurally chiral media, i.e., anisotropic media with a
rotating optical axis. In the case of performing uniform
periodic rotations, such media are referred to as helicoidal
or spiral (helical) [1].

Symmetry is a key characteristic considered when design-
ing optical properties. Symmetries can be considered in the
order of their violation as the medium departs from a
homogeneous state possessing all spatial and temporal
symmetries. In photonics, it is usual to speak about crystal-
lographic (translational, reflectional, and rotational) symme-
tries. Of special interest are structures with periodically
varying dielectric properties at the wavelength scale, such as
photonic crystals (PCs) [2].

Everyday events in our surrounding world are frequently
characterized by disparity in the interaction between two
material entities: matter and light (electromagnetic waves). In
most cases a linear approximation can adequately describe
the situation, the low-energy field having practically no effect
on material properties. On the contrary, the matter imposes
its structure, symmetrical and topological properties on the
field. Constructive interference of periodically recurring
reflections (the Bragg effect) gives rise to reflection bands in
the transmitted light spectrum. In the case of infinite PCs,
such intervals are frequently called photonic band gaps or
stop-bands. The anisotropy of chiral photonic structures
accounts for the differences among polarized radiation
spectra. In a helical photonic structure, the stop-band is
manifested only for one circular polarization corresponding
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to the sign of the helicoid twist [3±5]. Structural defects (point,
linear, surface, and bulk defects) are responsible for localiza-
tion of electromagnetic waves. A localized mode is defined as a
bunch of light energy. The language of band structure and
dispersion equations of solid state physics is naturally
transferred into the description of PC properties. Photonics
is peculiar in that typical structures are made mostly by top-
downmethods, as a rule with a small number of periods. This
accounts for edge effects that could be disregarded if the
number of periods were greater. Under real conditions, the
spatial limitation of photonic structures [6] and dissipation
(extinction in the material) results in a localized mode
manifesting itself in the form of resonance in the stop-band
to which a spectral line of finite width corresponds. The
respective concentration of light energy is the secondary
photonic structure composed of photons themselves rather
than atoms, providing a basis for the formation of new classes
of miniature optical elements, such as photonic crystals [2, 7]
and metasurfaces [8, 9], and thereby contributing to the
further development of photonics as the science of the
technological application of matter±light interactions [10]. It
encompasses a wide range of research, from optoelectronics
and information transmission [11] to display technologies
[12], from ultrahigh-resolution imaging [13] to optical
cloaking [14], from photovoltaics [15] to photosynthesis and
biological photonic structures [16±18]. What had recently
been considered impossible has now turned into workable
technologies and services. Recent advances in nanoscience
and nanotechnologies made optical frequencies as readily
accessible as radiofrequencies and photonic devices highly
competitive with radioequipment in terms of hardware
components. Constituent elements of photonic engineering,
photonic structures, are optical media inhomogeneous at the
wavelength scale in which traditional materials are combined
with alternative ones exhibiting record-breaking optical
properties [19].

Sustainable interest in chiral photonic structures is due to
their physical characteristics, their important role in biologi-
cal systems, and a great variety of applications. Much
attention is given in the literature to investigations of the
properties of localized modes in chiral photonic structures
and their unusual optical manifestations. Localized optical
states together with chirality serve as unifying elements in the
systems considered in the present review focused on spectral
and polarization properties of certain photonic structures
that lack mirror symmetry. New polarization properties in
localized resonant modes are described for such chiral
structures associated with manifestations of the Mauguin
effect, optical activity, selective Bragg reflection, and the
geometric phase. Special attention is focused on the proper-
ties of helical structures, widespread in self-organizing and
biological materials, where they play an important role in
coloration, photosynthesis, and plant protection from UV
radiation. The optical Tamm state localized at the boundary
between chiral and nonchiral mirrors in the form of a
cholesteric layer and a polarization-preserving anisotropic
mirror is described. Equal attention is paid to the properties
of localized optical modes in cholesterics with resonantmetal-
dielectric inclusions. Novel opportunities opening up for the
effective control of spectral properties of resonant PC
structures due to the combination of cholesteric intrinsic
dispersion and resonant medium dispersion are outlined.
Controlled hybrid modes in the cholesteric structure formed
by the coupling of localized modes are described.

2. Chiral structures

2.1 Chiral structures in self-organizing
and biological materials
Chiral molecules arranged in several layers give rise to the
structural chirality of optical materials. They create a helical
periodicity like that produced by a twisted thread laid in a few
rows. In this case, different orientations of a single aniso-
tropic material alternate, and no alternation of several
different materials is required. The addition of an odd
number changes parity. This rule holds for mirror parity too
(as shown by Yu P Solov'ev in Ref. [20]). A nonchiral object
acquires this property as it comes in contact with a chiral one.
Chirality fills up a space through all means of interaction
(mechanical, quantum-chemical, electromagnetic).

Light localized on such periodicity also acquires chiral
properties. Diffraction occurs along a smooth gradient formed
by the rotating optical axis rather than at sharp interfaces
between materials with different impedances determined by a
permittivity tensor. The wave impedance, i.e., the ratio of
complex amplitudes of electric and magnetic field, remains
constant across the structure. For a diffracting eigenwave, field
strength vectors create, at any fixed moment of time, an
exponentially narrowing helicoid with the same pitch as in a
helicoid of the photonic structure, l � p (Fig. 1). It is note-
worthy that the space period for such a wave is preserved,
despite frequency variation. A wave for which the strength of
the electric field is directed along the axis with the minimal
refractive index nÿ corresponds to the upper frequency limit.
The frequency can be written in the formo� � 2pc=nÿp, as in
the case of light in a homogeneous medium. A gradual
decrease in light frequency leads to screw pitch elongation
for circular polarization in a free space. However, such
lengthening is compensated by rotation: the field strength
helicoid rotates toward the optical axis with a high refractive
index, while the screw pitch remains unaltered. When the
strength is oriented along the optical axis with the highest
refractive index n�, the lower limit of the band gap is reached.
Here, oÿ � 2pc=n�p. Further compensation of the lengthen-
ing becomes impossible, and the wave ceases to diffract.

Figure 1. (Color online.) In a helicoidal structure, circular Bragg diffrac-

tion forms a diffracting standing wave with the same helix pitch as in the

structure's helicoid, l � p. The cholesteric director is shown in blue and

green colors, electric field strength in red and yellow. The angle between

them does not change with depth; however, it rotates as the light frequency

varies and thereby compensates the change in wavelength.
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In other words, frequency variations cause the optical
density to change, while the wavelength remains unaltered.
The spatial periodicity imposes itself on the temporal one.
This conclusion goes beyond the framework of the concepts
of structures from isotropic materials with constant optical
density; therefore, it is more convenient to describe waves in
terms of frequencies than in terms of wavelengths. In the
case of a helicoid structure, the description of an electro-
magnetic field in terms of wavelengths is preferred [21] (see
Section 3.1.2. for details).

In animate nature, chiral structures can be formed in a
self-organization process following the bottom-up principle.
The same is true for liquid crystals (LCs) [22]. Chiral LCs
include cholesteric LCs (chiral nematic LCs), the blue phase
of chiral LCs, smectic C �, and widely tunable heliconical
structures [23].

Natural colors develop in two ways: chemically (by
pigment utilization) and structurally (based on layered
media and diffraction gratings). Nonpigmentary structural
coloration is characterized by the iridescence produced by
light scattered from variably sloping surfaces. Keratinous
structures impart bright structural color to birds' feathers
(peacock, magpie), squamate reptiles' skin (snakes, lizards,
chameleons), and mammalian hair (water vole, mole); the
calcareous aragonite of mollusks is responsible for the
brilliancy of the nacre and the pearl; chitin in the butterfly's
wing scales causes iridescence of certain species (Morpho
amathonte, Urania moth), as it does in the shining integu-
ment of various beetles, such as the sacred scarab (Scarabaeus
sacer), the rose chafer (Cetonia aurata), and the golden
ground beetle (Carabus auratus) [16]. Some of these struc-
tures possess optical anisotropy and chirality. The possibility
of maintaining periodicity using a homogeneous material
assures considerable savings for wildlife [24±29]. The forma-
tion of hard chitin and cellulose structures resembles the self-
organization of chiral liquid-crystalline structures in that
induration occurs slowly due to minimization of free energy
in the course of chiral ordering [24]. Possible functions of such
structures include thermoregulation, mimicry, and intra-
species communication. A change in the spatial period of the
structure results in the alteration of its color [30]. Gradual
variation of the period broadens the stop-band spectrum [31,
32]. Because a helicoidal structure reflects only one of the two
circular polarizations of light, reflection of nonpolarized light
is less than 50%. The total reflection of nonpolarized light is
assured by both the combination of oppositely twisted
helicoidal structures [33] and the placement of the half-wave
phase plate between unidirectionally twisted helicoid struc-
tures [27]. The latter option finds implementation in chiral
chitinous structures where the left sign of the helicoid is
preferable. Figure 2 shows Chrysina resplendens, a golden
scarab beetle found in South America [29], and the micro-
graph of a fragment of its reflecting integument composed of
left-twisted chitinous structures separated by untwisted layers
functioning as a half-wave phase plate. Such structure can
reflect more than half of the nonpolarized light [26].

Cellulose nanocrystals find numerous applications [35].
Cellulose-based structures in a plant leaf provide a good
illustration of chirality. For example, leaves of young plants
Danaea nodosa are known to form chiral cellulose structures
with a pitch p � 320 nm (Fig. 3), which for the refractive index
of 1.53 produces iridescence in the form of blue-green reflection
near the wavelength l � np � 490 nm [24, 36, 37]. A similar
chiral structure and its reflection spectra are found in spikemoss

(Selaginella willdenowii) [38] and fruits of the tropical Pollia
condensata plant from west Africa [39]. These structures are
supposed to protect plants from UV radiation and stimulate
their photosynthetic activity. The former ability manifests
itself for the wavelengths corresponding to the stop-band of
the structure. Blue leaves of Begonia pavonina were shown to
recover after light irradiation faster than green ones [36, 40].
The mountain flower edelweiss is at high risk of UV-induced
mutations and its reproductive tissues need protection [41]. An
analogous protective function can be ensured by absorption of
UV radiation in pigments [36, 42]. Another potential function
of such structures is to promote photosynthesis. The leaves of
certain plants growing in shaded areas focus light by
microlenses [43, 44]. Focusing is possible by the planar chiral
layer of an anisotropic material in the form of a cycloidal
diffractionwave plate [45, 46], a so-called Fresnel lens [47], or a
geometric phase lens [48] which can also be present in
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Figure 2. (Color online.) (a) Chrysina resplendens, a representative of

lamellicorn beetles (Scarabaeoidea), native to South America, (b) TEM

micrograph of a fragment of the oblique section through the reflecting

integument (cuticle) including the unidirectional layer �u� and the adjacent
helicoidal regions �h1; h2�. The parabolic pattern is typical of oblique

sections through the helicoidal cuticle [34]. The pattern direction does not

change above or below the unidirectional layer, which suggests conserva-

tion of twist direction. The period of the structure (helicoid half-pitch) is

indicated by the black bar. Left-circularly polarized light is reflected by the

first layer, right-circularly polarized light penetrates into the second layer

(the half-wave plate) and is converted into left-circularly polarized light; it

is reflected by the third layer and again undergoes transformation into

right-circularly polarized light on the way back. The photo of the beetle

and the micrograph are borrowed from Ref. [29].

Â b
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Figure 3. (Color online.) Opalescent blue leaf of the fern Danaea nodosa

growing in shaded areas of tropical rainforests (Central America). (a) Its

iridescent young leaves gradually become green with advancing age.

(b) The color of the leaves is due to Bragg reflection from the chiral

structures in many-layer outer walls of the leaf cells. (From Ref. [36]).
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biological subjects [49]. The lenses focus light by altering the
wave front curvature. Both convex and concave lenses change
the curvature as a result of different phase incursion at parts
differing in thickness. Although flat lenses are uniformly thick
over the entire area, their differently oriented anisotropic
layers can induce different geometric phases of the wave (see
Section 3.1.1 for details). Plant cell walls vary in thickness from
100 nm to 1 mm and, unlike those in animal tissues, provide
rigidity and shape to the cell. Moreover, they change the
properties of light penetrating into the cell owing to the
presence of cellulose fibers of various structures [50], surpris-
ingly similar to the structure of a flat geometric phase lens.

Light can be concentrated not only transversely to the
direction of propagation as in lenses but also in the long-
itudinal direction as in optical resonators. Such resonators
can be formed by layered structures in plant cells; they are
also supposed to be involved in photosynthesis [17, 18].

2.2 Artificial chiral structures
Cholesteric liquid crystals (CLCs) are one-dimensional
photonic crystals with unique properties, such as a wide
transparency region, strong nonlinearity, and high sensitiv-
ity to external fields [1, 22]. A change in temperature,
application of electromagnetic fields or mechanical stresses
can significantly alter the cholesteric helix pitch, position, and
width of the band gap. CLCs are qualitatively different from
other types of LCs, because they possess reflection which is
caused by diffraction and is polarization-selective. CLCs have
a photonic band gap (stop-band) for light propagating along
the helical axis with circular polarization coincident with the
cholesteric helix twist. Reflection of light of such polarization
from a cholesteric does not change the sign of light wave
polarization. Radiation with opposite circular polarization
does not undergo diffraction reflection and passes through
the medium virtually unaltered.

Helical ordering is the most common and well-known
form of chiral structures in the form of a one-dimensional
anisotropic photonic crystal with periodicity along a single
spatial coordinate. The structure along the remaining two
coordinates can be regarded as uniform. Such nano- and
microstructures are formed in a self-organization process
based on the bottom-up nanotechnology. In this sense, the
industry of chiral liquid crystals is a nature-like technology,
even if the majority of synthetic liquid crystals are highly
poisonous, unlike natural ones. The industry of LC displays
began from the twisted-nematic optical shutter technology
for which chirality of the structure is of fundamental
importance. At present, this technology is supplemented by
in-plane switching (IPS) and multidomain vertical alignment
(MVA) [12]. Helical structures, including sculptured thin
films [5], can be manufactured by top-down nanotechnol-
ogy. Since such structures are made to be instantly hard, they
are untunable but more resistant to variations in temperature
and some other parameters and easier to configure (e.g.,
creating a defect or pitch gradient).

A cycloidal diffraction wave plate (Fig. 4) holds a special
place among one-dimensional structures other than helical
ones. Such structures can collect light like lenses [46]. The
plate is formed by a nematic LC by means of photo-
orientation on the surface [45, 51, 52], which opens the way
for control and rearrangement of the diffraction pattern or
hologram.

Two-dimensional chiral structures are represented by
diffraction gratings, wave plates, and metasurfaces periodic

in two directions of their plane and restricted in the third
dimension. Diffraction wave plates can be created by
changing light polarization and photo-orientation. Another
method of fabricating such structures makes use of electro-
hydrodynamic instability [53, 54] (also producing finger-
print structures) by oblique ordering of uniformly lying
helix CLC [55].

The blue phase of CLCs for which temperature-stable
materials have been found recently with the use of polymer
networks is of special interest among 3D periodic chiral
structures. One more example of such structures is gyroid, a
three-dimensionally structured film with zero curvature at
each point [56]. The gyroid structure was described mathe-
matically in 1970. Thereafter, it was synthesized and
discovered in butterfly wings. Photonic topological insula-
tors have been proposed based on three-dimensionally
structured bianisotropic materials [57].

Finally, one more class of anisotropic structures (colloids
and nanocomposites based on oriented nonspherical metal
particles) finds application in medicine for the diagnosis and
treatment of neoplasms [58]. Worthy of special note are
applications that will become possible using chiral metama-
terials [59]. An important contribution to terahertz electro-
nics has come with the advent of the first artificial molecules
with chirality rapidly switched from a right-handed to a left-
handed orientation by a beam of light. [60]. The terahertz
range is of great scientific and practical interest, because it
includes vibrational and rotational spectra of complex
organic molecules, e.g., DNA.

3. Optical fields

3.1 Peculiarities of optical field distribution
in chiral structures
3.1.1 Polarization and geometric phase. Anisotropy and
chirality of photonic structures give rise to altered polariza-
tion of light propagating in them. A notable specific feature
related to polarization in chiral structures is the geometric
(topological) phase [61]. The geometric phase is defined as the
phase acquired when an oscillatory system travels along a
closed trajectory in the parameter space. The notion of a
geometric phase, first introduced in optics [62, 63] and
mechanics [64], presently includes, in addition, various
phenomena of quantum and relativistic physics [65, 66].

In recent years, photonics has experienced another spike
of interest in topological ideas [67, 68] due to the popularity of
the graphene model and the topological insulator concept
[69], on the one hand, and progress in optical technologies, on

zz
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Figure 4.Model of optical axis modulation in (a) a CLC and (b) a cycloidal

diffraction wave plate. Local orientation of the optical axis is represented

by line segments. The system of coordinates is chosen so that the x and y

axes are in the plane of the substrate, while the z axis is directed normally

to it. (From Ref. [51].)
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the other hand. For example, recently in the polarization
optics the 3D structure of the light polarization field with
nontrivial topology was measured directly [70].

The geometric phase in a twisted nematic not only allows
explanation of polarization phenomena [71] but is also
employed to design wave fronts using so-called Pancharat-
nam±Berry-phase optical elements [45, 72]. The geometric
phase can be manipulated regardless of the total phase, which
allows it to be used for shifting frequencies in modulators by
adding the phase plate mechanical rotation frequency to the
field frequency [73±75]; also, switching with the use of a
ferroelectric LC is possible [76]. The authors of Ref. [77]
proposed a waveguide in which a geometric phase is used
instead of the refractive index gradient for total internal
reflection.

A simple example of a geometric phase in polarization
optics is provided by the QHQ-device depicted in Fig. 5. A
full-wave phase plate (b, c, d) having a vertical axis is placed
between parallel polarizers (a, e) turned 45� with respect to the
vertical plane. The plate is split into two quarter-wave parts
(b, d) and the half-wave part at the center (c). The incident
radiation passing through the polarizer (a) becomes linearly
polarized. The quarter-wave plate (b) makes polarization
circular. The half-wave plate (c) changes the sign of circular
polarization. Then, inverse transformation takes place. The
quarter-wave plate (d) makes light linearly polarized again,
after which it passes unobstructed through the polarizer (e)
and leaves it. The central half-wave plate (c) can rotate in its
plane, and the phase of the passing circular radiation is
essentially determined by optical axis rotation. Evidently,
for vertical and horizontal positions of the optical axis (0 and
p=2) the phase of the outgoing radiation differs by p.
Generally speaking, the change in the radiation phase
corresponds to the double angle of rotation. The above
qualitative considerations can be justified by the rigorous
quantitative description in the algebraic language of Jones
matrices and geometric language of the PoincareÂ sphere [61,
75].

If the position of the optical axis is neither vertical nor
horizontal, theQHQ-device becomes chiral.Mirror reflection
of the QHQ-device with polarizers corresponds to the right-
left circular polarization conversion. The chirality of the
structure and the optical field changes while the sign of the
geometric phase remains unaltered. In other words, the
geometric phase in this case is even with respect to chirality
sign, i.e., it has the same sign for right- and left-hand
structures. A more complicated case of the nonadiabatic
geometric phase also even with respect to chirality sign is
described in Section 3.2.2. On the other hand, chirality of
the optical field can be altered without changing structure
chirality by turning both polarizes through 90� and changing

right- to left-handedness of circular polarization. In this case,
the geometric phase is odd with respect to the structure
chirality sign, i.e., it has different signs for right- and left-
hand turns of the half-wave plate.

For polar holography and a polarization diffraction
grating (Fig. 4b), phase control is more common than light
transmission control (what is meant here is the geometric
phase determined by a change in polarization in an aniso-
tropic medium rather than the dynamic phase depending on
the medium thickness).

3.1.2 Peculiarities of optical field distribution in helical
structures. Let us turn to a mathematical description of light
propagation in a helical structure confining ourselves to the
case of normal incidence of the light propagating along the
z axis of the helicoid. The Maxwell's equation in optics is
usually written at permeability m � 1:

q2E
qz 2
� Êxy�z�

c 2
q2E
qt 2

: �1�

The wave is described by vector E of complex amplitudes for
electric field components in orthogonal directions x and y.
Projection Êxy of the permittivity tensor Ê onto the xy plane in
the cholesteric depth z has the form

Êxy �
Ee cos2 ~f� Eo sin

2 ~f
Ee ÿ Eo

2
sin �2 ~f�

Ee ÿ Eo
2

sin �2~f� Ee sin
2 ~f� Eo cos2 ~f

264
375: �2�

Here, the optical axis coincident with the cholesteric director
is described by the twist angle ~f�z� � 2pz=p� f measured
from the x axis toward the y axis; p is the helix pitch. Positive
and negative pitches correspond to right- and left-handed
helicoids, respectively.

To find the simplest solution, the symmetry between
electric and magnetic field intensities needs to be restored
and permeability m̂xy taken into consideration. The explicitly
written magnetic field strength H increases the field vector
dimensionality from 2 to 4:

J � �Ex;Hy;Ey;ÿHx�T:

Accordingly, the order of the differential equation is reduced
from second to first. Suppose that the principal axes of the
magnetic and electric permeability tensors coincide. This
assumption makes possible a transition to the orthonormal
basis u; v; z uniformly rotating together with the cholesteric
director, so that the u axis always goes along the director:

JR � �Eu;Hv;Ev;ÿHu�T :

In the Berreman method [78], Maxwell's equations in a
stationary case take a form more general than Eqn (1):

qJR
q~z
� iT̂JR : �3�

Matrix T̂ for the rotating basis formulated in [79, 80] can be
reduced as follows:

T̂ �
0 mo ~l 0

Ee 0 0 ~l
~l 0 0 me
0 ~l Eo 0

26664
37775 ; �4�

(a) (b) (c) (d) (e)

Figure 5. QHQ-device consists of two linear polarizers (a) and (e), two

quarter-wave Q-plates (b) and (d), and one half-wave H-plate (c). A turn

of the H-plate through an arbitrary angle does not affect polarization of

outgoing radiation but changes its phase by a double rotation angle.

(From Ref. [75].)
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where ~l � l0=p � 2pc=op is the dimensionless wavelength,
~z � zo=c � 2pz=l0 is the dimensionless coordinate, and l0 is
the wavelength in a vacuum. There are different units for
electric and magnetic strengths in the SI system; therefore,
they have to be normalized via the vacuum impedance Z0 �
E=H � �����������

m0=E0
p

. The differential transfer matrix T̂ can be just
as well written in the nonrotating basis [78, 81].

Four normal waves correspond to Eqn (3). They are
determined by the eigenvalues of matrix T̂ having the sense
of refractive indices n. The respective eigenvectors of matrix T̂
have the sense of polarizations J0. Based on the helicoid axis
reversal symmetry, these four normal waves can be classified
as two pairs of counter-directed waves. In each pair, the wave
with a larger refractive index has a lower phase velocity. This
wave will be called slow and the other wave fast:

JR0 � J�s; f exp �� ins; f ~z� : �5�

Substituting the solution for J�s; f into Eqn (3) yields

i�T̂ÿ ns; f Î �Js; f � 0 ; �6�

where Î is the unit matrix and superscript `�' in J�s; f is omitted.
The refractive indices are as follows:

n 2
s; f � ~l2 � Em�

�����������������������
4�E�m~l2 � d 2

Em

q
; �7�

where dEm � �Eemo ÿ Eome�=2 is the antisymmetry of permit-
tivities, and the overbar defines the arithmetic mean over
ordinary and extraordinary permittivities:

�E � Ee � Eo
2

; �m � mo � me
2

; Em � Eeomoe �
Eemo � Eome

2
:

�8�

The scale invariance of Maxwell's equations (3) and
normalization of material parameters (see Supplement in
[80]) reduce the structure to two crucial parameters: electric
and magnetic anisotropies

dE � Ee ÿ Eo
Ee � Eo

; dm � me ÿ mo
me � mo

: �9�

Consider the case of equal anisotropies dE � dm. The
clarity and elegance of this single-parametric set of structures
should compensate the difficulty of their physical realization
in the optical range for the reader [82]. Dispersion equation (7)
is simplified due to the symmetry of permittivities dEm � 0:

n 2
s; f �

ÿ
~l� �����

�E�m
p �2 ÿ ��E�mÿ Em� : �10�

Without further loss of generality, we assume the normal-
ization �m � �E, Em � 1. Then,

�����
�E�m
p � �E5 1. In other words, the

permittivity is normalized to the geometric mean of Eo and Ee:
�Eg � ��������

EoEe
p � 1, the arithmetic mean being not less than unity.

The second term in the right-hand part of the dispersion
equation becomes squared anisotropy �E�mÿ Em � d 2. Aniso-
tropy here is akin to the standard deviation of permittivities:

n 2
s; f � �~l� �E�2 ÿ d 2 : �11�

The dispersion curve of Eqn (11) is a hyperbola, and pure
imaginary values give rise to an exact circle in the stop-band.
Dispersion equation (11) can bewritten for both the refractive

index and the wave vector:

n 2
s; f � ~l2 � 2�E~l� 1 ; �12�

~k 2
s; f �

n 2
s; f

~l2
� ~o2 � 2�E~o� 1 :

This symmetry of ~l�n� and ~o�~k� � 1=~l dispersions
appears to have been noticed for the first time in Ref. [21]. It
indicates the symmetry of longwave and shortwave limits
(Fig. 6). In the longwave limit, the medium is homogeneous,
and a manifestation of anisotropy reduces to polarization
rotation opposite to the helix twist. The negative optical
activity ceases as the situation comes close to the static field
case ~l!1, ~o! 0. It is not identical with natural optical
activity, since normal waves are not purely circular [83]. In the
shortwave limit ~l! 0, ~o!1, the symmetric positive
optical activity is supported by the Mauguin waveguide
regime. Violation of the equal anisotropies condition,
dE 6� dm, breaks symmetry, as shown by the dashed lines in
Fig. 6. Ordinary and extraordinary waves can then be
distinguished in the high-frequency limit equivalent to helix
untwisting. Both positive and negative optical activities of a
helicoidal medium can be described either in the algebraic
language of Jones matrices or in the geometric language of
Mauguin's rolling cone [83±85].
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Figure 6. (Color online.) Symmetry of dispersion curves. (a) Wavelength ~l
as a function of refractive index jnf; sj. (b) Frequency ~o � 1=~l as a function
of wave number j~kf; sj. The blue curve denotes a fast wave, the purple curve
a slow wave. The solid line refers to the solution of dispersion equations

(12) for Ee � me � 3=2, Eo � mo � 2=3, dE � dm. The semicircle is a

diffracting wave for which the refractive index acquires purely imaginary

values jnfj � Im �nf�. The Mauguin regime, ~l5 1, is symmetric to the

homogenization regime, o5 2p. The dashed line is the solution of

dispersion equation (7) for Eo � 2=3, Ee � 3=2, me � mo � 1. The symme-

try is broken.
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Thus, it is possible to classify effects of a helical photonic
structure on optical fields by grouping phenomena into three
classes according to the ratio of light wavelength l inside the
structure and helix pitch p:
� l < pÐnegative optical activity, polarization rotation

opposite to the helix twist;
� l > pÐpositive optical activity, Mauguin's effect,

linearly polarized light is adiabatically controlled by the
helix twist;
� l � pÐequality is conserved within the frequency

range j~lÿ �����
�E�m
p j4d for an incident circularly polarized

wave with the sign coincident with the helix twist sign;
selective volume reflection (Bragg circular diffraction) takes
place.

Let us focus on the circular Bragg diffraction at l � p. The
refractive index nf for a fast wave acquires purely imaginary
values. This is the case when the phase velocity becomes
infinite and the group velocity meaningless. It would be
reasonable here to write dispersion equation (11) in the form
of a trigonometric identity where a certain angle w 2 �0; p=2�
acts instead of the wavelength:

ÿd 2 sin2 �2w� � d 2 cos2 �2w� ÿ d 2 : �13�

This means that at the wavelength

~l � �E� d cos �2w� �14�

the refractive index of the fast wave nf � id sin �2w� describes
full reflection in the bulk cholesteric. This wave is conven-
tionally called a diffracting wave [1]. The spatial form of the
diffracting wave shown in Fig. 1 can be derived from the
nontrivial solvability of Eqn (6). It can be shown as in [21] that
both the incident and the reflected waves have circular
polarization with the sign coinciding with the helix twist
sign. At a fixed point in space, intensity vectors of the
incident and reflected waves rotate in opposite directions.
The phase difference between them is 2w. For a superposition
of these waves, the electric and magnetic fields are oriented at
the same angle ÿw to the optical axis of the helical structure.
The problem of polarization is closely related to that of the
absence of nodes and antinodes in such a standing wave (see
Fig. 9 below).

The selectivity of reflection of only one of the two circular
polarizations is compensated by the enhanced reflective
power compared with that of a scalar (nonchiral) Bragg
reflector consisting of a few layers of isotropic materials.
The measure of reflectivity is radius r of the semicircle in
Fig. 6. This dimensionless radius with the sense of the
extinction coefficient determines not only the depth of the
stop-band but also its width. It makes an exponential
contribution to the Q-value and the laser oscillation thresh-
old of resonators. In the case of equal anisotropies, this radius
(in accordance with Eqn (10)) is equal to the anisotropy:
rEm � d. In the absence of magnetic anisotropy, e.g., in a
cholesteric, the circle undergoes deformation proportional to
electric anisotropy, and its radius decreases by roughly half,
rE � d=2. The reflective power of a scalar Bragg reflector is
optimal when optical paths in the layers are of equal length,
and each alternating layer holds a quarter-wavelength. In this
case, the stop-band width is given by expression [86]:

r 0E �
Dogap

2ogap
� 2

p
jn2 ÿ n1j
n2 � n1

� dE
p
:

This means that at equal periods and contrasts of the
refraction index, the frequency interval of reflection of a
scalar structure is p=2 times narrower than in a cholesteric,
while the thickness of the entire structure needed for a fixed
light reflection value at the frequency in the stop-band center
becomes greater. Two factors in this comparison are of
importance. First, a helical structure in the sense of
permittivity tensor (2) considered in two orthogonal projec-
tions on planes xz and yz represents two sinusoidal profiles
displaced by the quarter-pitch of a helicoid relative to each
other. Both profiles independently contribute to the reflection
of the diffracting wave. It doubles the reflective power and
quantitatively compensates for reflection of only half of the
polarized light by the helical structure. For a scalar reflector
with the sinusoidal profile, r 00E � rE=2 � dE=4. Second, the
reflectivity of the stepwise profile of the alternating layers at
equal anisotropies is stronger than that of the sinusoidal
profile, r 0E � r 00E 4=p, because the first term of Fourier expan-
sion of the stepwise profile has an anisotropy amplitude 4=p
times that of the stepwise profile itself. A reflector consisting
of two similarly thick helical structures with opposite chirality
signs reflects arbitrarily polarized light as efficiently as the
beetle integument shown in Fig. 2. Its reflective power with
respect to the thickness is similar to that of the scalar reflector
with the sinusoidal profile and twice that with respect to the
width.

A variety of complicated problems can be addressed based
on the simplest models. Dispersion equation (12) for a helical
structure gives dispersion curves in the form of conical
sections. Such an exact solution can be compared with
another possible analytical solution for the case of a step-
index profile. Here, the dispersion curve of the Rytov
equation [87] only roughly corresponds to a parabola (see
Section 6 in [86]). The solution proposed by Abeles [88, 89]
comes from joining the Rayleigh waves at the interfaces and
raising the respective matrix to the power through the
Chebyshev identity. The simplicity of helical symmetry is
attributable to the smoothness, as opposed to discreteness of
crystal translational symmetry. The solution of dispersion
equation (7) for cholesterics is in excellent agreement with the
measured transmission [90] and luminescence [91] spectra.
The discovery of this solution has a remarkable history [92±
95]. The author of [96] treats it as a paradigmatic case. It is
poorly known and as a rule rarely mentioned in classical
studies on wave physics in one-dimensional periodic and
layered media [97, 98]. Many authors confine themselves to
the generality of the Hill scalar equation

d2c
dz 2
� f �z�c � 0 ; f �z� L� � f �z� ;

the simplest case of which is the Mathieu equation for
harmonic potential f �z� � cos �kz� that has no analytical
solution [99].

3.2 Localized modes in chiral structures
with nonchiral mirrors
The simplest example of light localization is a standing wave
that needs only a flat wave source and a mirror on its
propagation path to appear. In the case of two plane-parallel
mirrors of a Fabry±Perot resonator, part of the standingwave
is confined inside the resonator cavity. As a matter of fact, to
localize light within part of the space it needs to be
surrounded by mirrors. The present section is focused on
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structures for whichmirrors remain nonchiral (conventional),
but the region of localization contains chiral material (Fig. 7).
We shall consider a one-dimensional structure in the form of a
Fabry±Perot resonator containing an anisotropic material
with the rotating optical axis.

Of special interest is the study of an LC placed inside a
Fabry±Perot resonator where the easy LC control by low
electric voltages is combined with the high resolution power
of the device. This allows controlling the main characteristics
of the passing light, including transmission [100±103], phase
[104], and polarization [105]. The last property is usually
controlled in the adiabatic Mauguin's waveguide regime [84]
in the twist layer of a nematic LC (twist-cell). The twist-
nematic Fabry±Perot resonator described in [106] used for the
purpose is referred to as a twist-resonator below.

The principal method for modeling the twist-resonator is
the formalism of complex vectors andmatrices of dimension 2
developed by Jones [107]. The Chebyshev ratio for raising
matrices to power as proposed by Abeles [88, 89] was
successfully used for both layered and anisotropic media
[108±110]. As a rule, it is sufficient to describe the eigenwave
(optical mode) that keeps its shape as it passes through the
medium. A set of eigenwaves is characterized by eigenvectors
and eigenvalues of Jones matrices. A different approach to
finding eigenwaves is the solution of a system of ordinary
differential equations like Riccati equations [111±113]. In the
framework of the coupled mode theory and mode analysis,
this approach is equivalent to the matrix approach [10].

Taking account of anisotropic reflection in the bulk of LC
allowed generalizing the formalism tomatrices of dimension 4
[78, 114, 115]. That kind of generalization is necessary for
suchmedia as chiral LCs [116±119], thin twist-cells, and other
media with sharp variations of dielectric characteristics at the
wavelength scale [120±123]. However, a few dozen wave-
lengths as a rule fall on the twist-cell length, and permittivity
changes gradually; therefore, the Jones formalism ensures a
good approximation. It was used to describe the behavior of
the twist-resonator at high [106] and low [113, 124] strengths.
The relationship between these two limiting cases is described
in [125] and generalized in [126]. Another approach to the
solution to this problem consists in the replacement of the
many-layer medium with a homogeneous anisotropic plate
[127]. An independent method represented in [84, 128] makes
use of a different mathematical apparatus, namely the group
theory and phase space.Moreover, the twist-resonator can be
regarded as an anisotropic defect of a one-dimensional
photonic crystal [129±132] that can be made from a liquid
crystalline material [133, 134].

To detect an optical response, it is necessary to know the
LC orientation. To the best of our knowledge, this problem
has no general analytical solution for a twisted structure
under an electric voltage, even in a one-dimensional case.
Simulation of experimental spectra requires a numerical
solution [135]. In this case, unlike that of a cell with an LC
oriented in a single plane [136], the twist causes coupling
between optical modes and is apparent in the observed
spectra as their avoided crossing. The description of mode
number by the number of standing wave antinodes becomes
problematic, because there are no antidotes in circularly
polarized standing waves [135, 137]. Reference [138] pro-
poses a method to eliminate mode coupling with the use of
anisotropic mirrors. An original theoretical solution of the
paradox related to the jump of the mode number due to the
binding on the mirror is reported in [124].

The validity of an analytical description of the twist-
resonator structure unaffected by electric voltage was con-
firmed experimentally in [85, 135]. The first result of the LC
optical axis twist is the coupling between o and e traveling
eigenmodes that makes them elliptically polarized. However,
the radiation of these modes leaving the resonator is
practically linearly polarized [139]. The second unobvious
result that follows from the theory concerns the direction of
the spectral shift of transmission peaks associated with LC
structure twisting. It is proposed to interpret the shift as a
nonadiabatic geometric phase incursion during wave passage
through the optical resonator. Observation of a spectral shift
encounters difficulty due to the presence of four oppositely
directed and orthogonally polarized optical waves in the
twist-resonator. The positive feedback condition describes
the total spectral shift, taking into consideration different
types of coupling between these waves. One is LC twisting and
the corresponding spectral shift of twisting. Another is
coupling of modes reflected from mirrors and the respective
spectral shift of reflection that needs to be taken into account
and distinguished from the basic effect. The third is reflection
(diffraction) in the bulk of the twisted LC deemed insignif-
icant in the approach in question. The setting of the
experiment reported in [85] rules out an appreciable influence
of parasitic factors other than twisting and reflection on the
shift. The available theoretical and experimental data are
discussed in greater detail below.

3.2.1 Two series of polarized localized modes. Let us
consider a Fabry±Perot resonator consisting of two flat
mirrors (see Fig. 7) with their reflecting surfaces facing
each other and oriented in the xy plane. The surfaces cross
the z axis at points 0 and L. A nematic LC (nematic) is
placed between the mirrors. The unit vector of the
predominant direction of LC molecules is called the LC
director. In the twisted state, the nematic layer is split into
plane-parallel sublayers. The director in each sublayer is
constant but turns in passing from one sublayer to another.
It is supposed that there are no external orienting fields
and the twist is uniform, i.e., the director uniformly rotates
clockwise in the layer plane. In Fig. 7, the full angle of twist
is 80�, but further consideration holds equally well for an
arbitrary angle.

The field of the LC director determines the local
permittivity tensor at all points of the medium. The axis of
extraordinary permittivity coincides with the LC director. Let
us consider a nematic with positive uniaxial anisotropy. The
ordinary and extraordinary refractive indices correspond (in

Mirror Twist-nematic Mirror

y

x

z

Figure 7. Chiral anisotropic medium placed in a resonator with nonchiral

mirrors.
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terms of phase velocity) to slow and fast waves, respectively;
they equal ne;o � n� dn.

Experimental and theoretical studies of defect modes in
nematic-filled nonchiral resonators in electric and magnetic
fields are reported in [140]. Two series of transmission bands
are distinguished in the spectrum. They correspond to the
modes in which light polarization is either transverse or
parallel to the predominant direction of LC molecules; these
are ordinary and extraordinary modes, o- and e-modes,
respectively. Application of the external field leads to the
inclination of liquid crystal molecules localized far from the
boundaries. E-modes undergo essential displacement in fields
exceeding the Fr�eedericksz threshold, while o-modes do not
change their position. Twisting of the predominant direction
of nematic LC molecules in the PC layer plane creates
coupling between defective o- and e-modes. Normal modes
can be referred to as L-modes, virtually longitudinal with
respect to the predominant direction of the molecules and
T-modes almost transverse to it. The situation is complicated
by the fact that normal modes change polarization from
linear to elliptical, and o-modes become also displaced
under effect of the external field.

To calculate the LC structure in a twist-cell under voltage,
the variational free energy minimization method was
employed. It proved difficult to come to the analytical
solution for deformation under the influence of electric
voltage. Therefore, the numerical method of minimizing free
energy through gradient descent was used. To simulate a
spectrum, the following parameters of the structure were
chosen: ITO film (nITO � 1:88858� 0:006 i, dITO � 140 nm),
glass substrate (nsub � 1:45), orientant (nPVA � 1:515, dPVA �

1000 nm), defective layer filled with 5CB LC (nk � 1:701�
3:9� 10ÿ4 i, n? � 1:536� 3:9� 10ÿ4 i, d � 10815 nm). The
thickness of the defective layer does not strictly correspond to
the spacer thickness and is found from the distance between
spectral peaks (intermode spacing). Materials of the alternat-
ing layers were zirconium dioxide �ZrO2� and silicon dioxide
�SiO2�.

Figure 8A presents an experimental light transmission
spectrum for the case of a polarizer oriented across the
rubbing direction of the nearest substrate. It shows a second
series of minor peaks, besides the main one. There is good
agreement between theoretical and observed spectra.
Although extinction of materials was considered in the
calculations, the spectral peaks turned out to be higher than
in experiment due to the weak light scattering by structural
inhomogeneities and other imperfections inherent in experi-
mental procedures, including tolerance limits formanufactur-
ing multilayer structures.

Figure 8B presents a calculated transmission spectrum of
nonpolarized radiation at the long-wavelength wing of the
photonic band gap under increasing cell voltage. The
spectrum gives evidence of four stages in the displacement of
transmission peaks.

I. 0 < U < UC � 0:78 V. Position of defect modes
remains unaltered at voltages below the Fr�eedericksz thresh-
old.

II. 0:78 V < U < 1:1 V. L-mode peaks move toward
shorter wavelengths if the Fr�eedericksz threshold is slightly
exceeded, but the position of T-modes remains virtually
unaltered, because the refractive index for them does not
change because of molecule inclination.
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III. 1:1 V < U < 1:6 V. At high voltages, the middle
layer of LC molecules inclines along the light propagation
axis. It decreases the medium anisotropy, upsets theMauguin
regime, and enhances the ellipticity of polarization. The
coupling of L- and T-modes increases upon reflection from
themirrors.Mode repulsion (avoided crossing) is augmented.
Solid ovals in Fig. 8B outline areas where transmission peaks
are pushed apart; dashed ovals mark regions of crossing
between weakly coupled modes of the same parity. Each
avoided crossing changes the mode number by one: �1 for T
and ÿ1 for L. In the general case, simple identification of the
mode number as the number of standing wave antinodes is
inapplicable to elliptically polarized resonant modes, because
standing wave nodes are smeared out by the interference of
counter-propagating elliptical waves of the same sign (Fig. 9).

IV. 1:6 V < U. At a voltage of twice the Fr�eedericksz
threshold, the middle layer of LC molecules acquires an
almost homeotropic orientation along the rotation axis. The
molecules cannot create a torque. Therefore, the central layer
eliminates the adhesion of near-surface LC layers. Each half
of an LC layer returns to its orientation plane. Molecules
in the left and right parts of the defect are oriented in
horizontal and vertical planes, respectively. L- and T-modes
merge and become polarization-degenerate. This regime is
called polarization-independent. The refractive index goes
down, as the voltage and LC inclination into the homeotropic
state increase, while mode doublets move into the short-
wavelength region toward the position of the untwisted
homeotropic mode with linear polarization. It is shown in
Section 3.2.2 that a mode with the same number has an even
shorter wavelength at zero voltage.

Let us consider the field in an L-mode localized at the
defect (see Fig. 9). Standing wave nodes and antinodes cancel

each other out in the center of the defect due to ellipticity of
counter-propagating traveling waves that form a standing
wave. For example, two counterpropagating waves with
identical circular polarization do not have nodes [137].

The phenomenon under study has a great potential for
applications, such as controlling the structures with sharp
optical properties and high-precision measurements in
excellent agreement with numerical calculations. In addition
to purely optical applications, it makes possible highly
accurate characteristic of such LC parameters as viscosity
and elasticity coefficients.

3.2.2 Nonadiabatic geometric phase and anomalously shifted
wavelength of localized modes. The geometric phase manifests
itself in the transmission spectra of chiral structures via the
phase matching condition that describes the total spectral
shift taking into account various types of wave coupling. One
of them of special interest in the present report is LC twisting
and its respective spectral shift. Another is mode coupling
associated with reflection from mirrors and the correspond-
ing spectral shift of reflection.Wave couplings are responsible
for the transition from simple to more complicated wave
types listed in the table below and shown in Fig. 10.

(1) The simplest class of eigenwaves comprises o- and
e-waves propagating without a change in polarization in a
homogeneous anisotropic medium with a constant direction
of the optical axis. These waves are characterized by linear
polarization either along or across the optical axis.

(2) Twisting of the optical axis causes coupling between o-
and e-waves via nondiagonal components of the permittivity
tensor. A new class of eigenwaves is represented by to- and
te-waves [110]. These waves have elliptical polarization.
Ellipticity of polarization is conserved; the principal axes of
the ellipse are directed along and across the optical axis.

(3) Resonator mirrors create a coupling between to-, te-
waves by changing the sign of ellipticity upon reflection. The
right-hand polarized waves become left-hand polarized and
vice versa. The third class of eigenwaves consists of ro-, re-
waves. These are standing waves localized in the resonator.
They have variable elliptical polarization. The principal axes
of the ellipse deviate from directions along and across the
optical axis. It is remarkable that ro-, re-waves on the mirrors
have linear polarization [124, 125]. Their polarization is
conserved during reflection. T-, L-modes in Fig. 8 can be
regarded with a good accuracy as ro-, re-modes.
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Table. Complications introduced by taking account of wave coupling.

Anisotropic medium Homogeneous Twisted Twisted in resonator

Eigenwaves

Eigenpolarization

o (ordinary)
e (extraordinary)

Linear

to, te

Elliptic

ro, re

Linear at the boundaries,
elliptical in the bulk
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The table can be generalized to the case of anisotropic
reflection from the mirrors by taking account of the phase
difference between the reflected o- and e-components of the
field. Anisotropy of reflection takes place even for mirrors
from an isotropic material, because the medium inside the
resonator is anisotropic. Therefore, polarization of the light
leaving the resonator is no longer linear. However, the
difference from linearity is as a rule insignificant, which
accounts for the lack of its experimental observations [139].
The breaking of spatial symmetry of the twist-cell also
contributes to the deviation from linear polarization [126].

Let us introduce the mean phase s � nk0L, anisotropy
phase (angle) d � dkL, and twist angle j, where k0 � o=c is
the wave vector modulus in a vacuum, dk � dnk0. Then, the
total traveling wave phase is

s�
����������������
d 2 � j2

q
� s� u ; �15�

where u is the twisted anisotropy phase. This expression is
called the Mauguin formula [84]. Dividing both parts by k0L
yields effective refractive indices of the twisted medium:

nte; to � n�
������������������������������
dn 2 �

�
j
k0L

�2
s

: �16�

The ellipticity parameter tanY � j=d reflects the smoothness
of twisting relative to the anisotropy value. It corresponds to
the adiabaticity parameter of the process known as Mau-
guin's waveguide regime. The smaller Y is, the smoother the
twisting and the closer the eigenwave polarization to the
linear one.

The phase incursion for a cycle in the resonator is equal to
the 2r angle,

sin r � sin u cosY : �17�

Figure 11a shows dispersion curves of te- and to-waves for
j � p=2 and j � 0. The o-mode number No � �sÿ d�=2p �
2L=lo plotted along the y-axis is proportional to light field
frequency. The phase incursion on the x-axis is the wave
vector multiplied by the resonator length. Figure 11a, unlike
Fig. 6, shows no splitting of the to-wave branch correspond-
ing to the stop-band of a cholesteric LC for j � p=2 and

s � u at point B. The splitting stays beyond the framework of
the model because Eqn (15) disregards reflection in the bulk
of the LC.

The dotted lines corresponding to the phases of o- and
e-waves of an untwisted structure, u�j � 0� � d, are straight,
since frequency dispersion of the materials is not taken into
consideration. Points O and Tmark the third mode frequency
for o- and to-waves. In such a numeration, the o-mode with
the zero number corresponds to point B.

Figure 11b presents the dispersion curves of re- and ro-
waves obtained by matching phase (17):

2�s� r� � 2pN ; � arcsin �sin u cosY� � sÿ pN : �18�

Let us find the spectral shift of the twisted structure relative to
the untwisted one and consider the o-wave without loss of
generality:

Dl � ÿ l2

2pnoL

 
j 2

2d
�

���������������������������
1�Y 2 tan2 u

p
ÿ 1

tan u

!
: �19�

The second term can be neglected far from Gooch±Terry
maxima [85, 111], which yields a corollary of the Mauguin
formula (15):

Dl � ÿ l2

2pnoL

�
j 2

2d

�
� ÿ l3

2ndn

�
j

2pL

�2

: �20�

Let us proceed from eigenwave frequency dispersion to
the wave shape, phase, and polarization changing with
variation of the twist-layer depth [113, 125]. Figure 12 shows
smooth shift trajectories of various polarizations of the waves
penetrating deep into the twisted layer. The space, the points
of which unambiguously correspond to light polarization
ellipses, is usually mapped on a sphere of unit radius called a
PoincareÂ sphere. To study right-hand twisted to- and ro-
waves, it is convenient to map right-hand polarization on the
upper hemisphere of the PoincareÂ sphere as in Refs [10, 112]
but not on the lower one as in [61, 110, 141]. Figure 12b
presents a cylindrical projection of polarization trajectories.
The ro-wave polarization trajectory RR0 is a spherical
trochoid. It describes the trajectory of the point rigidly
bound to a cone rolling over the plane. Mauguin described
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Figure 11. (Color online.) Dispersion curves. The abscissa is the phase incursion proportional to the wave vector kte; toL � s� u. Ordinate axis shows the

number of the o-mode proportional to the wave frequencyNo � 2L=lo. Blue color represents o-, to-, ro-waves, green color e-, te-, re-waves. Calculation

parameters:j � p=2, dn=n � 0:3. (a) No resonator, Eqn (15). Points O and T indicate the third mode frequency for the o-wave and to-wave, respectively.

Splitting at point B is not shown. (b) In resonator, Eqn (18). Points T andR correspond tomode 3 frequency for to-wave and ro-wave, respectively.G1 and

G2 are Gooch±Terry minima, sin u � 0; G3=2 is Gooch±Terry maximum, sin u � �1.
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such a cone rolling slip-free along the `equator' of the
PoincareÂ sphere [84]. Geometric calculations related to this
cone are termed the Mauguin±PoincareÂ rolling cone method.
It allows the Mauguin formula (15) to be treated as the
Pythagorean theorem for the addition of orthogonal compo-
nents of the cone angular velocity.

Parallel displacement of a geometric object over a curved
surface results in its rotation about its own axis. A classical
example is Foucault's pendulum, whose plane of swing is
rotated by the diurnal rotation of the Earth. Similarly, the
parallel transfer of polarization over the curved surface of a
PoincareÂ sphere causes state phase incursion, called the
geometric phase. This phase originates from a global
geometric characteristic (transfer trajectory) and is indepen-
dent of local characteristics, such as velocity of the state
traveling along the trajectory. In the context of polarization
optics, the following `geometric' formula holds for closed
trajectories:

b � O
2
; �21�

where b is the geometric phase, and O is the area enclosed by
the trajectory on the PoincareÂ sphere. A rigorous proof with
the use of the Stokes theorem is provided by D N Klyshko in
Ref. [61]. To recall, the `geometric' formula corresponds to
the Gauss±Bonnet theorem and can be understood as the
addition of spherical excesses of triangles making up the
enclosed area.

Reference [85] demonstrates the direct relationship
between geometric formula (21) and Mauguin's formula (15).
Here, only the Aharonov±Anandan nonadiabatic phase
corresponding to eigenwave ellipticity works [142, 143]. This
minor contribution from the geometric phase should be
distinguished from the geometric phase in the zeroth-order

adiabatic approximation responsible for the phase jump by p
in a cell twisted through p radians.

To simulate experimental spectra (Fig. 13a), zirconium
dioxide �ZrO2� and silicon dioxide �SiO2� were used as
materials for alternating layers (just as in Fig. 8). The
thickness of layers making up dielectric mirrors was 83 nm
for SiO2 and 66 nm for ZrO2. ITO thickness was 117 nm
and nITO � 1:88858� 0:006 i, taking into account absorp-
tion; for the glass substrate, nsub � 1:45. Polyvinyl alcohol
with a diffraction index of 1.515 served as the orientant
with a layer thickness of 300 and 600 nm, the difference
being due to different LC orientations at the mirrors. For
MBBA crystals, nk � 1:737� 3:9� 10ÿ4 i and n? � 1:549�
3:9� 10ÿ4 i. The thickness of the nematic LC layer was
7980 nm, and the angle of twist j � 80�.

Figure 13b demonstrates experimental and theoretical
values of spectral shifts of the transmission peaks. Good
agreement is observed for all 14 peaks. The measured spectral
shift is proportional to the third power of the wavelength, in
conformity with the Mauguin formula without regard for the
resonator (20).

The shift related to the optical axis twist considered in this
section can be observed directly without polarizers, and the
desired measuring accuracy is ensured by the use of a
resonator. The proposed experimental design ensures the
absence of serious disturbing interferences during transition
to the twisted structure. In this scheme, however, the
untwisted structure retains a constant refractive index for
the o-wave alone. The respective shift of the e-wave can be
measured under the experimental conditions with a transition
from a twisted to a planar structure that could be observed
with the use of a photo-orientant with reversible intermole-
cular bonds.

This approach takes into account the spectral shift due to
mode coupling associated with twisting and reflection from
mirrors. The shift is described analytically and detected in
experiment in twist-structures free of deformation by the
external field. Generalization of the Mauguin±PoincareÂ
rolling cone method made it possible to solve the problem
geometrically; it was independently confirmed using Jones's
[107] and Berreman's [78] matrix formalisms.

The method shows that the twist-related spectral shift in
question characterizes the twisted layer rather than the whole
resonator, which serves only to facilitate measurement.
Indeed, the twisted layer produces no peaks. What, then,
actually does shift as the layer twists? Evidently, the phase of
the eigenwave leaving the twisted layer does, which suggests a
change in the effective refraction index. The optical length of
the resonator is not the sole characteristic from which it can
be deduced. For example, polarization diffraction gratings
are highly susceptible to the magnitude of the effective
refractive index and make experimental verification of the
described phenomenon possible.

The assumption of intermediate optical response deter-
mining the medium response interval nk > neff > n? has been
formulated. However, despite its self-evidence, this assump-
tion can be invalid. In the case of a twisted nematic LC, this
fact is explained as the contribution from the geometric
phase. It is a nonlocal characteristic; therefore, neff must not
be treated as

������
eeff
p

, where eeff is a certain local response of the
material. On the contrary, neff should be understood in the
sense of phase incursion neff 2pL=l. In addition, the pictorial
representation of the geometric phase is given in the form of
the region enclosed by the trajectory on the PoincareÂ sphere,
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Figure 12. (Color online.) (a) PoincareÂ sphere and (b) part of its cylindrical

projection. AnglesF � 2j � 0�, 90�, 180�, 270� correspond to y, xÿ y, x,

x� y directions, respectively. Rotation trajectories for j � 80�: OO 0Ð
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with spectral shifts related to the areas of a spherical rectangle
and triangle. The observed spectral shift exists not only in the
twist-nematic LC but also in any other twisted anisotropic
medium.

Finally, it should be noted that in the case in question,as in
the example of the QHQ-device discussed in Section 3.1.1, the
nonadiabatic correction for the geometric phase is unrelated
to the chirality sign of the structure, i.e., it has the same sign
for right- and left-hand twisted structures.

3.3 Localized modes in structures
with chiral mirrors, surface waves
Let us now consider the case of chiral mirrors when both
localized mode properties and the fact of localization are
conditioned by chirality. To begin with, we turn to the
principle of light reflection by chiral mirrors. If the optical
axis sharply turns, the light undergoes reflection and diffrac-
tion at the boundary [144]. In the case of gradual rotation, the
well apparent boundary disappears [81, 93, 95, 145], and the
action of the permittivity gradient on light can be interpreted
in the wave representation by generalizing the Snellius and
Fresnel laws to diffraction phenomena that just as well
contribute to reflection and diffraction in the bulk medium.
Such reflection becomes essential for the helical structures
discussed in Section 3.1.2.

Let us consider two chiral mirrors. In a one-dimensional
case, the region of localization can be represented as a `gap'
between helicoidal structure sections following one another,
i.e., its defect. This analog of the Fabry±Perot resonator has a
few defect modes, i.e., localized optical states usually

corresponding to a whole number of half-waves fitting in the
cavity. Anisotropy of the cholesteric and the defect accounts
for some peculiarities of polarization [146±152], including a
defect of twisting that lacks an intermediate layer and has zero
length [153, 154]. Its thorough theoretical [79, 80, 155, 156]
and experimental [133, 153, 157, 158] investigation involving
a chiral layer containing less than one helicoid pitch [54, 100,
135, 159±161] gave rise to a discussion on the polarization and
relaxation time of localized states [162, 163]. Theoretically,
infinite relaxation time is possible only in the presence of
permeability anisotropy [21]. Reference [82] gives evidence of
the existence of plasmonic-photonic structures with such
properties. It is impossible to correlate electric and magnetic
strengths at the boundary in the absence of magnetic
anisotropy [80], and an endless increase in the cholesteric
thickness does not provide an infiniteQ-factor. Saturation of
the quality factor with increasing cholesteric thickness
changes the circular polarization of the outgoing radiation
from co-directed to oppositely directed. This polarization
crossover [154] is known as the Kopp±Genack effect [164].

A twist defect is the imperfection of the twisting of a
helical structure with zero thickness. The absence of a
resonator layer makes it different from nonchiral resona-
tors. The spatial field distribution is represented by twowaves
exponentially decreasing in opposite directions; it does not
have a flat top and resembles a surface wave or can also be
regarded as two mirrors facing each other with a common
reflecting surface [165]. Similarly to a surface wave, the twist
defect generates a single spectral resonance. The mode
localized at the twist defect differs from the surface wave at
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the cholesteric-isotropic dielectric interface in that the latter is
observed only at angles ensuring total internal reflection
[166±168], whereas a twist defect imposes no limitation on
the incidence angle of the exciting wave. A surface wave in
nonchiral structures is known which is unrestricted by total
internal reflectionÐ it is the optical Tamm state (OTS) [169±
171]. TheOTS is an analog of the electronic Tamm state at the
superlattice boundary, and its dispersion lies above the light
cone described by the straight line k � o=c [172]. Such state
can be excited even normally to the surface without energy
transfer along it, which is convenient for applications. The
natural question arises as to whether there is an OTS at the
cholesteric±metal interface on which light is incident nor-
mally. Two factors should be kept in mind. The first is
cholesteric semi-transparency due to circular Bragg diffrac-
tion; the second is polarization instability caused by alterna-
tion of circular polarizations: reflection from the cholesteric
does not alter the circular polarization sign, but that from the
metal does [173]. Such an alternation is akin to traffic lights
forbidding movement across the cholesteric for a wave with
coincident circular polarization and permitting movement
after the wave is reflected by the metal [119]. Variation of
polarization is compensated by virtue of an additional
anisotropic layer producing a series of localized states with
nontrivial polarization properties [174±176]. Various combi-
nations with two mirrors were thoroughly investigated and
proposed for practical applications [100, 116, 135, 161, 173].
The energy density of such states can increase near a mirror,
but they are localized in the bulk of the additional layer rather
than on its surface. The additional layer is not necessary when
a handedness-preserving mirror is used [163, 177-179]. Such a
mirror can preserve not only the chirality sign but also the
ellipticity value of the incident radiation. This specific case
can be referred to as a polarization-preserving anisotropic
mirror [179]. Otherwise, it can be defined as a half-wave
reflection phase plate [180]. The state localized at the
boundary between such a mirror and the cholesteric has
been described and called the chiral optical Tamm state
[160]. A recent publication reports an experimental observa-
tion of this state at the cholesteric-metasurface interface [181].

Let us construct the chiral OTS by the Berreman numerical
method [78] considering a right-hand twisted cholesteric LC
with anisotropy d � 0:2 and normalized helical pitch p

��
e
p �

500 nm as the chiral medium. The layer thickness equals five
helicoid pitches, and the substrate is a nanocomposite of silver

spheroids flattened out in the x direction and placed in the
matrix with a refractive index equaling the mean refractive
index of a cholesteric LC. The use of the Maxwell-Garnett
formula (30) allows choosing nanocomposite parameters such
that no � �1� i� � 10, ne � �1� i�=20 at a given frequency in
the visible wavelength range. The condition ne � 1=n�o ensures
the antiphase amplitude reflection coefficients of the substrate:
re� �1ÿ ne�=�1� ne�� ÿr �o , Re �re��ÿRe �ro�. As a result,
incident and reflected light polarizations are matched.

Figure 14a shows the OTS in the form of local field
intensity depending on the distance to the boundary. The
local intensity is normalized to that of the OTS-exciting wave.
Radiation has left-hand circular polarization, falls from the
right, and penetrates the boundary from the chiral medium.
The leftward traveling waveB contains an OTS-exciting wave
and is thereforemore intense than the right-propagatingwave
A re-reflected from the substrate. To make the figure less
cumbersome, we do not show total local intensity jA� Bj2,
which is almost 7 times that of an OTS-exciting wave near the
boundary.

Figure 14b explains the condition for field joining at the
boundary. Polarization ellipse of the resulting field is
stretched out in the x direction for both electric and magnetic
strengths. In the chiral medium, its major semi-axis is
proportional to the sum of amplitudes jAj � jBj, and the
minor one to the difference jAj ÿ jBj. In the substrate, the
electric field is stretched in an extraordinary wave, and the
magnetic field in an ordinary one. The equality of the aspect
ratio of the ellipse in the chiral medium and the substrate
yields

jAj � jBj
jAj ÿ jBj �

1

ne
� no 4 1 : �22�

Figure 15 presents the spectrum of reflection from the
boundary for right-hand circularly polarized light normally
incident on the boundary from a right-hand twisted chiral
medium. Gradual rotation of the mirrors shifts the OTS
frequency as far as the edges of the band gap. When optical
axes coincide, the OTS is localized at the high-frequency edge
of the band gap. For anglej � p=4, the most pronounced dip
in reflectance occurs in the middle of the band. For the
exciting light of right-hand circular polarization, reflection
in the dip amounts to 90% (the red cross in Fig. 15), and for
left-hand circularly polarized light to 45% (Fig. 14a). The
anglej � p=4 is due to the fact that the maximum gradient of
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the refractive index in a chiral medium takes place at the angle
p=4 to the optical axis, and the electric field oriented in this
direction experiences strong volume reflection. When the
optical axes are mutually perpendicular, OTS moves to the
low-frequency edge of the band gap. There is no reflection dip
at angles higher than p=2.

To describe the part of the chiral OTS located in a
cholesteric, the mathematical description from Section 3.1.2
is used. In the absence of magnetic anisotropy, the directions
of electric and magnetic polarizations are given by angles wE
and wH:

tan wE �
Eu

Ev
� ÿ~l0nf

me � mo
eememo ÿ n 2

f mo ÿ ~l20me
;

ÿ cot wH �
Hv

ÿHu
� ÿ~l0nf

ee � eo
meeeeo ÿ n 2

f eo ÿ ~l20ee
;

�23�
c � wE ÿ wH 6� 0 ;

�w � wE � wH
2

;

where the refractive index nf should be substituted from
dispersion equation (7).

The eigenfrequency of the state is determined by the
angle �w:

~o0 � 1���������������������e� 1�=2p � ���������������������eÿ 1�=2p
cos �2�w� : �24�

Even in the case of an anisotropic mirror ideally preserving
polarization, the nonzero angle c between the directions of
electric and magnetic polarizations gives rise to the appear-
ance of a nonlocal component in the chiral OTS [80]; the
state becomes a resonant one and acquires finite relaxation
time tc:

tc � lf
4pc

1

sin2�c=2� : �25�

Let us consider now a layer of a cholesteric LC having finite
thickness L confined by the medium with permittivity

�eg � ��������
eoee
p

. The corresponding relaxation time

tL � lf
4pc

exp

�
4pL
lf

�
: �26�

The equality of relaxation times yields the critical coupling
condition. The coupling manifests itself in the Kopp±Genack
crossover: a rise in the thickness of the chiral LC changes the
circular polarization sign of radiation leaving the chiral OTS.
Equating expressions for relaxation times (25) and (26) leads
to the analytical expression for the crossover thickness
apparently first derived in Ref. [21]:

Lc � lf
4p

���� log sin2 c2
����: �27�

To clarify the physical phenomenon, we shall use, besides the
analytical expressions obtained and numerical calculations,
an approximate analytical method, namely the time-domain
coupled mode theory [182]. This theory allows describing the
field in resonators coupled to waveguides. The spatial
structure of the localized mode is not considered here.
Essentially the same method going back to the solution to
the quantum-mechanical scattering problem by Lippmann
and Schwinger [183] is employed to describe open resonators.
It should be distinguished from the spatial coupled-mode
theory widely used in chiral LC optics. Equations of this
theory describe coupled amplitudes of propagating waves.
Both approaches are based on the notion of coupled modes
[184].

In a right-hand twisted helicoid, the right-hand circular
reflection amplitude of the same chirality is given by the
formula

rSS � ÿ1�
����������
2=tc

p ����������
2=tL

p
i�o0 ÿ o� � 1=tc � 1=tL

; RSS � jrSSj2 �28�

(Fig. 16). This equation describes the spectral dip in the form
of the Lorentz contour with the full width at half-maximum
(FWHM):

Dn � g
p
� 1

p

�
1

tc
� 1

tL

�
: �29�

It is sufficient to describe spectral manifestations of the state
in terms of the time-domain coupled mode theory.

The chiral OTS is localized at a boundary of strictly zero
thickness and exponentially decreases on both sides. Unlike
for media consisting of isotropic layers, there are no dif-
ficulties in finding the edge of the structure, because chiral
structures have smooth screw symmetry and can be regarded,
in this sense, as homogeneous. The geometric phase of a
running wave that crosses the boundary is determined by the
mirror rotation angle in the boundary plane, which ensures
the uniqueness of the frequency at which the phases are
matched, making the found state radically different from the
series of states corresponding to the spectrum of a nonchiral
resonator.

3.4 Spectral and polarization properties
of a cholesteric liquid crystal having a defective
nanocomposite layer with resonant dispersion
This section deals with spectral and polarization properties of
chiral photonic crystals containing nanocomposite materials
with resonant frequency dispersion.
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3.4.1 Types of defects and localized modes in a cholesteric. The
introduction of different types of defects into the structure of
an ideal CLC gives rise to narrow transmission bands in the
PC band gaps corresponding to localized defect modes. There
are a few methods to induce photonic defect modes in CLCs,
e.g., using a thin layer of a homogeneous isotropic [149] or
homogeneous anisotropic substance inserted between two
CLC layers [185, 186], a twist defect (jump in the rotation
angle of the cholesteric helix) [133, 153, 154], or a defect
caused by a local change in the CLC helix pitch [134, 150,
187]. Reference [149] was the first to report the use of
numerical analysis for the study of defect modes in CLCs as
materials with photonic band gaps. One of the elucidated
optical effects associated with a defect in the form of a thin
layer of an isotropic dielectric placed between cholesteric
layers is the induction of defect modes in the CLC stop-band
for both circular polarizations of normally incident light. An
analytical approach to the theory of optical defect modes in
CLCs with an isotropic defective layer was developed in
Ref. [152] in the framework of a model allowing the exclusion
of polarization mixing and deriving the equation for light
with only diffracting polarization. Defect modes induced in
CLCs by a twist defect, i.e., a sharp turn of the director
around the cholesteric axis at the interface between two

CLCs, were analyzed analytically in [155, 188]. Light
propagation in CLCs containing a combined defect formed
by the dielectric layer and a twist defect at the interface
between dielectric and CLC layers was investigated in [156,
189]. The localizedmodes in CLCs, like defect modes in scalar
periodically layered media, can be used to produce narrow-
band tunable filters [189], amplifiers of polarization plane
rotation [190], polarization azimuthal stabilizers [191], and
other devices. Low-threshold lasing in CLCs is a subject of
extensive research [192]. There are two possibilities for such
oscillation, one at the edge of the band gap [193] and the other
in the defect mode [185], the lasing threshold in the latter case
usually being lower, because the mode frequency is closer to
the center of the stop-band, reflection from the CLC layers is
stronger, and photonic state density is higher [194].

Nowadays, limitations imposed on the optical properties
of natural materials are being successfully overcome due to
replacing them with metamaterials. Of special interest are
composite media containing metallic nanoparticles used to
design nanostructured metal-dielectric photonic crystals and
their application for the development of new approaches to
light control. Resonance of effective permittivity has been
predicted for nanocomposites made of spherical metal
nanoparticles dispersed in a transparent matrix [195, 196].
Both the position and the width of the resonance region in the
visible wavelength range depend on nanoparticle size and
concentration. Effective characteristics of a nanocomposite
consisting of metallic nanoparticles suspended in a dielectric
matrix are formed by virtue of plasmon resonance of
nanoparticles and can acquire unique values in the optical
range that are lacking in natural materials. An example is
provided by the real part of the effective refractive index,
which can be much higher or lower than unity and can even
vanish [195, 197±199].

A combination of resonant medium dispersion and
intrinsic dispersion of a photonic crystal opens up promising
prospects for controlling the spectral and optical properties of
photonic crystals [200±210].

3.4.2 Model of the effective resonant medium. To describe
nanocomposite materials containing various inclusions,
effective medium theories, such as the Maxwell-Garnett and
Bruggeman theories, were developed together with
approaches to the derivation of formulas for these models
[211±216]. Let us consider the simplest case in which the
defective layer is a dielectric with metallic inclusions spherical
in shape. The effective permittivity of the nanocomposite
layer emix is defined by theMaxwell-Garnett equation finding
wide application for considering matrix media when the
matrix material contains dispersed isolated inclusions of a
minor volume fraction,

emix � ed

�
f

�1ÿ f �=3� ed=�em ÿ ed� � 1

�
: �30�

Here, f is the filling factor, i.e., a nanoparticle fraction in the
matrix, ed and em�o� are permittivities of the matrix and the
material of the nanoparticles, respectively, and o is the
radiation frequency. The effective medium models make use
of the quasi-static approximation with the applicability
condition given by the smallness of the size of nanoparticles
and the distance between them in comparison with the optical
wavelength in the medium. The nanoparticle size is signifi-
cantly smaller than the field penetration depth in thematerial.
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The permittivity of the metal from which nanoparticles are
made is found using the Drude approximation:

em�o� � e0 ÿ
o2

p

o�o� ig� ; �31�

where e0 is a constant taking account of contributions from
inter-band transitions,op is the plasma frequency, and g is the
quantity inverse to electron relaxation time. For metal
nanoballs suspended in a transparent optical glass, e0� 5,
op� 9:6 eV, g � 0:02 eV [217], ed� 2:56.

Disregarding the minor factor g 2 yields the resonant
frequency depending on characteristics of the starting
materials and concentration of the dispersed phase f :

o0 � op

��������������������������������������������
1ÿ f

3ed � �1ÿ f ��e0 ÿ ed�

s
: �32�

Figure 17 presents the dispersion dependence of nano-
composite permittivity for two filling factor values:
f � 0:02; 0:1. It follows that frequency o0 corresponding to
resonance in the defective layer shifts into the long wave-
length spectral region. The half-width of the resonance curve
e 00mix changes insignificantly, but the e 0mix curve undergoes a
well apparent modification, and the frequency range within
which the nanocomposite behaves as a metal expands at
e 0mix < 0.

3.4.3 Control of spectral properties in a cholesteric with a
defective nanocomposite layer. The structure of interest
consists of two identical layers of an ideal right-hand twisted
CLC separated by a nanocomposite defect layer (Fig. 18).
The cholesteric length is 10P, whereP � 275mm is the crystal
helix pitch, and the thickness of the defective layer d � 5P=7.
The medium outside the cholesteric is isotropic and has the
refractive index n � �no � ne�=2, where no � 1:4 and ne � 1:6

are ordinary and extraordinary CLC refractive indices,
respectively. Such a choice of an external medium results in
weak Fresnel reflection from the cholesteric surface and
interference bands from boundary surfaces. The numerical
analysis of spectral properties and the field distribution in the
sample was performed using the Berreman transfer matrix
method [78], making possible the quantitative characteristic
of light propagation in a CLC with a structural defect [218].
The equation describing propagation of light with frequency
o along the z-axis has the form

dC
dz
� io

c
D�z�C�z� ; �33�

where C�z� � �Ex;Hy;Ey;ÿHx�T, and D�z� is the Berreman
matrix [78] depending on the dielectric function and the
incident wave vector.

Figure 19 shows the primary � f � 0� transmission spec-
trum under the normal incidence of a light beam on the
cholesteric having a structural defect in the form of a
dielectric plate. Similar to Ref. [149], the figure demonstrates
peaks in the cholesteric stop-band corresponding to CLC
defect modes induced for both circular polarizations of
normally incident light. Moreover, the defect modes have
the same wavelength and similar transmissivity characteris-
tics at this wavelength.

If the filling factor is nonzero and the nanocomposite
resonance frequency o0 coincides with the defect mode
frequency, the latter splits. Manifestation of the splitting
effect in transmission, reflection, and absorption spectra is
illustrated in Fig. 20. The difference from frequency splitting
of two coupled oscillators consists in the presence of more
than two modes in the reflection spectrum. It follows from
Fig. 20a that due to the splitting defect modes possess equal
wavelength for right-hand and left-hand circular polariza-
tions but different transmission in the peak center. Calcula-
tions show that splitting increases with increasing volume
fraction of nanoballs in the composite, as it does in a scalar
PC with the resonant defect layer of nanocomposite [205].
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The reflection and absorption spectra (Fig. 20b, c) are
characterized by a strong dependence of reflection and
absorption coefficients on the direction of incident light
circular polarization. The appearance of the spectral region
forbidden for both polarizations after splitting of the defect
modes (Fig. 20a) is related in first and foremost to strong
reflection and absorption of right-hand and left-hand
circularly polarized waves (Fig. 20b,c).

Figure 21 illustrates spatial distributions of the electric
field in defect modes with the wavelength l � 435:8 nm
(Fig. 20a). Field localization most strikingly manifests itself
in the region commensurate with the wavelength for themode
corresponding to right-hand diffracting polarization. New
features in the transmission spectrum appear as a conse-
quence of variation of the light incidence angle y. The CLC
band gap shifts to the short-wavelength region as y increases,
in accordance with the Bragg condition; simultaneously, the
long-wavelength edge of the stop-band becomes displaced
toward the resonance frequency o0 of the defective layer. At
y � 26� (Fig. 22a), the short-wavelength peak corresponding
to the defect mode disappears from the stop-band, and only

the long-wavelength peak of defect modes corresponding to
right- and left-hand circular polarizations remains. Impor-
tantly, the resonance frequencyo0 at this angle happens to be
close to the long-wavelength boundary of the stop-band.
Mixing of the resonant mode with the photonic modes leads
to the splitting of the band gap, i.e., separation of the
additional transparency band corresponding to diffracting
polarization from the long-wavelength edge and the appear-
ance of the frequency band gap in the vicinity of o0 for the
waves of both polarizations due largely to field absorption in
the nanocomposite layer. As the angle of incidence y increases
further, the resonance frequency o0 is detected in the
continuous transmission spectrum, and the resulting reso-
nance situation gives rise to an additional band gap in the
transmission spectrum (Fig. 22b).

Analogous effects can be realized in a different way, such
as a change in the cholesteric helix pitch. Indeed, an increase
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in the helix pitch, e.g., by temperature variation, causes the
displacement of the band gap into the long-wavelength
region. In this case, mixing of the resonant mode with
photonic modes results in the splitting of the stop-band
(Fig. 23a) and the appearance of the band gap in the
continuous spectrum (Fig. 23b).

The described resonance splitting may be helpful for
explaining photosynthetic phenomena [17]. The chirality of
photonic structures involved in photosynthesis is evidenced
by the helical configuration of hydrogen bonds [219, 220]. An
advantage of chiral structures for photosynthesis stems from
their high reflectivity compared to that of a scalar Bragg
reflector of the same thickness and refractive index contrast
responsible for the higher Q-factor of the resonator. A
detailed comparison is presented in Section 3.1.2. Another
advantage is the self-organization and tunability of chiral
structures.

3.5 Controlled hybrid modes
in a bounded cholesteric liquid crystal with a twist defect
Recent years have witnessed considerable interest in hybrid
mode formation due to the coupling of different resonances in
scalar photonic crystals. Hybridization of Tamm plasmon-
polaritons with modes of other types is the subject of
especially extensive research that includes interaction with
exciton modes [169, 221±223], surface plasmon-polaritons
[224±226], andmicroresonantmodes [223, 227]. A description
of hybrid modes reveals new specific features in chiral
photonic crystals, absent in scalar PCs, due to their unique
polarization properties and high sensitivity to external fields
[174, 175, 228]. The possibility of an optical localized state in a
CLC±quarter-wave phase plate±metallic film system has been
demonstrated. The necessity to use the phase plate arises from
polarization peculiarities of light reflection from CLCs and
metal. The field is localized in such a system with a maximum
at the phase plate±metal interface. The role of the phase plate
can be performed either by an additional CLC layer with
opposite twisting [176] or a planar anisotropic defect in aCLC
[187, 189].

Let us consider coupling between CLC defect modes and
localized modes. The former are induced by a twist defect in
the crystal structure.

3.5.1 Description of the model. The study system is presented
in Fig. 24. It consists of a right-hand twisted cholesteric liquid
crystal with a structural twist defect, a quarter-wave phase
plate, and a metal film.
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The following CLC parameters were used for modeling:
ordinary and extraordinary refractive indices ne � 1:71 and
no � 1:54, respectively, helix pitch p � 0:4 mm. These para-
meters correspond to the mixture of the chiral center (Merck,
S-811) and the nematic liquid crystal (Merck, E44) [229]. For
the given CLC, the band center is at the wavelength
l0 � 650 nm. The CLC length is 4 mm. The center of the
layer contains a twist defect with the same integer number of
pitches on its right and left sides. The magnitude of the twist
defect is given by angle a. It is assumed that rotation of the
CLC layer occurs in a clockwise direction and observation is
carried out in the direction of light propagation.

Let us assume in addition that CLC refractive indices ne
and no are equal to the respective indices of the phase plate.
The thickness of the quarter-wave plate d � l0=4�ne ÿ no� �
0:96 mm. The structure is surrounded by a medium with the
refractive index equaling the mean CLC refractive index
next � �ne � no�=2. The thickness of the metallic film dm �
50 nm; its permittivity is given in the form of the Drude
approximation (31).

The simplest way to implement the proposed structure is
to use polymer cholesteric elastomers instead of liquid ones
[230]. Experiments [133, 231] revealed twist defect-induced
photonic defect modes in such cholesteric materials. The twist
defect can be caused by rotation of one part of the elastomer
about the axis with respect to the other part, so that the helix
undergoes a break in the continuous change of its director.
The spectral properties of suchmaterials, similarly to those of
usual CLCs, can be modified by various impacts [176, 228].
The combination of a quarter-wave plate with a metallic film
can be replaced with a polarization-preserving mirror, as
proposed in Ref. [160].

3.5.2 Hybrid modes and their spectral manifestation. Calcula-
tions of transmission spectra and field strength distribution in
the structure were based on the transfer matrix method for
calculating layered anisotropic structures [78].

Figure 25a presents a calculated transmission spectrum of
the structure at the varied twist-defect angle a for the right-
hand circular polarization of incident light. Calculations were
performed for the case of rotation of the first CLC layer when
the second layer bordering the phase plate remained motion-
less. In the absence of a twist defect �a � 0�, the spectrum
exhibited only one peak, corresponding to the localized mode
at a wavelength of 643 nm. A rise in a caused a shift of the
peak of the defect mode to the long-wavelength region. At
a � 1:38 rad, the wavelengths of both peaks coincided, and
the resonance frequency was split. The split peaks occurred at
the wavelengths of 637 and 649 nm, respectively (see the inset
in Fig. 25a). In the case of a variation, the spectrum
demonstrated the avoided crossing characteristic of hybrid
states.

The white dashed line in Fig. 25a shows the position of the
resonance wavelength for a CLC containing a twist defect
[156],

l � l2 � l1
2
� l2 ÿ l1

2
cos a ; �34�

where l2 and l1 are the longwave and shortwave boundaries
of the CLC band gap. The thickness of the CLC being only
4 mm, its band gap is wider than pno < l < pne; therefore,
l2 ÿ l1 6� p�ne ÿ no�. This fact was used to plot the white
dashed line in Fig. 25a.

The incident left-hand circularly polarized light produced
a different spectrum (Fig. 25b). It did not contain the
transmission peak corresponding to the CLC defect mode,
the cause being the weak dip typical of the spectrum of light
with nondiffracting circular polarization (see above). Split-
ting occurred when there was a coincidence of peak
frequencies corresponding to the localized mode and the
defect mode of the CLC.

Figure 26 demonstrates the spatial distribution of squared
electric field modulus jEj2�z� for a wavelength of 649 nm at
a � 1:38 rad and two circular polarizations of incident light.
In both cases, the field is localized on the twist defect and the
phase plate±metal interface. However, localization is much
more pronounced for the right-hand circularly polarized
light. A similar distribution pattern jEj2�z� is observed for
the 637 nm wavelength.

Variation in the helix pitch under the influence of external
factors makes possible efficient tuning of the CLC transmis-
sion spectrum. The structure transmission spectrum (see
Fig. 24) was calculated for different CLC helix pitches
(Fig. 27).

The condition for the existence of optical localized modes
has the form

2p�ne ÿ no�d
l

� p
2
: �35�
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If CLC and phase plate parameters are substantially different
and the ratio is not fulfilled, there are no optical states
localized at the phase plate±metal interface. Therefore, the
spectrum has a single peak corresponding to the CLC defect
mode at a helix pitch significantly different from 400 nm.

Variation in the phase plate thickness changes the struc-
ture's transmission spectrum. The properties of a structure
containing a phase plate of thickness d 0 � 5d � 4:8 mm were
considered. The quarter-wave plate remained unaltered with
respect to the wavelength l0 � 650 nm and birefringence
of 0.17. The spectrum contained a few peaks corresponding
to the localized modes of the CLC±phase plate±metal system.
Variation in the twist defect allows the transmission spectrum
of the structure of interest to be tuned (Fig. 28).

4. Conclusion

We have analyzed the main approaches to solving the
fundamental problem of interaction between light with
right-hand and left-hand circular polarization and photonic
structures lacking mirror symmetry. Chiral structures are
characterized by the Mauguin effect, optical activity, Bragg's
selective reflection, and geometric phase. New polarization

properties associated with these phenomena in localized
resonant modes have been revealed.

Considerable attention is given to the helical structure
inherent in self-organizing and biological materials as
exemplified by a cholesteric liquid crystal. Due to transla-
tional-rotational symmetry, helical structures exhibit spatial
periodicity and can selectively reflect circularly polarized light
within a wavelength range close to the structure period. Such
chiral reflection can result in light localization in the surface,
resonant, and hybridmodes. These states are characterized by
high polarization sensitivity; therefore, their appearance
imposes certain conditions on the structure parameters. The
problem of light localization between chiral and nonchiral
mirrors has a nontrivial solution. Recommendations are
provided for designing such localized states, including
correlation of the phase and polarization, as well as
balancing couplings between the localized states and relaxa-
tion channels.

We have revealed a number of important peculiarities in
the spectral properties of a CLC with a structural defect
related first and foremost to the resonant character of
nanocomposite effective permittivity and its essential depen-
dence on the filling factor. Worthy of special note is splitting
of the frequencies of defect modes induced for both circular
polarizations of radiation incident on the sample in the
transmission, absorption, and reflection spectra.

Ample opportunities appear to open up for efficient
control of transmission spectra of a CLC with a defect by
varying the angle of light incidence on the cholesteric or by
altering the helix pitch under the influence of external fields.
There are such values of the angle of incidence or helix pitch at
which the resonance frequency of a nanocomposite happens
to be close to the boundary of the CLC band gap, which
accounts for the appearance of an additional transparency
band for waves with diffracting polarization or an additional
stop-band for waves having two circular polarizations.

The existence is documented of hybrid optical modes that
are formed by a CLC defect mode and localized modes of the
CLC structure. The defect mode is excited by a twist defect in
the cholesteric structure. The possibility of transmission
spectrum tuning by varying the twist-defect angle and the
CLChelix pitch is documented. The described chirality effects
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are of importance for designing new-generation photonic
polarization devices, such as lenses, prisms, resonators,
filters, relays, tunable diffraction gratings, and holograms.
A spectacular example of such optical devices is provided by
LC displays, which have successfully competed for many
decades not only with cathode ray tube screens but also with
new technologies of plasma displays, OLED displays,
quantum dot displays, and energy-saving technologies of
electronic paper. Another promising avenue of research is
focused on a better understanding of biophotonic phenomena
in a wide area encompassing a variety of topics, from the
efficiency of chiral biological structures for pigmentation and
photosynthesis to mechanisms of visual and analog percep-
tion. The class of natural and synthetic structurally chiral
optical materials is rapidly expanding. New chemical com-
pounds, mixtures, and nanocomposites demonstrate record-
breaking anisotropic optical responses and tuning rates. On
the whole, consideration of the totality of materials and
structures in this review is expected to contribute to control
flexibility and ease and reliability of production.
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