

УДК 544.225.23

ОПТИЧЕСКИЕ СВОЙСТВА СОЕДИНЕНИЯ SrScCuS₃

М.В. Григорьев¹, В.А. Чернышев², Н.П. Шестаков³, А.В. Русейкина^{1*}

¹Тюменский государственный университет, Тюмень, Россия ²Уральский федеральный университет, Екатеринбург, Россия ³Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия *e-mail: adeschina@mail.ru

Инфракрасный спектр поглощения соединения SrScCuS₃ (рис.1) регистрировали в диапазоне 680–85 см⁻¹ с использованием спектрометра FTIR VERTEX 80V (BRUKER OPTIK GMBH), оснащенного ИК-датчиком RT-DTGS. Порошок исследуемого сульфида измельчали в агатовой ступке, а затем смешивали с полиэтиленом сверхвысокой молекулярной массы в соотношении 1:10 и прессовали в гранулы толщиной 0.26 мм.

Проведен *ab initio* расчет кристаллической структуры и фононного спектра SrScCuS₃ в рамках МО ЛКАО подхода, теории функционала плотности с использованием гибридного функционала B3LYP. Определены частоты и типы фундаментальных мод, из анализа векторов смещений, определена степень участия ионов в ИК модах (табл. 1).

Тип колеб.	$V_{pacy,} CM^{-1}$	<i>I_{расч,}км/моль</i>	Ионы-участники
B_{1u}	69	66	Sr ^s , Cu ^s , Sc ^s , S1 ^s , S2
B_{2u}	119	3	$\mathrm{Sr}^{\mathrm{W}}, \mathrm{Cu}^{\mathrm{S}}, \mathrm{Sc}^{\mathrm{S}}, \mathrm{S1}^{\mathrm{S}}, \mathrm{S2}$
B_{2u}	127	4	Sr^{S} , Cu, Sc^{S} , S1, $S2^{W}$
B_{3u}	135	167	Sr^{S} , Cu^{S} , Sc , $S1$, $S2^{W}$
B_{1u}	136	139	Sr, Cu, Sc ⁸ , S1 ⁸ , S2
B_{1u}	154	150	$\mathrm{Sr}^{\mathrm{W}}, \mathrm{Cu}^{\mathrm{S}}, \mathrm{Sc}^{\mathrm{S}}, \mathrm{S1}, \mathrm{S2}^{\mathrm{S}}$
B_{3u}	161	361	Sr^{S} , Cu, Sc^{S} , $S1^{S}$, $S2^{W}$
B_{2u}	212	2097	Sr^{W} , Cu^{W} , Sc^{S} , $S1^{S}$, $S2^{W}$
B_{3u}	228	1	Cu^W , Sc ^S , S1,S2
B_{1u}	235	1771	Cu^W , Sc^S , S1, $S2^S$
B_{1u}	280	13	Cu^W , Sc^S , S1, $S2^S$
B_{3u}	302	120	Cu^W , Sc^W , S1, $S2^S$
B_{2u}	311	176	$\mathrm{Sr}^{\mathrm{W}}, \mathrm{Cu}, \mathrm{S1}^{\mathrm{W}}, \mathrm{S2}^{\mathrm{S}}$
B _{3u}	316	670	Sr^{W} , Cu^{W} , Sc^{S} , $S1$, $S2^{W}$

Таблица 1. Вычисленные значения частот колебаний и интенсивностей ИК спектра.

Тип колеб.	<i>V_{расч,} См⁻¹</i>	<i>I_{расч,}км/моль</i>	Ионы-участники
B_{1u}	319	10	Cu, Sc, S1 ^s , S2
B_{3u}	343	0,1	Cu^W , Sc, S1 ^s , S2

Обозначения: «s» означает сильное, а «w» - слабое смещение ионов в моде.

Экспериментальный спектр ИК поглощения хорошо согласуется с расчетным (рис. 1). В низкочастотных ИК модах участвуют все ионы – Sr, Sc, Cu, S.

Рисунок 1. ИК спектр SrScCuS₃.

Пропускание ИК-излучения в диапазоне 4000–400 см⁻¹ исследовали на ИК-Фурье-спектрометре ФСМ 1201. Для изучения пропускания в ИК-области спектра образец соединения SrScCuS₃ измельчался, перемешивался в агатовой ступке с порошком КВг до однородной массы и формовался (метод таблетирования). Смесь помещалась в пресс-форму ПФ13 и прессовалась в таблетку с помощью гидравлического пресса ПГР-400 с усилием 21.3 МПа. На ИК-Фурье-спектре в области волновых чисел 3000–1800 см⁻¹ образец соединения является прозрачным для ИК-излучения, что подтверждается отсутствием полос поглощения излучения в этом диапазоне волновых чисел; в интервалах 3800–3000 и 1650–1400 см⁻¹ наблюдаются полосы поглощения, обусловленные валентными и деформационными колебаниями гидроксильных групп. Присутствие следовых количеств воды связано с тем, что соединение гигроскопично и в ходе приготовления таблетки имеет контакт с атмосферой.

Научное исследование выполнено при поддержке программы «УМНИК» в рамках научного проекта № 14977ГУ / 2019.