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Abstract
Multiple quantum (MQ) NMR spectroscopy of solids allows one to observe the 
growth and decay of multispin correlations. As a rule, the average size of the clus-
ter of correlated spins is extracted from the width of the MQ spectrum. In the pre-
sent article, the size distribution of such clusters is explored. To obtain the above 
distribution, the solutions for the amplitudes of the decomposition over complete 
sets of orthogonal operators for the two different models were used. By means of 
these models, we have taken into account the dependence of cluster degradation (the 
degradation of a cluster means, e.g., destruction of correlations in cluster or loss of 
particles in it) through two positions. The first one defines by the cluster size while 
the second one depends on the MQ coherence order of the cluster. It is shown that 
in dependence of the relation the rates of these degradation processes, the width of 
the MQ spectrum carries different information. If the first process is faster that the 
second one, then the width of the MQ spectrum is still determined by the average 
cluster size. When the velocity ratio becomes inverse, the width of the MQ spectrum 
takes on a smaller value, which is a consequence of the faster degradation of the MQ 
spectrum components with large orders of coherence.
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1  Introduction

The multiple quantum (MQ) NMR spectroscopy that emerged in the early 1980s 
has now largely defined the face of not only modern NMR, but also of “spin 
physics” in general [1–6]. The main reason for this lies in the wide opportunities 
provided by the MQ NMR for both applied and fundamental research in various 
fields of natural science: from chemistry, biology and medicine to the theory of 
quantum information and statistical mechanics of irreversible processes.

In MQ spectroscopy, initially localized quantum information is redistributed 
over a multiparticle system, involving (generally speaking) all particles, and is 
accompanied by the appearance of various, in particular, nonlocal correlations. 
The process of reversible redistribution of quantum information (scrambling) 
over multiparticle correlations is usually accompanied by irreversible (although, 
as a rule, partial) disturbances in the transmission process. These disturbances are 
called loss of coherence (or decoherence), and they can be caused by various fac-
tors. Thus, actually, two processes compete in the dynamics of MQ coherences: 
the development of complicated time correlation functions (TCFs) with cumber-
some expressions that reflect the development of the above coherences, and their 
damage (or total decay) due to decoherence processes.

To study scrambling and to determine its rate, etc., four-particle out-of-time-
ordered correlation (OTOC) TCFs are usually used [7–10]. These TCFs contain 
a lot of specific information about the most intimate processes in a multiparti-
cle system. In addition, experimental studies of MQ NMR in multispin systems 
have notable advantages over other techniques of exploring OTOC multiparticle 
systems, such as, for example, ultracold neutral atoms [11] or trapped ions [12]. 
The point is that the (naturally arising) TCFs used in MQ spectroscopy belong 
to the class of OTOCs and can be immediately measured experimentally. These 
are usually four-particle TCFs that by definition contain a time-reversed stage of 
evolution.

Different relaxation impacts causing loss of coherence to distort the shape of 
the MQ spectrum; therefore, studies of these processes are very important for a 
corresponding method for successful measurements: e.g., the spreading of quan-
tum information and any other substantial processes.

That is why purposeful experimental studies of the effect of disturbances caus-
ing loss of coherence (degradation or (in some sense) relaxation) in the spin sys-
tem on the MQ spectra and on the growth of the average cluster size of correlated 
spins are carried out very intensively (see, for example, [4–6]). In addition, let us 
mark that earlier, it was experimentally demonstrated in [13–18] that the number 
of dynamically correlated spins (the number of spins in cluster) grows exponen-
tially with time at least when degradation processes are absent. In articles [19, 
20], the above fact has got a robust theoretical foundation.

As it was demonstrated by experiments [4, 5] when a small perturbation caus-
ing the clusters degradation is switched on, the width of the MQ spectrum ceases 
to grow with time. On this basis, the authors of [4, 5] concluded that the aver-
age cluster size of correlated spins is stabilized because of faster relaxation of 
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large clusters since some equilibrium cluster size does exist. In [21, 22], we pro-
posed an alternative possibility for the stabilization of the MQ spectrum width. It 
was shown that the stabilization of the MQ spectrum width is a consequence of a 
rapid relaxation of the MQ spectrum components with large order of coherence. 
In the present work, the conditions for the existence of this specific mechanism 
will be defined below. For this purpose, we shall consider the distribution of clus-
ter sizes [23] and take into account the dependence of the degradation rate on the 
cluster sizes and their coherence order [24].

The article is structured as follows. Section 2 contains some general formulas for 
MQ spectroscopy. Section 3 considers the ideal case without degradation processes. 
In Sect. 4, we estimate the average cluster size in the presence of degradation, and 
in Sect. 5, we study the change in the MQ spectrum under these conditions. Finally, 
Sect. 6 provides a discussion.

2 � Hamiltonians and Basic Relations for Correlation Functions

It is well known [25] that the broadening of NMR lines in nonmetallic diamagnetic 
solids is mainly attributed to the secular part of internuclear dipole–dipole interac-
tions, which completely determines the dynamics of a nuclear spin system:

where bij = (1/2)γ2 (1 – 3cos2 θij)/ r3
ij, rij is a vector connecting spins i and j, θij is the 

angle between the vector rij and an external static magnetic field, γ is the gyromag-
netic ratio, and Sαi is the α -component (α = x, y, z, + , –) of the vector operator of 
spin at site i. Henceforth, we express energy in frequency units. When using pulse 
methods in the NMR of solids, the basic Hamiltonian (1) is usually transformed by 
spin alchemy (various sequences of rf pulses) into other Hamiltonians that are of 
interest for the researcher [26]. For example, in the conventional MQ NMR spec-
troscopy, the original Hamiltonian is transformed into a two-spin/two-quantum 
effective Hamiltonian [1–3]:

which is nonsecular with respect to the external static magnetic field. The equilib-
rium high temperature density matrix in a strong static magnetic field H0 is repre-
sented as [25]

Here, k is the Boltzmann constant, T is temperature, and N is the total number of 
spins in a sample. Under the effect of Hamiltonian (2) during the so-called prepara-
tion period of length t, the original magnetization is transformed into various rather 

(1)Hd = Hzz

d
=
∑
i≠j

b
ij
SziSzj − (1∕2)

∑
i≠j

b
ij
S+iS−j,

(2)HDQ = (−1∕4)
∑
i≠j

bij(S+iS+j + S−iS−j),

�eq ∝ 1 +
�ℏH0

kT

N∑
j=1

Szj.
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complicated TCFs that depend on the product of a various number of spin operators 
K, called clusters. Therefore, this matrix is transformed into a nonequilibrium den-
sity matrix, which is conveniently represented as a sum ρM of off-diagonal elements 
with a certain difference of magnetic quantum numbers M, called MQ coherences 
(M is the order of a coherence, which simultaneously numbers the position of the 
coherence in the MQ spectrum),

In Eq.  (3), �KMq{i}⟩ is a basis operator in which K one spin operators form a 
product that relates Zeeman states differing by M units and {i} is the numbers of 
sites of the crystalline lattice occupied by a given cluster. Thus, {i} is in fact a mul-
tiindex. The index q enumerates different basis states with identical values of K and 
M. The summation over {i} implies the summation over both the set of clusters and 
the set of spins in each cluster. The expression under the summation sign depends 
only on differences of coordinates; i.e., the dependence on one of the coordinates 
is missing. Setting this coordinate to be arbitrary, we find that, with respect to other 
coordinates, the expression under summation decays quite rapidly. Thus, a cluster 
is a group of spins for which the expression under summation is not negligible for 
every Szj(t) included in the ϱeq(0).

The arising coherences are marked by a phase shift φ [1, 3]. The phase shift is 
proportional to Mφ, where M is an integer. Therefore K-spin correlations are addi-
tionally distinguished at least by the number of quanta (M ≤ K for S = 1∕2 ) [1–3].

To study the possible loss of coherence in a correlated cluster, its effect on the 
MQ spectra, and to investigate the growth of the average cluster size with correlated 
spins under fairly realistic conditions, experimenters usually use a small perturbation 
introduced into the system in a controlled manner. Therefore, e.g., in articles [4–6] 
during the preparatory period, to the effects of the double quantum Hamiltonian that 
produces MQ coherences (Hamiltonian (2)), the Hamiltonian Σ produced perturba-
tions, usually added, with a little coefficient. This coefficient could be changed in 
experiments.

Accordingly in the articles [4, 5], the authors used Hamiltonian

The parameter p authors could change in experiments. The dipole–dipole 
interaction was chosen as a perturbation in [4], and the dipole–dipole and Zee-
man interactions were chosen in [5]. On the contrary, in [6], the unknown pertur-
bation Σ remained unchanged, but the coefficient δ (the multiplier written before 
the dipole–dipole interaction) could change in the course of experiments by 
experimenters:

In Eq. (5) Hyy

d
 is the secular part of the dipole–dipole Hamiltonian (1) but secu-

lar with respect to the quantization axis Y, not Z. As follows from the results of 

(3)𝜌M(t) =

K=N∑
K=M

∑
{i}

∑
q

gKMq{i}(t)|KMq{i} > .

(4)Hp = (1 − p)HDQ + pΣ.

(5)H�,F(B) = ±�H
yy

d
+ Σ.



883

1 3

Effect of Degradation Processes Caused by a Small Perturbation…

work [1–3] for both of the above options, TCFs (which are one of the possible types 
“OTOC”-correlators) those have been measured in MQ experiments and discussing 
in the present article can be written in a unified way:

where U1 (2) (t) is the usual unitary evolution operator with the Hamiltonian H1 (2) 
taken from Eq. (4) (or Eq. (5)). In formula (6), which contains the aforementioned 
evolution operators, index “1” denotes the direct evolution in time, and index “2” 
denotes the inverse ones. We introduced the notation τ for time-reversed evolution. 
Under experimental conditions τ = t, Гφ(t) = Гφ(t,t). Uφ = exp (iφSz) is the operator 
of rotation through an angle φ around the z axis. As we mentioned above, rotation 
through an angle φ marks and then allows one to distinguish TCFs corresponding to 
coherences of various orders M, which is determined by the difference in magnetic 
quantum numbers [1]. The full MQ NMR spectrum can be obtained by means of the 
Fourier transform of the TCF (6) with respect to the variable φ.

3 � Dynamics of MQ Coherences in a Solid

Let us begin the analysis of the TCF (6) with the ideal case when there is no pertur-
bation and complete time reversibility takes place. It means that H1 = H2. The form 
of the Hamiltonian will not be specified yet. We assume that the evolution of the 
system in time can be described on the basis of orthogonal operators �j⟩ and the cor-
responding amplitudes Aj(t) [19, 23, 27–32]:

Each subsequent basis operator is obtained from the previous one after calculat-
ing the commutator with the Hamiltonian in accordance with the recurrent equation:

In the above expressions, the angle brackets denote the calculation of the trace.
The contributions to the orthogonal operator numbered j in formula (8) can obvi-

ously contain the maximum j + 1 spin operators and, accordingly, j + 1 lattice sum-
mation indices [19]. Indeed, the transition from operator �j − 1⟩ to operator �j⟩ is 
accompanied by a commutation with the Hamiltonian of the two-spin interaction 
( Hyy

d
 or HDQ ), which is each time accompanied by the addition of at most one spin 

operator (lattice index). Of course, the operator also contains contributions with a 
smaller number of spins (lattice indices). Therefore, if the number j ≥ K, this vec-
tor can also contribute to the K-spin cluster. However, these contributions can be 
neglected due to their smallness. The point is that at small times they grow with time 
in proportion to tj . At large times (t > T2 = 1/M2

1/2 ∝ 1/Z1/2, where Z is the number 
of approximately equivalent nearest neighbors), the functions Aj (t) decay rapidly. 

(6)Γ�(t, �) = Tr{U+
2
(�)U�U1(t)SzU

+
1
(t)U+

�
U2(�)Sz}∕Tr{S

2
z
},

(7)Sz(t) =

∞�
j=0

Aj(t)�j⟩ ; Aj(t) =

�
j�Sz(t)

�
⟨j�j⟩ .

(8)
�0⟩ = Sz, �1⟩ = i

�
H, �0⟩�, �j + 1⟩ = i

�
H, �j⟩� + �2

j−1
�j − 1⟩ (at j ≥ 1), �2

j
= ⟨ j + 1�j + 1⟩∕⟨ j�j⟩.
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Therefore, as the number increases, their amplitude decreases as Aj(t) ∼ Z−j∕2 . Thus, 
(7) can be regarded as a certain (somewhat diffuse) expansion into clusters with dif-
ferent numbers of spins [23].

In formula (6), we transfer the operators of inverse evolution from the first opera-
tor Sz to the second. As a result, it acquires a direct time dependence Sz(t) . Substitut-
ing series (7) into the transformed formula (6), we obtain

Taking into account what has been said in the previous paragraph and the fact 
that the rotation operator Uφ does not change the number of spin operators in the 
vector, with a large number of equivalent nearest neighbors in expression (9), we 
will leave only the terms with j = j’. Then, we get

Here, we have

For φ = 0, we find

In addition, in this case, the condition is fulfilled: Γ�=0(t) =
∑∞

K=1
Γ�=0,K−1(t)

=
∑∞

K=1
P(K, t) = 1 . The new designation in formula (12) was introduced to empha-

size that P(K, t) is actually the distribution over the number of clusters with K = j + 1 
spins.

For φ ≠ 0, by representing in formula (11), the orthogonal operator �j⟩ = ∑
M

�j⟩M 

as a sum of elements with a certain order of coherence, we find

where

In Eq. (13), we took into account that the contribution to the trace from the terms 
whose coherence of the second operator differs from “- M” is zero.

Let us note that the gKM function actually represents a form of the MQ spectrum.
A simple formula sufficiently adequately describing the shape of the MQ spec-

trum at least for fairly short periods of time for the first time was obtained in [3] on 
the base of the statistical model despite the fact that the model did not have a good 
reason. Therefore, according to ref. [3], we have

(9)Γ�(t) = Tr{U�

∞�
j=0

Aj(t)�j⟩U+
�

∞�
j�=0

Aj� (t)
��j�⟩}∕Tr{S2z}.

(10)Γ�(t) =

∞∑
j=0

Γ�,j(t).

(11)Γ�,j(t) = Tr{A2
j
(t)U��j⟩U+

�
�j⟩}∕Tr{S2

z
}.

(12)P(K, t) = Γ0,K−1(t) = A2
K−1

(t)⟨K − 1 � K − 1⟩∕Tr(S2
z
).

(13)Γ�,K(t) = Γ0,K(t)
∑
M

exp(i�M)gKM ,

(14)gKM = ⟨K − 1 � K − 1⟩M∕⟨K − 1 � K − 1⟩.
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where Ng = 4K −
1

2

[(
2K

K

)
+ 2K

]
 is the normalization factor, 

(
n

m

)
 is binomial 

coefficient. For large clusters, the form of the MQ spectrum (15) is replaced by the 
Gaussian function

These relations allow calculating time dependences of the average cluster size 
(average number of spins in it):

This sort of dependences, observed experimentally in solids, represent either 
a power-law function of time or an exponential function of time. As we have 
shown in the work [19], these two types of dependence can be conveyed using 
two models with the following examples of amplitudes:

1.	 Gaussian functions [19, 28]

2.	 Inverse hyperbolic cosine functions [19, 31]

In Eqs. (18) and (19), time is scaled in units of the second moment of the cor-
responding function Ao(t). Summing up the series (17), we find

1.	

2.	

(15)gKM =

⎧
⎪⎨⎪⎩

1

Ng

�
2K

K −M

�
, M ≠ 0

1

2Ng

��
2K

K

�
− 2K

�
, M = 0

,

(16)gKM =
1√
�K

exp

�
−
M2

K

�
.

(17)K =

∞∑
K=1

K P(K, t).

(18)

A0(t) = exp(−t2∕2), Aj(t) =
tj

j!
exp(−t2∕2), P(K, t) =

t2(K−1)

(K − 1)!
exp(−t2).

(19)

A0(t) =
1

ch2(t∕
√
2)

, Aj(t) =
1

ch2(t∕
√
2)

thj(t∕
√
2)

j!
, P(K, t) =

(th2(t∕
√
2))K−1K

ch4(t∕
√
2)

.

(20)K = 1 + t2.

(21)K = 1 + 2sh2(t∕
√
2).
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4 � Degradation of Correlated States due to Relaxation Processes

In the presence of a perturbation, the expressions for the orthogonal operators �j⟩ and 
the corresponding amplitudes Aj(t) will change. Assuming that the perturbation is 
small, we take its effect into account phenomenologically by adding the relaxation 
function as a damping factor to P(K, t) and preserving the unperturbed values for �j⟩ 
and Aj(t). Later in the text, we will introduce the notation T for the duration of the 
preparatory period, keeping the notation t for the current time within the interval [0, 
T]. The damped factor will be defined as well as in [21, 22, 24], in the form of the 
product of two factors

Here,

is average over the instant of time of appearance of coherence t in the interval [0, T], 
characterized by the probability density R (t):

where K(t) is a time-dependent number of spins in the cluster. We neglect the con-
tribution from the initial value K(0). In formula (22), A2 = p2A2

Σ
,B2 = p2B2

Σ
 , where 

A2
Σ
 and B2

Σ
 are some constants specifying the effect of the perturbation on the cluster 

spins. In this case, the parameter B2 characterizes the uncorrelated contribution to 
the local field at each of the spins, independent of the contributions to the other 
spins. The parameter A2, on the other hand, characterizes the mean field that acts in 
a correlated manner on all spins of the cluster. Note that the values of the constants 
A and B and their ratio can vary within wide limits, since it depends on the type of 
perturbation and the properties of the spin system. We will consider them as phe-
nomenological parameters.

In previous works [21, 22, 24], we calculated (22) for one middle cluster. Now 
the calculation should be performed for each term of sum (17) according to the 
number of spins in the cluster at time T. In this case, the growth parameters will be 
expressed in terms of K and T using the following formulas:

For power growth with exponent 2 (quadratic growth):

For exponential growth:

After performing simple calculations, we find:
For quadratic growth (24):

(22)ΓKM(T) = exp(−KB2t2
T
∕2)exp(−A2M2t2

T
) = FK(T)FM(T).

(23)t2
T
=
⟨
(T − t)2

⟩
=

T

∫
0

(T − t)2R(t)dt

R(t) = (dK(t)∕dt)∕K(T),

(24)K(T) = M
(K)

2
T2, M

(K)

2
= T2∕K.

(25)K(T) = exp(aKT), aK = (1∕T) lnK.
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For exponential growth (25):

Let us estimate the change in the average cluster size due to damping. Substitute 
the damping function FK(T) = exp(−K(T)B2t2

T
∕2) into series (17):

Here, we have

N(T) is normalizing factor equal to the Loschmidt echo amplitude.
For the case of Gaussian amplitudes (18) with a quadratic growth of the cluster 

size (24) and (26), we find

where r2 = exp(−B2T2∕12).
For the case of the inverse hyperbolic cosine (19) with exponential growth of the 

cluster size (25) and (27), we take into account that for small B2 and large T, the 
main contribution to (28) comes from large K, therefore, we take the decay function 
in the form

In Eq. (31), a2 = a2
K
= 2 is the parameter of unperturbed growth (21). Therefore, 

we get

As it follows from the obtained expressions, in the presence of decay processes, 
monotonic growth K(T) slows down at large times T. With the exponential growth 
described by formula (33), a plateau is reached:

(26)
⟨
(T − t)2

⟩
= T2∕6.

(27)
⟨
(T − t)2

⟩
= 2∕a2

K
− 2T∕(aKK(T)) − T2∕K(T).

(28)K(T) =

∞∑
K=1

K FK(T)P(K, T)∕N(T).

(29)N(T) =

∞∑
K=1

FK(T)P(K, T),

(30)N(T) = r2exp{−T2(1 − r2)}, K(T) = 1 + T2r2,

(31)FK(T) ≅ exp(−K(T)B2∕a2).

(32)N(T) = (1 − th2(T∕
√
2)exp(−B2∕a2))−2ch−4(T∕

√
2),

(33)K(T) = 1 + 2
sh2(T∕

√
2)exp(−B2∕a2)

1 + sh2(T∕
√
2)(1 − exp(−B2∕a2))

.

K(T) = 1 + 2
exp(−B2∕a2)

1 − exp(−B2∕a2)
,
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whereas with the quadratic growth described by formula (30), a decrease in K(T) 
was observed.

5 � The MQ Spectrum Shape

In the experiment, the average size of a cluster is determined from the MQ spec-
trum, by comparing to the Gaussian function or via finding the order of coherence 
M, at which the spectrum falls off “e” times. Taking into account the decay pro-
cesses, the shape of the MQ spectrum will be set by the series

where we have

N1(t) is the new normalizing factor.
To analytically estimate the shape of the spectrum given by the relation (34), it is 

necessary to make some approximations. Let us assume the form-factor gKM in the 
Gaussian form (16). We take out the factor FM (T), which is weakly dependent on K, 
outside the sign of the sum, and as the sum itself is the average of Gaussian func-
tions, we replace it by the Gaussian function with the mean defined above K(T) (17). 
Therefore, we get

with

Hence, comparing the sum of exponents in (35) with the Gaussian function with 
one effective cluster size, we obtain for that exponent

(34)GM(T) =

∞∑
K=|M|

gKMFM(T)FK(T)P(K, T)∕N1(T),

N1(T) =
∑
M

∞∑
K=|M|

gKMFM(T)FK(T)P(K, T),

(35)GM(T) ≈
1

N2(T)

√
�K(T)

exp

(
−

M2

K(T)

)
exp

{
−M2A2

⟨
(T − t)2

⟩}
,

N2(T) ≈
1�

�K(T)

∞

∫
−∞

exp

�
−

M2

K(T)

�
exp{−M2A2

�
(T − t)2

�
}dM

=
1�

1 + K(T)A2⟨(T − t)2⟩
.

(36)
1

Keff

=
1

K(T)
+ A2

⟨
(T − t)2

⟩
.
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A more accurate summation of the Gaussian functions in (34), which we carried 
out in [23] without considering decay of correlations, showed that the resulting 
shape of the spectrum remains Gaussian at small M, and the wings are described by 

a simple exponential function:GM(T) ∼ exp

�
−

�M�√
Ke

�
, here Ke differs from K by a 

numerical factor. The exponential shape of the spectrum was observed experimen-
tally [4]. In the same paper, it was argued that relaxation is also described by an 
exponential function of M: FM(T) ∼ exp{−|M|Aef (T)} . If we take Ae = A and 
f (T) =

√⟨(T − t)2⟩ , then the result for Keff differs from (36) by a numerical coeffi-
cient, but gives the same qualitative dependence on the parameters. Therefore, for 
approximate estimates, let us return to formula (36). Thus, for both cases considered 
above, we obtain the following results:

1.	 With the quadratic increase in the number of spins in the cluster (see (26) and 
(30)), we have:

2.	 With the exponential increase in the number of spins in the cluster (31), taking 
the average at large T in (27) as 

⟨
(T − t)2

⟩
≅ 2∕a2,

6 � Discussion

We begin our discussion with the case of the exponential increase in the number of 
spins in a cluster (38). If the preparation time T is not too long, so that

then the effective size of a cluster is equal to its size in the absence of perturbations:

At large T, if conditions (39) are violated, the growth slows down. Let A = 0, then 
for T → ∞

Let B = 0, then for T → ∞

(37)
1

Keff

=
1

K(T)
+

A2T2

6
.

(38)
1

Keff

=
1

K(T)
+

2A2

a2
.

(39)exp(aT) < 4a2∕B2 and exp(aT) < a2∕A2,

(40)Keff ≅
1

2
exp(aT) =

1

2
exp

�√
2T

�
.

(41)Keff =
2a2

B2
=

4

B2
.
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In both cases, the experiment will demonstrate the cessation of cluster growth. 
However, the physical reasons are different. In the case described by Eq.  (41), 
due to the faster decay of the contribution from large clusters in series (28) and 
(34), the average cluster size is determined by smaller clusters, the size of which 
depends on the value of the damage parameter B.

On the contrary, in case (42), there is no faster damage of large clusters, but 
there is a faster decay of clusters with a large M. Because of this, the shape of the 
MQ spectrum stabilizes, and it leads to stabilization of the apparent size of the 
cluster extracted from it [21, 22]. In this case, the growth of the average cluster 
size with increasing T can continue. Which of the cases, and in what proportion, 
is realized in the spin system depends on the ratio of parameters A and B.

For the experimental estimation of these parameters, one can use the results of 
[13], where the relaxation under the action of dipole–dipole interaction was meas-
ured depending on the time interval td between the preparatory period and mix-
ing period. As we have shown earlier [24], formula (22) at td = tT well describes 
results of the experiment [13]. Therefore, as follows from [13], the parameter A2 
exceeds B2 by more than two times.

Note that the assumption about the possible stabilization of the average cluster 
size due to relaxation processes was proposed in [4, 5]. In [4], the average value 
of the stable cluster size (K0) was estimated from the relaxation of the compo-
nents of the MQ spectrum, which depends on M; i.e., through the stabilization of 
the MQ spectrum. In light of the above, the conclusion that this value really char-
acterizes the real size of the cluster needs additional justification.

Let us now discuss the situation when the number of spins in a cluster grows 
in accordance with the quadratic law (37). If the preparatory period T is not too 
long, the effective cluster size is equal to its size in the absence of perturbations:

At large T, the growth slows down, passes through a maximum and falls off. 
Let A = 0, then for T → ∞

If B = 0, then for T → ∞, one gets

The difference between the dependencies for T → ∞ in the considering situ-
ation and in the previous case is due to weaker, power-law growth of the clus-
ter size, which does not compensate for the action of exponential relaxation 
processes. As in the previous case, the result (44) shows a decrease in the aver-
age size of real clusters, while the result reflected by Eq. (45) is associated with 

(42)Keff =
a2

2A2
=

1

A2
.

(43)Keff ≅ T2.

(44)Keff = T2 exp

(
−
B2T2

12

)
.

(45)Keff =
6

A2T2
.
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narrowing of the MQ spectrum due to the M-dependent relaxation of the spectral 
components.

In conclusion, the studies performed in the present work for model systems 
have shown the sensitivity of the MQ spectrum width on the ratio of the rates of 
relaxation processes caused by two different mechanisms. The first mechanism 
is the consequence of the fact that the components of the local field act indepen-
dently on each spin in the cluster exists. The second mechanism is the result of 
the presence of a component of the field that acts in a correlated manner on all 
the spins of the cluster. Therefore, to extract reliable information from MQ spec-
tra, it is necessary, on the one hand, to control the proportion of these processes, 
and on the other hand, to further develop the theory of the shapes of MQ spectra. 
The latter is all the more important because for conventional three-dimensional 
systems, computer modeling is very difficult for obvious reasons while it largely 
advanced [33] for one-dimensional systems.
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