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ABSTRACT

The mechanisms of coupling between the lattice modes of a two-dimensional (2D) array consisting
of Al nanoparticles and the localized modes of individual Al nanoparticles have been studied in detail.
The results have been obtained employing the finite-difference time-domain method (FDTD) and
the generalized Mie theory. It was shown that interactions of single particles with 2D lattice modes
significantly change the extinction spectra depending on the particle radius and the lattice period. The
Rayleigh anomalies of higher orders contribute to formation of hybrid modes resulting in increase of
the extinction efficiency in short wavelength range of the spectrum. It is shown that high intensity
magnetic modes are excited in aluminum nanoparticles arrays. The patterns of spatial electromagnetic
field distribution at the frequencies of hybrid modes have been studied. We note that comprehensive
understanding the mode coupling mechanisms in arrays paves the way for engineering different types
of modern photonic devices with controllable optical properties.

Keywords plasmonics · aluminum · surface lattice resonances

1 Introduction

It is generally known that appearance of electromagnetic field modes of different orders is possible in a course of
interaction of external optical radiation with single isolated nanoparticles. For spherical particles the first-order modes
are electro- and magnetodipole ones [1]. The excitation of higher order modes can be achieved by changing the particles
size and the shape of the incident wave front. In the case of an ordered structure (e.g., the lattice) the interaction of the
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local modes of each individual particle with the collective modes of the entire structure can lead to the emergence of the
collective resonances first described by Rayleigh [2] and Wood [3]. The appearance of these resonances in periodic
arrays of plasmonic nanoparticles has been predicted in Refs [4–6] and then shown experimentally in Refs. [7–9].
Later these lattice resonances were studied in a wide range of periodic nanostructures with different types of unit cells:
single [10] or paired (in a stack) [11] nanodisks, the cylinders with the core-shell structure [12], dimers [13, 14], and
more complicated configurations [15–19].

Such the structures have found wide applications in a number of areas, for example, in IR spectroscopy [20], narrowband
light absorption [21], sensorics [22, 23], lasers [24] and enhanced fluorescence [25, 26], just to name a few. Notoriously
that the conventional plasmonic materials are silver and gold, but in these latter days the alternative plasmonic materials
such as transparent conductive oxides (AZO, GZO, ITO) [27] and titanium nitride which allows to obtain high-Q
modes (Q = 104) in the telecommunication band [28] are of great interest. Aluminum plasmonics emerged quite
recently [29, 30]. Interest to this material is due to the fact that the plasma frequency of aluminum is higher than
a one of silver or gold, allowing to observe the plasmon resonance in the ultraviolet (UV) region of the spectrum.
This feature can be used, for example, in photocatalysis and for studying of organic and biological systems that
exhibit strong UV absorption [31–33]. The interest to aluminum in that respect is also due to its relative cheapness
and feasibility that opens wide opportunities for manufacturing and mass production in such promising areas as
color printing [34–36], photovoltaics [37–40], thermoplasmonics [41], holography [42]. The plasmonic properties
of Al structures were extensively studied in numerous articles: single nanoparticles with various shapes [29, 43–49],
dimers [50], heterodimers [51], and arrays [10, 52]. Surface lattice resonances (SLRs) with active tuning [53, 54] has
been shown to cover wide range of frequencies in Al and used for nonlinear optics [55], lasers [56–58], temperature
sensing [59], photoluminescence [42, 60–62], light emission [63] and confinement [64], quantum electrodynamics [65],
sensor on Al metal film holes [66]. The multipoles in single Al nanoparticle are studied in Ref. [67]. The methods
for synthesis can be found in Ref. [68], while the methods to decrease the losses in Al nanoparticles are described in
Ref. [69].

It is evident that practical implementation and design of devices based on periodic arrays requires the understanding
both of how the modes of individual particles in the array interact with the lattice modes and how to control the hybrid
modes.

The goal of our paper is the studying of interaction of local modes (both electric and magnetic) of individual particles
with the collective modes of the periodic lattice structure. The optical properties of hybrid modes for different radii of
the particles and lattice period have been scrutinized. The results were obtained by analytically accurate generalized
Mie theory and commercial FDTD package (Finite-Difference Time-Domain Method). This allows to determine
contribution of the each partial hybrid spherical mode to the extinction spectra and to engineer the extinction spectra of
the structure.

2 Computational model

2.1 The structure

Schematic representation of the structure used in our simulations is shown in Fig. 1: regular square 2D array of
aluminum nanospheres with radius R and period h along x and y axis, respectively, is immersed in the dielectric media
with permittivity εm = 2.25 (optical glass) and we used in simulations tabulated values for ε of Al [?].

Figure 1: Sketch view of the square Al particles array.

2.2 Definition of the extinction

In this paper we consider the extinction spectra of both single nanoparticles and periodic lattices (finite and infinite)
using generalized Mie theory and Finite-Difference Time-Domain (FDTD) method.
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Figure 2: Extinction efficiency decomposed in a set of spherical multipoles for single aluminum nanospheres of different
radius R and wavelength of incident light.

Here are the different conceptions for simulations of scattering and transmission cross-sections for finite and infinite
periodic structures (and therefore extinction) which do not coincide with each other. In the case of infinite lattices the
following definition of extinction, scattering, and transmission are commonly used. The transmission cross-section is
determined by the power of the electromagnetic field (related to the intensity of the incident radiation) that pass through
the periodic structure. And the scattering cross-section — the remaining power of the electromagnetic field.

In the case of finite structures another definitions are used. The electromagnetic field outside the particles consists of
incident and scattered ones:

E = Ei +Esca,

H = Hi +Hsca.
(1)

Here Ei, Hi is the incident electromagnetic field which is defined as the electromagnetic field in the interparticle
medium in the absence of the particles. In this case the extinction cross-section is determined by the power of the field
(Esca, Hsca).

To compare the spectra of finite structures (both single particle and finite array) with the spectra of infinite structures it
is necessary to choose one of the approaches described above that will be applied to both types of structures.

The first definition is not generally applicable to finite structures without introducing additional conventions (for
example, introducing a structure plane for a single particle). The second definition can be applied to both — infinite and
finite structures. Therefore, it was chosen as the definition of extinction in all our calculations. However, for infinite
structures, this method has an important feature which should be taken into account: the coefficient of extinction can
exceed an unity, nevertheless, it should not be perceived as an error. Thus, the amplitude of the full field passed through
the periodic structure will not go beyond the amplitude of the incident field, but may have a different phase. As a result,
amplitude of the scattered field introduced in Eq. (1) may exceed the amplitude of the incident field due to interference
effect.

2.3 Finite-Difference Time-Domain Method

To calculate extinction spectra of infinite nanosphere arrays commercial FDTD package was used [71]. Total field
scattered field (TFSF) light source (see [72]) was applied to separate (Ei, Hi) and (Esca, Hsca) in Eq. (1) and to find
σsca and σext.

The array illuminated from the top by the plane wave with normal incidence along x axis and polarization along y axis.
Absorption Qabs has been calculated using a set of monitors surrounding NP. Periodic boundary conditions have been
applied at the lateral boundaries of the simulation box, while perfectly matched layer (PML) boundary conditions were
used on the remaining top and bottom sides. An adaptive mesh has been used to reproduce accurately the nanosphere
shape.
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Figure 3: Extinction efficiency of Al NP’s array with different period h. NP’s radius R = 60 nm (left) and R = 110 nm
(right), respectively.

Figure 4: Extinction spectra of the infinite (left) and 30× 30 (right) arrays of Al NPs with h = 290 nm for different
values of R calculated by FDTD and generalized Mie theory, respectively. White dashed line represent the different
orders of the Rayleigh anomalies and white dots line represent the position of corresponding mode resonance.

2.4 Generalized Mie Theory

The generalized Mie theory [73] allows to calculate the extinction, scattering, and absorption spectra of spherical
particles system. The incident and scattering coefficients are given by the equations

ajmn =
µj(mj)2jn(m

jxj)
(
xjjn(x

j)
)′ − µjjn(xj) (mjxjjn(m

jxj)
)′

µj(mj)2jn(mjxj)
(
xjh

(1)
n (xj)
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′
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j)
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Figure 5: Extinction efficiency decomposed in a set of spherical multipoles for square array consisting of Al NPs of
different radius R and wavelength of incidence light (a,b,c) are for the electrical field component while (d,e,f) are for
magnetic field component. The array period is 290 nm. White dash lines represents Rayleigh anomalies and White dots
lines correspond to the electric field resonance condition in Eq.(2) when denominator of ajmn is equal to zero

Here the superscript j indicates the particle number. The field at the j-th particle is the sum of the external field and
fields scattered by the other particles in the system:

pjmn = pj,jmn −
N∑
l=1
l 6=j

∞∑
ν=1

ν∑
µ=−ν

(
alµνA

µν
mn(l, j) + blµνB

µν
mn(l, j)

)
,

qjmn = qj,jmn −
N∑
l=1
l 6=j

∞∑
ν=1

ν∑
µ=−ν

(
alµνB

µν
mn(l, j) + blµνA

µν
mn(l, j)

)
.

(3)

Here pj,jmn, qj,jmn are external field decomposition coefficients, Aµνmn(l, j), B
µν
mn(l, j) are the translation coefficient [74].

Equations (2), (3) are the system of n linear algebraic equations. The solution of this system provides one with
coefficients ajmn, bjmn, pjmn, qjmn.

Extinction and scattering cross-sections of n-th mode reads as follows:

(Cext)n =
4π

k2
n(n+ 1)(2n+ 2)

(n−m)!

(n+m)!

N∑
j=1

n∑
m=−n

Re(pj,j∗mn a
j
mn + qj,j∗mn b

j
mn),

(Csca)n =
4π

k2
n(n+ 1)(2n+ 2)

(n−m)!

(n+m)!

N∑
j=1

n∑
m=−n

(
|ajmn|2 + |bjmn|2

)
.

(4)

The total cross section is a sum cross-section of all modes:

Cext =

∞∑
n=1

(Cext)n, Csca =

∞∑
n=1

(Csca)n. (5)

The absorption cross-section is
Cabs = Cext − Csca. (6)
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Figure 6: The configuration of electric (a,c) and magnetic (b,d) fields at 435 and 480 nm, respectively for R = 60 nm
and h = 290 nm.

The efficiency of extinction in this paper is understood as the ratio of the extinction coefficient to the area of the unit
cell of the periodic structure:

Qext =
Cext
h2

, (7)

where h is a lattice period.

3 Results

3.1 Optical properties of a single aluminum sphere

In Fig 2a the extinction spectra of a single aluminum particle depending on its radius are shown. It is seen that with
increasing particle radius in the extinction spectrum the number of resonances also increases and their position is shifted
to the long-wave region. In Fig 2 b-g the decomposed extinction spectra of the single nanoparticles for different radii
are shown. As the one can see each mode is located in different region in (R, λ) space nevertheless they can overlap.

It should be noted that the increase in the radius of the particle leads to a sequential excitation of electric and magnetic
modes. For example only electric dipole and quadrupole modes are excited in small particles. Octupole modes are
excited in particles with radius greater than 50 nm. It is important to note that the contribution of magnetic modes to
extinction is much lower than the contribution of electric modes. In addition, these modes excites in particles with
radius more than 80 nm. At the same time, as the order of multipole decomposition increases, both the electric and
magnetic modes are excited at shorter wavelengths.

3.2 Optical properties of a square array of aluminum spheres

Using of aluminum nanospheres as structural elements of two-dimensional periodic arrays leads to a significant change
in the extinction spectra. This is due to hybridization of the single particle modes with the collective modes of the
two-dimensional lattice. Extinction spectra of the investigated periodic structures at different radii of the spherical
particles and the periods of the lattice h is presented in figure 3. It can be seen from these figures that the strong coupling
between LSPR and Wood-Rayleigh anomalies [2,3] leads to the emergence of high-quality collective resonances [75,76]
with spectral positions close to Wood-Rayleigh anomalies. Position of these anomalies for normal incidence of light for
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Figure 7: The configuration of electric (a,d) and magnetic (b,c) fields at 439 and 463 nm, respectively for R = 110 nm
and h = 290 nm.

square arrays can be found with the following equation:

λs,q = h

√
εm

s2 + q2
, (8)

where s, q are integers which represent the order of the phase difference in x and y directions. It should be noted that
Eq. (8) describes condition of constructive interference for particles within the Y OZ plane [77]. Here and after λ is the
vacuum wavelength. Different orders of Wood-Rayleigh anomalies with (0,±1), (±1, 0) and (±1,±1) are shown in
Fig. 3. Note, SLR in such structures can be tuned across the whole visible spectrum.

3.3 Finite size effects

Let us turn to the dependence of extinction spectra on the radius of the particles. In Fig. 4 the extinction spectra of an
infinite lattice with a period of h = 290 nm from aluminum spheres calculated by the FDTD method are presented.
To analyze the complex spectral pattern, we will use the generalized Mie theory, which will allow us to obtain the
decomposition of extinction spectra by modes of spherical particles.

It should be noted that the generalized Mie theory allows us to calculate the optical properties of structures consisting
of a finite number of particles. In this case, the extinction spectra of the two-dimensional lattice can be distorted by
finite size effects (see [78]). Therefore, we have carried out comparative calculations of extinction spectra of an infinite
periodic lattice and a lattice consisting of 30*30 particles. The calculation results depicted in Fig. 4.

The figure shows that the use of an array of particles 30*30 with a high degree accurately reproduces the spectral
characteristics of the infinite lattice. It is important to note that good agreement is observed as for the wavelengths of
the modes of the two-dimensional lattice as their amplitudes. Thus, we can use generalized Mie theory to decompose
the modes of a two-dimensional lattice over spherical multipoles with minimal impact of the finite size effects on them.
The results of the expansions are shown in figure 5.

White dots lines correspond to the electric field resonance condition in Eq.(2) when denominator of ajmn is equal to zero.
It should be noted that this equation is performed only for complex frequency. In this case the real part of frequency
defines the position of the resonance while the imaginary part defines its line width. The spectral decomposition pattern
is the result of the interaction of local resonances of single particles with Rayleigh anomalies of the periodic array.
For example the electric field mode En=1 is excited in the particles with the radius greater than 40 nm, while En=2 is
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excited in the particles larger than 80 nm. It is important to note that the excitation of En=3 is possible only in particles
with a radius of about 120 nm.

An interesting fact is that the resonances of a single particle hybridize with higher-order Rayleigh anomalies, which
leads to a local increase in the extinction efficiency near the wavelengths corresponding to the position of Rayleigh
anomalies. A similar pattern is observed for the modes En=2 and En=3, while for the mode En=3 there is no increase
in the extinction efficiency in the vicinity of the second Rayleigh anomaly with a wavelength of 300 nm. This behavior
can be explained by the extinction efficiencies of single particle (Fig. 2). So for the En=1 mode, the Rayleigh anomaly
crosses only the edge of the resonance region, while for En=2 and En=3 it crosses the region with high extinction
efficiency.

4 Resonant field configuration

Now let us turn to the field configurations that correspond to the extinction maxima. For R = 60 nm the maximum
extinction achieved at the wavelength 435 nm and 480 nm while for R = 110 nm at 439 nm and 463 nm (see Fig. 4).
The corresponding field profiles for individual particle in the lattice are shown in Fig. 6 and Fig. 7.

As can be seen that at a wavelength of 480 nm the configuration of the electric and magnetic fields corresponds to
the electric dipole. While at a wavelength of 435 nm the field configuration resemble the combination of an electric
quadrupole and a magnetic dipole. It is important to note that the electric dipole is excited in the plane of incident wave,
and the quadrupole is in the plane of light polarization. A more complex configuration of the electric field is observed
at a wavelength of 439 nm. It is seen from figure Fig. 7 that in this case the third order mode is formed and it has three
pairs of antisymmetric poles while modes of the second order are formed at the wavelength of 463 nm Fig. 7d. Note
that both at the wavelength of 439 nm and at the wavelength of 463 nm, the configuration of magnetic fields resemble
the magnetic dipole.

For particles with a radius of 110 nm and a wavelength of incident light of 448 nm, magnetic modes of only the first
order can be excited in such media, while a change in the wavelength up to 458 nm leads to the excitation of magnetic
modes of the second order. The obtained field distributions are in full agreement with the results of the decomposition
of the extinction spectra obtained by the generalized Mie theory. Thus, the variation of the lattice parameters and the
wavelength of the incident light makes it possible to effectively control the modes of two-dimensional periodic lattices.

5 Conclusion

To conclude, extinction spectra of the single aluminium nanoparticles and NPs arrays depending on particle radius
were obtain. It is shown that for single nanoparticles the increase of the radius leads to a sequential excitation and
subsequent decay of electric and magnetic modes. It should be noted that the modes of a single particle do not interact
with each other. However, a different picture is observed for the NPs array. In this case the different orders of particle
modes interact with each other and with Rayleigh anomalies that leads to the formation of hybrid modes. The spectral
manifestations of hybrid modes are the formation of narrow lines in the extinction spectra and the corresponding hybrid
configurations of the electromagnetic field. The feature here is that the each mode of both electric and magnetic fields
interact with Rayleigh anomalies of different orders. As the result we observe increased extinction efficiency at the
vicinity of Rayleigh anomalies. This effect can be used to tailor the spectral position of extinction maximum. Thus,
understanding of modes coupling in such system paves a way for more efficient control of its optical response for
photonics applications which is not easy to achieve with other alternative strategies.
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