Charge-ordering and magnetism of Mn₂BO₄ oxyborate

<u>Belskaya N.A.</u>¹, Kazak N.V.², Knyazev Yu.V.², Platunov M.S.², Moshkina E.M.², Bezmaternykh L.N.², Solovyov L.A.³, Gavrilkin S.Yu.⁴, Veligzhanin A.A.⁵, Ovchinnikov S.G.^{2,6}

¹Reshetnev Siberian State University of Science and Technology, 660037, Krasnoyarsky Rabochy Ave. 31, Krasnoyarsk, Russia

²Kirensky Institute of Physics, FRC KSC SB RAS, 660036, Akademgorodok 50/38, Krasnoyarsk, Russia

³Institute of Chemistry and Chemical Technology, FRC KSC SB RAS, 660036, Akademgorodok 50/24, Krasnoyarsk, Russia

⁴P.N. Lebedev Physical Institute of RAS, 119991 Moscow, Russia ⁵National Research Centre "Kurchatov Institute", 123182, Moscow, Russia ⁶Siberian Federal University, 660041, Svobodny pr. 79, Krasnoyarsk, Russia

Oxyborates with general formula $M^{2+}M^{3+}BO_4$, which are isostructural to the mineral "warwickite", contain equal amounts of divalent and trivalent metal ions, and in a similar manner to magnetite Fe₃O₄ [1] it might undergo a charge ordering (CO). Three known mixed-valence warwickites Mn₂BO₄ [2], Fe₂BO₄ [3] and V₂BO₄ [4] demonstrate a temperature-induced CO transitions, which is accompanied by the orthorhombic \rightarrow monoclinic symmetry lowering. The Fe₂BO₄ shows a rich electronic phase diagram with commensurately and incommensurately modulated charge ordered states at T<T_{CO} = 340 K and the valence fluctuating state above T_{CO}. The CO in iron warwickite is supposed to be driven by electrostatic repulsion between the charges (Wigner crystallization), while the CO in manganese warwickite Mn₂BO₄ is associated with the orbital ordering in the presence of a x²-y² hole localized at Mn³⁺. The nature of CO in warwickites is the subject of hot discussions for two decades.

In this work we studied the long-range crystal structure, valence states and local structure around Mn atoms in Mn₂BO₄ through the temperature dependent X-ray powder diffraction (XRPD), Mn K-edge X-ray absorption (XAFS) spectroscopy, and heat capacity (HC) measurements. The XRPD, XAS and HC measurements were carried out in temperature ranges 298-973 K, 9-500 K, and 2-773 K, respectively.

The monoclinic symmetry (P21/n) was found to persist up to highest temperature measured. The *a*-lattice parameter shows negative thermal expansion in the T range 300-500 K. The BVS calculations were revealed large valence difference between two manganese sites that strongly supports the presence of CO up to high temperatures. The above estimations suggest that the Mn1 site is filled exclusively by Mn^{3+} ions, whereas the Mn2 site is occupied by Mn^{2+} ions. The pronounced temperature dependence of the Debye-Waller (DW) factor corresponding to the Mn-O coordination shell was found from the extended x-ray absorption fine structure (EXAFS) analysis and was associated with variations in the local distortions in MnO₆ octahedra and emergence of short-range magnetic correlations at low temperatures. Magnetization and heat capacity measurements establish the formation of an antiferromagnetic order at Neel temperature $T_N=26$ K. No any other anomalous were observed in the temperature dependence of HC, which could indicate structural phase transitions. In conclusion we discuss possible mechanisms of CO in Mn₂BO₄ and compare it with the CO observed in Fe₂BO₄.

The reported study was funded by RFBR, project number 20-02-00559.

1. Verwey, E.J.W. Electronic conduction of magnetite (Fe_3O_4) and its transition point at low temperatures. Nature 144, 327–328 (1939), https://doi.org/10.1038/144327b0

2. N.V. Kazak, M.S. Platunov, Y.V. Knyazev, *et al.*, Uniaxial anisotropy and low-temperature anti-ferromagnetism of Mn₂BO₄ single crystal, J. Magn. Magn Mater. 393, 316–324 (2015), https://doi.org/10.1016/j.jmmm.2015.05.081

3. J.P. Attfield, A.M.T. Bell, L.M. Rodriguez-Martinez, *et al.*, Electrostatically driven charge-ordering in Fe₂OBO₃, Nature 396, 655–658 (1998).

4. E.M. Carnicom, K. Górnicka, T. Klimczuk, R.J. Cava, The homometallic warwickite V2OBO3, J. Solid State Chem. 265, 319–325 (2018), https://doi.org/10.1016/j.jssc.2018.06.021