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Abstract
The review is aimed at highlighting the aspects of topological superconductivity in the absence of spin–orbit interaction in 
two-dimensional systems with long-range noncollinear spin ordering or magnetic skyrmions. Another purpose is to give a 
brief introduction to the new concept of topological superconductivity, i.e. higher-order topology in two-dimensional systems 
including spin–orbit coupled structures. The formation of Majorana modes due to magnetic textures is discussed. The role 
of effective triplet pairings and odd fermion parity of the ground state wave function in different systems is emphasized. We 
describe the peculiarities of the magnetic skyrmions, leading to the formation of the Majorana modes and defects on which 
the modes are localized. The problem of braiding in the two-dimensional systems, especially in higher-order topological 
superconductors, is considered.

Keywords Topological superconductivity · Majorana fermions · Noncollinear magnetism · Magnetic skyrmion · Higher-
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1 Introduction

Until recently, the actively studied quantum phases of con-
densed matter were homeomorphic to the vacuum state: a 
continuous change in the parameters of the system could 
reduce the latter into a classical vacuum state, corresponding 
to a set of noninteracting and nonentangled atoms. However, 
it turned out that there are quantum phases that cannot be 
adiabatically deformed to a vacuum state without violating 
the certain continuity conditions (overcoming a high energy 
barrier, closing a gap in the excitation spectrum, etc.). The 
discovery of such quantum states raised the question of the 
classification of continuous mappings between them. Since 
the mathematical side of such a problem belongs to the field 
of topology, the described phases were called topological 
phases. So, two quantum states belonging to different topo-
logical phases (or, mathematically, homotopy classes) of 
the same system cannot be continuously deformed into each 

other. In most practically encountered topological systems, 
homotopy classes form Abelian groups isomorphic to either 
the group ℤ of integers or to the groups ℤn of integers mod-
ulo n. In this case, the correspondence of a certain homotopy 
class to an integer can be obtained by calculating the topo-
logical invariant. The calculation of the latter depends on 
the details of the system: its symmetry, dimension, absence 
or presence of interactions, etc. Condensed matter systems 
hosting different topological phases for which the continu-
ity conditions imply the preservation of the excitation gap 
are called topological insulators or superconductors. In this 
case, the vacuum state is usually belonged to a topologically 
trivial class, usually corresponding to the zero value of the 
topological invariant. The other values of topological invari-
ant are called non-trivial.

The new classes of insulators and superconductors were 
suggested over 20 years ago. The first topological insulator  
is the quantum spin Hall insulator [1], while the initial topo-
logical superconductors (TSCs) are chiral superconductors 
(d-wave [2] or p-wave [3]). It is essential that topological  
insulators and superconductors have the gapped excitation 
spectrum in the homogeneous case and with the periodic 
boundary conditions (such spectrum is called the bulk 
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spectrum). At the same time the topological invariant cal-
culated for the homogeneous case can have nontrivial val-
ues. According to the bulk-boundary correspondence for 
topological phases, inhomogeneous objects such as edges, 
Abrikosov vortex, domain walls, etc., lead not only to the 
quantitative changes of the spectral features, but also to the 
qualitative new solutions as an appearance of subgap states. 
Moreover, it is believed that such excitations are topologi-
cally protected that means that they are stable unless the bulk 
spectrum is gapped or the existing symmetry is preserved. 
When the bulk spectrum becomes gapless the topological 
phase transition occurs with a change of the topological 
invariant. It can be transition to the trivial phase where the 
subgap states are absent or they are not topologically pro-
tected. On the other hand, the topological transition to the 
phase with other topological invariant can exist.

It is known from the quantum Hall effect theory that 
the quantization of the Hall conductivity is determined by 
an integer number which is expressed in the term of the 
first Chern number [4]. In the simple cases of 2D chiral 
p-wave and d-wave superconductors, the Chern number has 
a sense of the winding number of the pseudospin vector (
ℜ(Δk),−ℑ(Δk), �k

)
∕�k and means the number of times this 

vector winds upon running over the Brillouin zone [3]. Such 
pseudospin vector was introduced by Anderson in the mean-
field description of the superconducting state [5].

It should be noted that not all TSCs support so-called 
Majorana bound states. For example, topologically pro-
tected non-Majorana edge states appear in spin-singlet chiral 
d-wave superconductors. Nevertheless, the main interest in 
topological superconductivity (TSCty) is based on Majorana 
modes (MMs).

MMs as topological excitations in low-dimensional TSCs 
were predicted about 20 years ago for two-dimensional (2D) 
[3, 6] and one-dimensional (1D) [7] noninteracting elec-
tronic systems with nontrivial superconducting pairing. The 
key ingredients of the proposed models are the spin-triplet 
chiral px + ipy pairing in the 2D case [3] or spinless pairing 
for the model of the Kitaev chain [7] which cause MMs for-
mation. In general, all proposals of TSCs with MMs assume 
the existence of the effective triplet superconductivity.

MMs are characterized by zero excitation energy and 
spatial nonlocality, i.e. their wave functions should not 
overlap, and they are always created in pairs. To describe 
MMs in the case of a doubly degenerate ground state two 
Majorana operators b′ and b′′ (following Kitaev [7]) can be 
constructed as two linearly independent superpositions of 
Bogoliubov creation and annihilation quasiparticle operators 
corresponding to an excitation with zero energy. The opera-
tors b′ and b′′ are self-conjugate (b�(��))† = b�(��) and satisfy 

the commutation relations {b�(��), b�(��)} = 2 , {b�, b��} = 0 . 
Bearing it in mind, MMs in condensed matter systems are 
also called as Majorana fermions, Majorana excitations, or 
Majorana quasiparticles. Nevertheless, it should be noted 
that such fermions are significantly distinct from Bogoliubov 
quasiparticles in solid state physics and Majorana fermions 
in particle physics. The existence of two MMs with nonover-
lapping wave functions is often interpreted as the realization 
of one Majorana bound state (MBS).

In quasi-1D quantum wires, MMs can be localized at the 
edges or inhomogeneities [8], while in 2D systems they can 
occur on superconducting [3, 9–11] or magnetic vortices 
[12] and corners [13] (see, also references below). In this 
case, the nonlocal structure of Majorana quasiparticles is 
the reason for their stability to local external perturbations. 
Therefore, this feature is often referred to as the topological 
stability of MBS. Moreover, Majorana excitations are exam-
ples of anions, quasi-particles with non-Bose or non-Fermi 
statistics. Therefore, they are proposed for the realization 
of topologically protected quantum computations through 
the exchange of the positions of two Majorana excitations 
in the system which is also called braiding procedure [14]. 
These features give rise to a considerable interest in solid-
state systems with MMs as promising materials for quantum 
computing devices.

At present, TSCty has become an extensive and inten-
sively developed area of condensed matter physics [15–20]. 
For example, superconducting pairing of electrons with the 
same spin projections (triplet pairing) was found to play an 
important role in the realization of TSCty with MMs. Since 
there are quite a few candidates for triplet superconductors 
(Sr2RuO4 , UGe2 , UCoGe, URhGe [21–26]), it turns out to be 
important to search for the conditions for MMs in other com-
pounds and structures. To date, the most studied TSCs are: 

1. hybrid structures of a conventional superconductor and 
a semiconductor with the strong spin–orbit interaction 
[27–30];

2. systems with coexisting spin-singlet superconductivity 
and noncollinear magnetic ordering: either materials 
with the homogeneous coexistence phase [31, 32], or 
heterostructures of superconducting and magnetic layers 
[33, 34];

3. superconductor/chiral magnet hybrids with magnetic 
skyrmion hybrid structures. In this case, one of MMs 
is localized around the magnetic skyrmion (MS) [12, 
35–37]. Actually, the developed technologies for con-
trollable movement of MSs essentially allow braiding 
of Majorana modes and creating stable qubits by using 
MSs;



Journal of Superconductivity and Novel Magnetism 

1 3

4. higher-order topological superconductors (HOTSCs) 
[38–42]. In such systems, bulk and ordinary edge state 
spectra are gapped, but there are lattice-free edge states 
of higher order. These states including MMs are local-
ized at the corners of 2D systems or at the hinges, ver-
tices, and other topological defects of 3D systems. It 
should be noted that the existence of zero modes on the 
line on the surface was earlier shown in the topological 
superfluid 3He-B in magnetic field [231];

5. heterostructures of topological insulator/superconductor 
and doped topological insulators in which superconduc-
tivity occurs, such as CuxBi2Se3 [43–45]. This group 
may also include iron-based superconductors such as 
FeTexSe1−x [46] in which topological surface states are 
formed in the normal nonsuperconducting phase.

All the mentioned systems contain the necessary mechanism 
which transforms conventional spin-singlet superconductiv-
ity to TSCty. It is known that spin degrees of freedom must 
be mixed in a spin-singlet superconductor to support the 
topological order.

Previously, it was suggested that the spin–orbit interac-
tion in a uniform magnetic field should fulfil the role of 
this mechanism and induce MMs. The main experimental 
progress has also been achieved for quantum wires with 
spin–orbit coupling (the first group in the list above). In par-
ticular, the transport properties of InAs or InSb semiconduc-
tor nanowires contacting with a superconducting electrode 
(NbTiN) either partially or fully covered with a thin Al or 
Nb layer were studied [30, 47–51]. A stable zero-bias peak 
(ZBP) in conductance was observed. The appearance of this 
peak was associated with the implementation of a topologi-
cally nontrivial phase and MMs, although experimental and 
theoretical discussions on this issue continue (see, for exam-
ple, Refs. [52–54]). In addition, hybrid structures Al-EuS-
InAs with a thin ferromagnetic EuS layer were synthesized 
and experimentally studied [55]. The proximity-induced fer-
romagnetic correlations due to the EuS layer made it pos-
sible to observe a quantized peak of differential conductance 
in the absence of external magnetic fields. The qualitatively 
same systems are heterostructures with a spin–orbit coupled 
superconductor (such as Pb) and a ferromagnetic layer or 
nanoisland [56]. Scanning tunneling spectroscopy experi-
ments were carried out for such materials and features of 
MMs were found [57].

Note that the studies of superconducting nanowires 
revealed a number of problems inherent of 1D TSCs: the need 
to create complex hybrid structures for experimental research 
[58]; few suitable candidate materials for TSC; the need to 
create T− , X− and Y−junctions for MM braiding [59].

Most of the detailed reviews concerning the topologi-
cal superconductivity and MMs [15–21] are devoted to 

topological systems with spin–orbit coupling (SOC). In 
this review, we will discuss the aspects of 2D TSCty where 
the topological order appears when SOC can be neglected 
(namely, points 2 and 3 from the list above) and 2D HOTSCs 
for which there is another component in addition to the 
spin–orbital one for inducing strongly localized MMs in the 
2D case.

While the main properties of MMs were well described in 
1D systems, there are some features which exist only in 2D 
systems. Firstly, the conventional 2D TSC has a gapless edge 
excitation spectrum in the open cylinder (or strip) geometry 
(open boundaries in one direction and periodic boundary 
conditions in the other) instead of several zero energy solu-
tions in the 1D case. MMs in the 2D case are still charac-
terized by zero energy and spatial nonlocality, with these 
MMs being localized at the opposite edges, but propagating 
along these edges. Secondly, in the 2D case, MMs can be 
localized on the defects and their position can be controlled. 
The Abrikosov vortex created under a magnetic field or mag-
netic inhomogeneities including magnetic skyrmion can play 
the role of such a defect. This allows one to manipulate the 
position of MMs and consequently, can provide braiding. 
Thirdly, the higher system dimension opens the possibility 
for a new class of topological material: HOTSCs, which are 
obviously impossible in the 1D case. While HOTSCs pro-
vide point-localized MMs in the 2D environment, they are 
also attractive systems to provide braiding. The review of 
the most promising features for creating MMs in 2D is the 
main objective of the present paper.

The review consists of three independent parts. Section 2 
is devoted to the TSCty induced by long-range noncollinear 
spin ordering in the absence of the pronounced spin–orbit 
interaction and uniform magnetic field. The general idea and 
its implementation in the 2D case are discussed. Section 3 
deals with the concept of magnetic skyrmions in TSC and 
their advantages for the realization of MMs. The HOTSC 
concept, list of the most promising models, and examples 
of braiding processes on HOTSC are presented in Sect. 4.

2  Topological Superconductivity Due 
to Noncollinear Spin Ordering

2.1  1D Case

As soon as the first theoretical proposals revealed the role 
of the spin-orbit interaction in TSCs, it was shown [60] that 
the 1D Hamiltonian with the Rashba spin-orbit interaction in 
the presence of the magnetic field perpendicular to the spin-
orbit field vector is connected by the unitary transformation 
with the Hamiltonian having the noncollinear magnetic field
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Here, h is the Zeeman energy in the initial Hamiltonian and 
the wave-number Q determining the period of a noncollinear 
structure is associated with the Rashba spin-orbit coupling 
parameter � by the formula

where a is the chain parameter and t is the hopping ampli-
tude of electrons between the nearest sites of the chain. A 
more detailed description of the correspondence between the 
above mentioned systems can be found in [19].

In general, noncollinear magnetic structures include a 
spin helix, spin spiral, cycloidal texture, etc., which will be 
considered later. We will assume only magnetic orderings 
which are commensurate with the lattice period.

From (2) it is seen that the ferromagnetic ordering with 
Q = 0 corresponds to the trivial case with � = 0 , while 
the antiferromagnetic order with Q = �∕a cannot be real-
ized due to the spin-orbit interaction since it corresponds 
to �∕t → ∞ . Indeed, Majorana fermions were proposed 
to exist in an antiferromagnetic chain only in the pres-
ence of the weak Zeeman field and a supercurrent induced 
in a superconducting substrate [61]. For other values of 
the amplitude � different noncollinear magnetic textures 
appear. For example, the 120-degree (120◦ ) magnetic 
structure Q = 2�∕3a is formed for � =

√
3t.

Using the generic idea in [60] different candidates for 
TSCs are suggested, such as

– a chain of magnetic nanoparticles or adatoms with an 
arbitrary direction of magnetic moments which is depos-
ited on a superconducting substrate [33, 62–66] (see 
Fig. 1). It is believed that the spiral magnetic ordering 
can be caused by the substrate;

– a superconducting wire [67–70] in a helical magnetic 
field created by submicron magnets periodically located 
in the vicinity of the wire (see Fig. 2);

– different wires with the proximity-induced supercon-
ductivity in which the noncollinear magnetic ordering is 

(1)�f = h
(
cos(QRf ),− sin(QRf ), 0

)
.

(2)Qa = 2 arccos

��√
1 + �2∕t2

�−1
�
,

caused by internal interactions, e. g. the RKKY interac-
tion of localized electrons or nuclear spins induced by 
conduction electrons of the wire [71–73].

It should be noted that the chain of magnetic atoms in 
such structures can be dense [63] when the orbitals of differ-
ent atoms are strongly overlapped or it can be dilute forming 
subgap Shiba bands due to the hybridization of the Shiba 
bound states of different magnetic impurities [64]. Both 
systems support the formation of Majorana modes (MMs). 
In the case of the spin Shiba chain, the hopping and pairing 
terms have the 1/r power law decay at the distance r ≪ 𝜉 , 
where � is the coherence length, and complex phase fac-
tors of hopping terms. Such features lead to the power-law 
dependence with logarithmic corrections of the spatial decay 
of two MMs on the chain length instead of the exponential 
ones in the case of the dense wire.

These suggestions motivate tunneling spectroscopy 
experiments on Fe chains on bulk superconducting Pb 
[74–76]. In these experiments the zero bias peak (ZBP) in 
the conductance is demonstrated when the microscope tip 
is located near the edges of the chain which is attributed to 
MBS. Nevertheless, ZBP is not quantized to the predicted 
value 2e2∕h for MMs. Moreover, it is supposed that ordering 
in the Fe chains is ferromagnetic and ZBP could be caused 
by the spin-orbit interaction in Pb [74, 77]. This conclusion 
is consistent with the results in Ref. [78] where it is shown 
that the 1D spin helix state becomes unstable in the presence 
of disorder. Moreover, to stabilize the helix structure a suf-
ficiently strong Rashba SOC can be required.

It is shown that the noncollinear 120◦ spin ordering in 
the Fe chain can be realized when the chain is deposited on 
Ir(001) [79] or Re(0001) [80] surfaces. It is supposed that 
the Dzyaloshinskii–Moriya interaction plays an essential 
role in such structures. For the last structure, Re becomes 
superconducting at low temperature. Therefore, experi-
ments on scanning tunneling microscopy were carried out to 
observe MBS [80]. ZBP was not observed and only the local 
maximum of the conductance at the zero bias is shown. This 
result cannot be considered as clear evidence for the MBS 

Fig. 1  Chain of magnetic atoms on a superconducting substrate [62]
Fig. 2  The nanowire (dark grey stripe) is in the proximity of the 
superconductor (grey rectangle) in the vicinity of the nanomagnets 
(blue-red rectangles) [70]
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formation. Nevertheless, these structures are perspective for 
different Majorana devices.

Experimentally, the helical magnetic field is obtained 
for a single-walled carbon nanotube with superconducting 
electrodes coupled to a magnetically textured gate [81] and 
a hybrid semiconductor-superconductor nanowire on the 
top of a magnetic film in the stripe phase [82]. From the 
observed oscillations of conductance under the magnetic 
field, the presence of the synthetic spin-orbit interaction is 
concluded due to the inhomogeneous magnetic field [81]. A 
tiny ZBP is also observed.

It should be noted that the Majorana fermions are real-
ized not only on spin chains but also on a ladder of two or 
more coupled chains [83, 84]. An interesting result is that 
the topologically trivial chains coupled by electron hopping 
may form a topologically nontrivial ladder supporting the 
Majorana end states.

In a certain sense, the formation of the noncollinear spin 
ordering in the 2D and quasi-2D structures could be easier 
achieved than in the 1D case. Therefore, in the next sec-
tion we will discuss the problem of the MBS appearance in 
the 2D structures with the coexisting superconductivity and 
noncollinear spin ordering.

2.2  2D Case

We will start with the general view of the Hamiltonian 
describing in the mean-field approximation the coexistence 
of superconductivity and noncollinear, but coplanar spin 
ordering in different 2D structures and materials:

where � is the chemical potential, tfm is the hopping param-
eter, hf (�) is the exchange field, depending on the spin struc-
ture vector � , such as the vector spin operator defined as

To be specific, we consider the vectors � of the noncol-
linear spin structures with the components Qi ∈ (0,�) in a 
chosen basis. The indices f and m denote the radius-vectors 
�f  and �m of the lattice sites. The parameter Δfm defines the 
amplitude of superconducting pairings between the fermions 
on the same site ( Δfm = Δ�fm , where �fm is the Kronecker 
symbol) or different ( f ≠ m ) lattice sites. The exchange field 
is described by the expression

(3)

H = − �
∑
f�

c
†

f�
cf� +

∑
fm�

tfmc
†

f�
cm�+

+
∑
f

(
hf (�)ei��f c

†

f↑
cf↓ + H.c.

)
+

+
∑
fm

(
Δfmc

†

f↑
c
†

m↓
+ H.c.

)
,

(4)
⟨
�f
⟩
= Mf

(
cos(��f ),− sin(��f ), 0

)
.

where Jfm is the parameter of the exchange interaction 
between the electrons. In the mean-field approximation the 
parameter Jfm can correspond to the s-d exchange interaction 
between the itinerant electrons and localized spins or the 
exchange interaction between the same itinerant electrons. It 
can be the local on-site parameter ( Jfm = J�fm ) or it depends 
on the distance between the lattice sites.

There are different mechanisms causing noncollinear spin 
ordering. Among them are geometric frustrations, for exam-
ple, as can be observed in a triangular lattice; competition 
of the exchange bonds of a spin with the neighboring spins 
from different coordination spheres (as an example [85]); 
influence of superconductivity [86], etc. At the mean-field 
level we will not discuss the specific mechanism.

For simplicity, we limit the consideration to the case 
when the spin ordering is realized in a plane of the spin 
space in the absence of an external magnetic field. Never-
theless, a more complex case in the problem of topological 
superconductivity is often considered [33, 68, 87] with the 
average spin operator

It should be noted that it is convenient to use the defini-
tion (4) for the description of the noncollinear ordering 
instead of using many-sublattice representation. Actually, 
in the momentum representation the space of the electron 
states is limited by the subspace of the states (k, � =↑) and 
(k − Q, � =↓) invariant under the action of Hamiltonian for 
all k [88]. Therefore, the calculations for the whole first 
Brillouin zone (BZ) in the nonmagnetic case must be carried 
out with the periodic boundary conditions [88, 89]. For a 
more complex case (5) the magnetic BZ must be considered. 
The topological classification taking into account magnetic 
groups was made in [90].

In general, mean-field models similar to (3) have been 
widely used to describe the TSCty and MMs in the 2D sys-
tems with noncollinear magnetism. Different suggestions 
can be divided into two main classes. The first class includes 
magnetic superconductors in which both superconducting 
and magnetic orderings are caused by intrinsic interactions, 
for example

– helical magnetic s-wave superconductors with a square 
lattice [31]. It is believed that this is the case of ternary 
rare-earth borides or chalcogenides HoMo6S8 and ErRh4B4 
[91]. These materials have different electron subsystems, 
localized and itinerant, which are independently responsi-
ble for the noncollinear spin order and Cooper instability, 

hf (�) =
1

2

∑
m

JfmMm exp(−i�(�f − �m)),

(5)
⟨
�f
⟩
= Mf

(
sin(�f ) cos(�f ), sin(�f ) sin(�f ), cos(�f )

)
.
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respectively. The coupling between different electrons is 
usually described by the local s-d exchange interaction;

– triangular lattice superconductors with the chiral d-wave 
symmetry of the superconducting order parameter and 
stripe [32] or 120◦ [92, 93] magnetic ordering (see 
Fig. 3). It is supposed that the same electrons can be 
responsible for the coexistence state in this case. The 
chiral symmetry of superconductivity is supported by the 
symmetry of the triangular lattice [94];

– iron-based superconductors with the coexistence of the 
multi-band spin-singlet superconductivity and different 
magnetic textures (such as helix, spin whirl, skyrmion 
in an external magnetic field) [90]. In Ref. [90] two-
band models for iron-based superconductors are studied. 
Recently, the coexistence phase of superconductivity with 
the s± pairing symmetry and helical magnetic ordering 
along the c axis was found in EuRbFe4As4 [95]. Neverthe-
less, the interplay between superconductivity and magnet-
ism in this compound is still under debate [96, 97].

The second class consists of hybrid structures with super-
conducting and magnetic layers. In this case the Hamiltonian 
(3) describes the interface of the superconductor and chiral 
magnet where superconductivity or magnetic ordering are 
induced due to the proximity effect. Among such hetero-
structures are

– 2D superconducting systems in the helical magnetic 
field [98, 99];

– magnet-superconductor hybrid systems [34] includ-
ing the case of a triple-Q magnetic structure [100] 
and helical or cycloidal textures [101] (120◦ magnetic 
ordering from Fig. 3 can also be included along with 
the proximity induced s-wave superconductivity). A 
nanoscale Fe monolayer on the oxygen-reconstructed 
surface of the s-wave superconductor Re(0001) (fur-
ther, referred to as the Fe/Re structure) was experimen-
tally grown [102, 103]. It was shown by spin-polarized 
scanning tunneling microscopy that the 120◦ in-plane 
spin ordering can be realized in the Fe/Re structure 
[102]. Some features of ZBP on the edges of the Fe 
layer was obtained in [103]. The triple-Q magnetic 
structure was experimentally observed in the Mn/Re 
hybrid [104];

– a two-dimensional electron gas formed in a semicon-
ductor quantum well grown on the surface of an s-wave 
superconductor with a nearby array of magnetic tunnel 
junctions [105, 106].

All the mentioned systems support the Majorana end states 
in a certain range of model parameters. It should be noted 
that for some magnetic textures the presence of initial 
spin-orbit coupling is necessary for the formation of the 
topologically nontrivial phase. Nevertheless, the magnetic 
ordering can lead to nontrivial results. For example, the 
Majorana bound states in such systems can exist not only 
on the edges but also on disclination defects and domain 
walls in the magnetic texture [83, 101].

The background reasons of the formation of TSCty in 
superconductors with helical magnetic ordering can be 
considered at the qualitative level. Firstly, there is a certain 
analogy between the noncollinear spin ordering without 
an external field and SOC in the presence of the magnetic 
field. Secondly, the features of spin band filling may cause 
the formation of effective triplet superconductivity due to 
the noncollinear spin ordering.

To illustrate, use is often made of the unitary transfor-
mation to the rotation coordinate frame, by which 

⟨
�f
⟩
 

becomes aligned with the new z axis at each site [33, 34, 
68]:

Fulfilling the periodic boundary conditions and assuming 
that the exchange field parameter hf  is site-independent, the 
transformed Hamiltonian in the momentum space has the 
form

(6)
H → H̃ = UHU†,

U =
∏
f

[
exp

(
−i sgn (h)

𝜋

2
S
y

f

)
exp

(
−i��f S

z

f

)]
.

Fig. 3  The sketch of a superconductor (SC) with the triangular lattice 
and 120◦ spin ordering in the chosen coordinate frame xyz coinciding 
with the one in the spin space (see (4)). The arrows denote the spin 
moments lying in the xy plane of the electrons on the lattice sites. The 
red lines denote hoppings and pairings between the electrons on the 
nearest sites which exist at any site. �1 , �2 are the primitive vectors of 
the triangular lattice



Journal of Superconductivity and Novel Magnetism 

1 3

Here, the function �� is +1 for � =↑ and -1, otherwise for 
� =↓ ; sgn(h) is the signum function sgn(h) = 1 for h > 0 , and 
sgn(h) = −1 for h < 0 ; �̄� denotes the opposite direction of 
the spin moment � . The following notations are introduced:

It is seen that after the transformation the effective triplet 
pairings are induced in the Hamiltonian for nonzero � , as 
it was previously predicted for the antiferromagnetic case 
[107, 108]. The amplitude of the triplet pairings is described 
by the odd function Δ−

k
 of the quasi-momentum. It should be 

noted that the effective triplet pairings appear only for the 
nonlocal pairing interaction.

We can rewrite the Hamiltonian (7) in the Gor ′kov-
Nambu (or Bogoliubov-de Genes, BdG) representation, as 
is done for the spin-orbit coupled systems:

where �i and �i are the Pauli matrices ( �0 and �0 are the 2 × 2 
unit matrices of the same form) in the particle–hole space 
and spin space, respectively, ⊗ is the Kronecker product 
(further, we use the notation 𝜏i ⊗ 𝜎j ≡ 𝜏i𝜎j ), the subscripts 
ℜ and ℑ denote the real and imaginary parts, respectively, 
and a spinor is introduced

From now on, we will consider the nearest neighbor approxi-
mation for hoppings and pairings.

Finally, the Hamiltonian (7) includes the Zeeman field 
along the z axis and effective spin-flip processes (the second 
sum in (7)) with the function t−

k
 which is odd on k. For the 

square lattice, the function t−
k
 is

(7)

H̃ =
∑
k𝜎

(
𝜉+
k
− 𝜂𝜎|h|

)
c
†

k𝜎
ck𝜎 − sgn (h)

∑
k𝜎

t−
k
c
†

k𝜎
ck�̄�

+
∑
k

[
Δ+

k
c
†

k↑
c
†

−k↓
+

sgn(h)Δ−
k

2

(
c
†

k↑
c
†

−k↑
− c

†

k↓
c
†

−k↓

)
+

+ H.c.].

(8)�+
k
(�) = t+

k
(�) − �,

(9)t±
k
(�) =

1

2

(
tk−Q∕2 ± tk+Q∕2

)
,

(10)Δ±
k
(�) =

1

2

(
Δk−Q∕2 ± Δk+Q∕2

)
.

(11)H̃ =
1

2

∑
k

Ψ̃†

k
H̃kΨ̃k,

(12)

H̃k = 𝜏z ⊗
(
𝜉+
k
𝜎0 − sgn(h)t−

k
𝜎x
)
− |h|𝜏0 ⊗ 𝜎z+

+ 𝜏x ⊗
[
ℜ
(
Δ+

k

)
𝜎0 − sgn(h)ℜ

(
Δ−

k

)
𝜎x
]
−

− 𝜏y ⊗
[
ℑ
(
Δ+

k

)
𝜎0 − sgn(h)ℑ

(
Δ−

k

)
𝜎x
]
,

(13)Ψ̃†

k
=
(
c
†

k↑
, c

†

k↓
, c−k↓,−c−k↑

)
.

and the index s denotes the square lattice case. Under the 
additional rotation around the z-axis at the angle �∕4 and in 
the long-wave limit for Qx = Qy = Q the following term is 
obtained in the BdG representation:

where �i are the Pauli matrices in the spin space. It can be 
seen [31] that this term is equivalent to the equal mixing of 
the Rashba spin-orbit interaction and 2D Dresselhaus term 
[109]. Then, we can conclude that the helical spin order-
ing on the 2D lattice corresponds, as in the 1D case, to 
the uniform magnetic field in the presence of the effective 
spin-orbit interaction (15). The difference between 1D and 
2D is that in the 1D case the exact Rashba SOC is derived 
[60] while in the 2D case the corresponding term consists 
of more complex contributions. It is seen that for the ferro-
magnetic ordering ( Q = 0 ) the term (15) is absent.

Another crucial point for TSCty is the formation of 
effective triplet superconductivity. The presence of the 
effective triplet pairings in the Hamiltonian (7) with the 
amplitude Δ−

k
 is not so important; however, the mixing 

of fermions with the opposite spin moments plays a cer-
tain role. Indeed, there is a regime when all the processes 
involve fermions with the same spin. One of the ways to 
demonstrate it in the model (7) is the analysis of band 
splitting due to the magnetic order [31]. Indeed, we can 
diagonalize the part of the Hamiltonian (7) describing the 
helical spin ordering by the Bogoliubov transformation. 
Thus, the quasiparticle energy spectrum of the bands (the 
lower and upper bands are further referred to as d- and 
p-bands, respectively) is determined by

The hybridization of the bands is characterized by anoma-
lous pairings between the states of different bands:

For the square lattice, if |h| > |ts
Q∕2

| there is an indirect gap 
between two bands (the bottom of the p-band lies above the 
top of the d-band). For 𝜇 < |ts

Q∕2
| − |h| the d-band is only 

filled. Therefore, if max
(|Δ+

k
|) ≪ |h| , when the processes 

between the bands can be neglected, the system is described 
by the d-band with the superconducting pairings between 
the states inside the band causing triplet superconductivity

(14)t−
s,k

= 2t1
[
sin(kx) sin(Qx∕2) + sin(ky) sin(Qy∕2)

]
,

(15)H̃so(�) =
√
2t1 sin(Q∕2)

�
kx + ky

��
𝜎x − 𝜎y

�
,

(16)�∓
k
= −� + t+

k
∓ sgn(h)

√
(t−
k
)2 + h(�)2.

(17)
∑
k

(
Akd

†

k
p
†

−k
+ H.c.

)
, Ak = Δ+

k
h∕

√
(t−
k
)2 + h2.
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It is seen that even for the local on-site pairing when 
Δ+

k
= Δ , Δ−

k
= 0 the effective triplet superconductivity can 

appear as a combination of the spin-singlet superconducting 
order parameter and amplitude t−

k
 (it is odd on k) of spin-flip 

processes. For 𝜇 > −|ts
Q∕2

| + |h| the same considerations for 
the p-band can be given and the amplitude of pairings inside 
the p-band is −V+

k
.

If |h| < |ts
Q∕2

| the bands overlap, but for 𝜇 < −|ts
Q∕2

| + |h| 
and 𝜇 > |ts

Q∕2
| − |h| , one-band filling is still realized and the 

effective triplet superconductivity can be induced for 
max

(|Δ+
k
|) ≪ |h| , while for −|ts

Q∕2
| + |h| < 𝜇 < |ts

Q∕2
| − |h| 

the two band structure is essential. The two cases of the band 
structure for |h| > |ts

Q∕2
| and |h| < |ts

Q∕2
| are shown in Fig. 4.

It can be seen from expression (18) for the triplet pairing 
terms that in the case of the ferromagnetic ordering with 
Q = 0 the effective triplet superconductivity induced from 
the spin-singlet channel, which is described by the second 
term in (18), is not realized since t−

k
= 0 . Moreover, it is 

known that superconductivity is strongly destroyed by fer-
romagnetism while for antiferromagnetic and spiral struc-
tures it is only suppressed (see [108, 110–126] and refer-
ences therein).

It is seen from definition (18) that the first term of the 
expansion of Vk in the long-wave limit and for |h| ≫ |t1| is 
linear in � . Firstly, the realization of this px + py superconduct-
ing state due to the spin helix state in the 2D system with the 
initial s-wave superconductivity was demonstrated in [34, 87]. 
In [87] the unitary transformation similar to (6) for the general 
direction of the spin moments (5) is performed and the effec-
tive parameters of hoppings and superconducting pairings are 
calculated. It should be noted that the px + py superconduct-
ing gap is a nodal gap with zeros on the specific lines in the 
Brillouin zone. It is worth noting that in the same approach the 
noncoplanar spin texture (for example, the skyrmion state, see 

(18)

∑
k

(
V−
k

2
d
†

k
d
†

−k
+ H.c

)
,

V∓
k
= sgn(h)Δ−

k
∓ Δ+

k
t−
k
∕
√

(t−
k
)2 + h2.

the details in the next section) induces the fully gapped chiral 
px + ipy superconductivity which is more suitable to search 
for Majorana fermions.

For the triangular lattice, the function t−
k
 is

where the components ki , Qi of the wave-vectors are chosen 
on the basis of the elementary vectors �� of a reciprocal lat-
tice, such as � = k1�� + k2�� . We also use the definition of 
the radius-vector in the real space �f = f1�� + f2�� , where fi 
are the integer numbers, and the “crystallographer” notation 
���� = �ij . Again, Qi ∈ (0,�) . In this case, the indirect gap 
between the bands is formed if

The conditions for one-band filling on the triangular lattice 
are as follows:

The energies at the top of the d-band and at the top and bot-
tom of the p-band (16) for the triangular lattice are deter-
mined by ( t1 < 0)

In general, the bottom of the d-band is located in the vicin-
ity of the �∕2 point in BZ. However, to find the exact value 

(19)
t−
t,k

= 2t1
[
sin(k1) sin(Q1∕2) + sin(k2) sin(Q2∕2)+

+ sin(k1 + k2) sin(Q1∕2 + Q2∕2)
]
,

(20)|h| > g = 2|t1|
(
cos(Q1∕2) + cos(Q2∕2)

)
.

(21)
for |h| < g, 𝜀−

bot
< 𝜇 < 𝜀+

bot
and 𝜀−

top
< 𝜇 < 𝜀+

top
,

for |h| > g, 𝜀−
bot

< 𝜇 < 𝜀−
top

and 𝜀+
bot

< 𝜇 < 𝜀+
top
.

(22)
�−
top

= 2|t1|
(
cos(Q1∕2) + cos(Q2∕2)

)
+

+ 2t1 cos((Q1 + Q2)∕2) − |h|,

(23)
�+
bot

= − 2|t1|
(
cos(Q1∕2) + cos(Q2∕2)

)
+

+ 2t1 cos((Q1 + Q2)∕2) + |h|,

(24)
�+
top

= − 2t1
(
cos(Q1∕2) + cos(Q2∕2)

)
+

+ 2t1 cos((Q1 + Q2)∕2) − sgn(t1)|h|.

Fig. 4  The energy spectrum 
(16) in the main direction of 
the Brillouin zone in the pres-
ence of the noncollinear spin 
ordering with the wave-vector 
� (see (4)) for the square lattice 
at |h| > |ts

Q∕2
| (the left plot) and 

|h| < |ts
Q∕2

| (the right plot)

- 0 - 0
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of �−
bot

 a system of equations should be solved. For the 120◦ 
ordering with Q1 = Q2 = 2�∕3 the bottom of the d-band 
is located exactly at �∕2 for any model parameter values. 
Therefore, the expression for �−

bot
 can be written as

For t1 > 0 the expressions for �−
top

 , �+
bot

 remain the same, 
while the energy (25) corresponds to the top of the p-band, 
otherwise the energy (24) corresponds to the bottom of the 
d-band.

The above analysis relates only to filling of the d- and 
p-bands and the obtained conditions (21) are a rough esti-
mate of the triplet superconductivity regime. A more rigor-
ous result can be obtained by the Schrieffer-Wolff transfor-
mation method. It shows that the triplet superconductivity is 
implemented in the regime of a strong exchange field with 
|h| ≫ |t1|, |Δ| and |�| ≈ |h| . In this case normal and anom-
alous processes involving states from different spin bands 
can be taken into account in the perturbation theory up to 
the terms ∼ t2

1
∕|h| , ∼ |t1Δ∕h| , and ∼ |Δ2∕�| where Δ is the 

amplitude of the superconducting order parameter. In the 1D 
case, such a transformation was demonstrated in [33]. There 
is the straightforward generalization of this transformation 
to the 2D case [34]. It should be noted that the triplet pairing 
term ∼ |t1Δ∕h| can easily be obtained as the first term of the 
expansion of V∓

k
 (18) in the considered limit.

2.3  Topological Invariants and Majorana Fermions 
in 2D Magnetic Superconductors

Different topological invariants to describe a wide range of 
topological superconductors are proposed. In the following, 
we will briefly discuss topological invariants for magnetic 
superconductors.

First of all, it should be noted that if Δ±
k
 are the real func-

tions, then the BdG Hamiltonian (11) can easily be trans-
formed to an off-diagonal view:

Therefore, the topological invariant can be determined in the 
spirit of spin-orbit coupled superconductor nanowires [127] 
as the winding number which is characterized by Det

(
Dk

)
 . 

This invariant can be calculated through the particle–hole 
invariant momenta (PHIMs) which are �̃ = −�̃ +� ( � is a 
reciprocal lattice vector) for the transformed Hamiltonian. 
The details of this approach for TSCs with magnetic textures 
are presented in [90]. Nevertheless, for the 2D lattice, this 
topological invariant is calculated only for the fixed quasi-
momentum k2 in the second direction of the reciprocal space.

(25)�−
bot

= 3t1 + tt,Q + sgn(t1)

√
(3t1 − tt,Q)

2 + h2.

(26)W†H̃kW =

(
O Dk

D
†

k
O

)
, W =

(
𝜏z𝜎0 − 𝜏y𝜎x

)
.

It is supposed that the consideration of the 2D system, with 
one of two quasi-momenta (e.g. k2 ) being fixed, is justified 
when it has the form of a long stripe. Then, in the center of 
the stripe we consider only the edges in the transverse direc-
tion while the effects of the other two edges are negligible. 
Therefore, the periodic boundary conditions can be applied 
in the direction along the stripe. In conclusion, the 2D system 
can be divided into a set of independent 1D systems having the 
appropriate quantum number k2 . For the fixed k2 , it is possible 
to determine the 1D topological invariant called the Majorana 
number [7] and to obtain conditions for the formation of the 
Majorana edge states in the transverse direction [34, 93].

For the 1D case, it is believed that the topological invari-
ant (e.g. Majorana number [7]) is connected with the fermion 
parity of the ground state, for example, for the nontrivial 
topological phase the wave function of the ground state is 
determined by the superposition of the states with odd fer-
mion numbers (further referred to as the odd function). As 
is known, the Bardeen–Cooper–Schrieffer wave function 
is even; therefore, conventional superconductors are trivial 
and there are no pronounced effects due to edges or defects. 
Adjusting the Bardeen–Cooper–Schrieffer superconductor 
in such a way that the ground state wave function becomes 
odd, opening the way for TSCty and Majorana fermions [3].

For the quadratic Hamiltonian, the parity of the ground 
state is determined only by filling of the states in specific 
points of the Brillouin zone. Consider the 2D triangular lat-
tice with the 120◦  spin ordering and chiral d-wave supercon-
ductivity [92, 93] being described by Hamiltonian (3). For 
this case, the indices f and m in Hamiltonian (3) label the sites 
of the triangular lattice and the wave-vector of the 120◦ spin 
structure is � = (2�∕3, 2�∕3) . It is known [94, 128, 129] that 
the symmetry of the triangular lattice supports the formation 
of the chiral superconducting order parameter if the orbital 
number characterizing the symmetry type of superconduc-
tivity is l ≠ 0 . We suppose the formation of an energetically 
favorable spin-singlet chiral d1 + id2 wave superconducting 
state with l = 2.

In the following, for simplicity we will use the initial 
Hamiltonian (3) instead of the transformed Hamiltonian (7). 
With the periodic boundary condition, Hamiltonian (3) in the 
momentum space can be written as

where for the triangular lattice �k = −� + tt,k and
(27)

H =
1

2

∑
k

Ψ†

k
HkΨk,Ψ

†

k
=
(
c
†

k↑
, c

†

k−Q↓
, c−k+Q↑, c−k↓

)
,

Hk =

(
A(k) B(k)

−B∗(−k + Q) −A∗(−k + Q)

)
,

A(k) =

(
�k h

h �k−Q

)
, B(k) =

(
0 Δk

Δ−k+Q 0

)
,
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The bulk energy spectra of Hamiltonians (27) and (7) are 
connected by the replacement �̃ → � −�∕2 and vice versa.

Hamiltonian (27) supports only the particle–hole symmetry 
and belongs to the D class. Therefore, the Hamiltonian has the 
property:

O and I are zero and unit 2 by 2 matrices respectively. A 
direct consequence of the symmetry is that the excita-
tion energy �−k+Q is the same as the energy �k . Therefore, 
for � ≠ −� +� +� the fermion states are filled only by 
pairs and the parity of the ground state is not changed 
due to this filling. To obtain conditions of the parity 
change, the filling of the fermion states corresponding to 
PHIMs in the presence of the noncollinear spin ordering 
� = −� +� +� should be analyzed. It should be noted 
that the same analysis for the topological systems with the 
spin-orbit interaction ( � = (0, 0) ) was carried out [130]. 
For the triangular lattice with the 120◦ ordering there are 
four PHIMs �1 = (−2�∕3,−2�∕3) , �2 = (�∕3,�∕3) , 
�3 = (−2�∕3,�∕3) , �4 = (�∕3,−2�∕3).

Let us analyze Hamiltonian (27) with PHIMs. For the 
point �1 the superconducting order parameter Δk is zero, 
then at this point the Hamiltonian has the form:

The corresponding energies of Bogoliubov quasi-particles 
are

The same procedure for the point �2 can be done:

In this case, the Bogoliubov quasi-particle energies are

The quasi-particles for the remaining PHIMs �3 and �4 
have the same energy �∓

2
 . If the odd number of the obtained 

quasi-particle states is filled ( 𝜀 < 0 ), then the odd-parity of 

(28)
Δt,k = 2Δ21

[
cos(k1) + ei2�∕3 cos(k1 + k2)+

+ ei4�∕3 cos(k2)
]
.

(29)ΛHkΛ = −H∗
−k+Q

, Λ =

(
O I

I O

)
.

(30)
HK1

= (−� − 3t1)
(
c
†

K1↑
cK1↑

+ c
†

−K1↓
c−K1↓

)
+

+ h
(
c
†

K1↑
c−K1↓

+ c
†

−K1↓
cK1↑

)
.

(31)�∓
1
= −3t1 − � ∓ |h|.

(32)

HK2
= (−� + t1)

�
c
†

K2↑
cK2↑

+ c
†

−K2↓
c−K2↓

�
+

+ h
�
c
†

K2↑
c−K2↓

+ c
†

−K2↓
cK2↑

�
+

+
�
Δ21(1 −

√
3)c†

K2↑
c
†

−K2↓
+ Δ∗

21
(1 +

√
3)c−K2↓

c−K2↑

�
.

(33)�∓
2
=

√
(t1 − �)2 + 4|Δ21|2 ∓ |h|.

the ground state function of the whole system is realized. It 
can easily be shown that the conditions for the odd-parity 
ground state are

or depending on the considered interval of the chemical 
potential

To change the parity of the ground state the gap of the 
bulk spectrum must become zero with the odd number 
of points in BZ. For example, the gap is closed at PHIM 
�1 for |h| = | − 3t1 − �| and at PHIMs �1 , �2 , �3 for 
�h� = √

(t1 − �)2 + 4�Δ21�2 , leading to the change in the par-
ity. When the spectrum becomes gapless at the even number 
of points in BZ the parity does not change.

In Fig. 5 the regions corresponding to conditions (34) 
and (35) with the odd parity of the ground state are shown 
by the solid lines on the diagram in the variables of the 
chemical potential � and exchange field (to be specific, we 
choose t1 < 0 and Δ21 = 0.2|t1| ). By the dashed lines we also  
denote qualitative conditions (21) for the one-band fill-
ing when the pairings between the d- and p-bands can be 
neglected (for Δ21 ≪ |h| ) and the pairings inside one band 
become suitable. It is supposed that the initial spin-singlet 
superconducting pairing is formed on the whole diagram. 
This case can be achieved in magnet–superconductor 
hybrids, when superconductivity is proximity-induced. On  
the other hand, for magnetic superconductors the supercon-
ducting region should be determined from self-consistent  
equations. To consider the effective one-band filling in 

(34)| − 3t1 − 𝜇| < |h| <
√

(t1 − 𝜇)2 + 4|Δ21|2,

(35)
√

(t1 − 𝜇)2 + 4|Δ21|2 < |h| < | − 3t1 − 𝜇|.

-6 -3 -1 0 1 3 6
0

1

2

3

lower band filling
odd parity

upper band filling
odd parity

lower band filling
even parity

two-band structure
even parity

gap

completely
filled bands

empty
bands

Fig. 5  Conditions for the one-band filling and even or odd fermion 
parity of the ground state with the coexisting superconductivity and 
120◦ spin ordering on the triangular lattice. The variables are chemi-
cal potential ( � ) and exchange field (h), t1 is the hopping parameter 
between the nearest sites
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certain regions of the diagram the limit Δ21 ≪ |h| should 
be considered. Therefore, in the region with |h| ≪ |t1| the 
superconducting gap vanishes and this regime is of no 
practical interest.

It is seen from Fig. 5 that the odd-parity conditions 
are satisfied only inside the regions with one-band filling 
when effective triplet pairings can be formed. Therefore, 
inequalities (21) are the necessary, but not sufficient, con-
ditions for the topologically nontrivial phases. Otherwise, 
as it will be discussed later, the conditions (5) are suffi-
cient to describe the topologically nontrivial phases with 
the Majorana fermions.

As is known for the antiferromagnetic ordering Qi = � , 
there is always a gap between the bands (16) for h ≠ 0 . 
Moreover, the regions with the odd fermion parity and 
topologically nontrivial phases collapse to zero for the 
antiferromagnetic ordering. Therefore, this magnetic struc-
ture does not support MMs.

It is known that the effective time-reversal symmetry 
can be present in the exact 1D theoretical models similar 
to (11) even in the presence of the magnetic field (see for 
example [83, 90, 99, 127, 131, 132]). Such an additional 
symmetry leads to the BDI class topological symmetry 
instead of the D class. For the BDI class symmetry, the 
time-reversal, particle–hole and chiral symmetries are pre-
sent (or their analogs), while there is only particle–hole 
symmetry for the D class. Usually, the differences in the 
topological features between two classes appear only when 
the long-range or even next-nearest electron hoppings and 
pairings are taken into account. Nevertheless, for the 2D 
system (11) the D class symmetry is believed to be imple-
mented [93, 100]. In the following, we will also focus on 
the chiral d-wave superconductivity breaking the time-
reversal symmetry even in the absence of the magnetic 
field.

For the D class symmetry, in 2D the topological invari-
ant is the Chern number given by

and F12 = �1A2(�) − �2A1(�) is the Berry curvature, 
A�(�) = −i⟨n(�)����n(�)⟩ is the �-component of the 
Berry vector potential (or Berry connection), �1 ≡ �∕�k1 , 
�2 ≡ �∕�k2 , �n(�)⟩ is the Bloch state (for simplicity, we 
assume the one-band structure). The examples of the cal-
culation of the topological phase diagrams of magnetic 
superconductors through the Chern number can be found 
in [100, 133].

The generalization of the Chern number via the Green 
functions is also known  [134, 135]:

(36)C = −
1

2�

�

∬
−�

dk1dk2F12(�)

Here, the repeated indices � , � , � = 1, 2, 3 imply summa-
tion, ���� is the Levi-Civita symbol, �3 ≡ �∕�� , and Ĝ(i�, k) 
is the matrix Green function whose poles determine the 
spectrum of elementary fermion excitations. The integral 
on � can be taken analytically since the excitation spectrum 
is gapped. It should be noted that the topological invariant 
Ñ3 can also be used in interacting systems. The details of 
the calculation of Ñ3 in the chiral d1 + id2 superconductor 
with the 120◦ spin order in the presence of strong electron 
correlations on the triangular lattice are presented in [136].

The topological phase diagram calculated through the 
topological invariant Ñ3 is presented in Fig. 6 in the same 
variables and limits as in Fig. 5. First of all, we should note 
that even in the absence of the long-range magnetic order 
( h = 0 ) there is a topologically nontrivial phase with Ñ3 = 4 
corresponding to the case of the chiral d1 + id2 supercon-
ductor [2, 94, 129]. It is known that topologically protected 
edge states exist in such a superconductor. Nevertheless, the 
Majorana end states are prohibited at h = 0 due to the spin-
singlet character of superconducting pairings.

It is seen from Fig. 6 that the formation of the long-range 
spin ordering with a sufficiently strong exchange field leads 
to topological phase transitions changing the parity of Ñ3 . It 
is believed that the odd values of the topological invariant 
Ñ3 indicate the nonabelian topological order supporting the 
Majorana fermions. This statement for noncentrosymmet-
ric superconductors with the broken time-reversal symmetry 
was derived in [137]. In general, the same arguments are 
satisfied for magnetic superconductors with the broken time-
reversal symmetry bearing in mind that a new set of PHIMs 
is � = −� +� +� . Therefore, the increasing exchange 
field modifies the initial end states of the chiral supercon-
ductor to the Majorana end states.

As can be seen from Fig. 6 the topological phases with 
odd Ñ3 exactly coincide with the conditions of odd parity 
of the ground state from Fig. 5. At each topological phase 
transition the bulk spectrum of Hk (27) becomes gapless. 
It is seen that there is the transition without changing the 
fermion parity (from the phase with Ñ3 = 3 to the phase 
with Ñ3 = 1 ). It is necessary to taking into account that 
the superconducting pairings between the electrons on the 
next nearest sites lead to the appearance of new topological 
phase transitions [93]. Nevertheless, these transitions do not 
change the fermion parity and the conditions for the MBS 
existence remain the same.

(37)

Ñ3 =
𝜀𝜇𝜈𝜆

24𝜋2
×

×

∞

∫
−∞

d𝜔

𝜋

∬
−𝜋

dk1dk2Tr
(
�G𝜕𝜇 �G

−1�G𝜕𝜈 �G
−1�G𝜕𝜆�G

−1
)
.
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To reveal the appearance of MBS in such phases it is con-
venient to consider a long strip instead of a 2D lattice when the 
periodic boundary conditions along the strip can be applied. In 
this case, the quantum number, for example k2 , is well defined 
and the system can be studied independently at different k2.

The BdG Hamiltonian Hstrip

k2
 at the fix k2 having the size 

4N1 × 4N1 ( N1 is the strip size in the transverse direction) can 
be determined as

where ĉ =
[
ĉ↑ĉ↓

]T  and ĉ𝜎 is the vector consisting of the 
Fermi operators cl� with the index l of a site of the strip at 
the fixed k2 . Preforming the unitary (or Bogoliubov) trans-
formation V the following Hamiltonian is obtained

and �̂� is the set of the 2N1 Bogoliubov quasiparticle operators, 
ÊD(k2) is the diagonal matrix determining positive and nega-
tive energies of 2N1 . Due to the particle–hole symmetry the 
positive and negative energies constitute pairs with the same 
absolute values. We suppose that the first 2N1 elements of 
ÊD(k2) are positive in the ascending order while the last ele-
ments are negative. Therefore, the term of the Hamiltonian 
H

strip

k2
 corresponding to the minimum excitation energy is 

�1�
†

1
�1 . To find MBS, it is necessary that �1 = 0.

(38)H
strip

k2
=
[
ĉ†ĉT

]
H

strip

k2

[
ĉ

ĉ∗

]
,

(39)H
strip

k2
=
[
�̂�†�̂�T

]
ÊD(k2)

[
�̂�

�̂�∗

]

The connection between the Bogoliubov and Fermi oper-
ators is written as

To define MMs, the Majorana representation [7] with the 
new Majorana operators is used

Then

and ÎN1
 , ÔN1

 are the unit and zero matrices of the size N1 × N1

.
Topological arguments significantly simplify searching 

for the solution of (39) corresponding to MMs. It is expected 
that the particle–hole symmetry protected MBS are formed 
for k2 = K2 , where K2 is the corresponding component of 
PHIMs (for 120◦ ordering K2 = −2�∕3, �∕3 ). In [93] we 
show that MBSs exist at K2 = −2�∕3 and the conditions of 
their realization are well defined by the topological phases 
with the odd topological invariant Ñ3 and, consequently, odd 
fermion parity. Moreover, the calculation of the Majorana 
number [7] at K2 = −2�∕3 leads to the same topologically 
nontrivial phases as to those having the odd invariant Ñ3 in 
Fig. 6.

The spatial structure of MMs can be found as follows. 
Using the Bogoliubov operators � the Majorana quasiparti-
cle operators are defined as

From the relation connecting the Majorana quasiparticle 
operators b′

j
 and b′′

j
 with the Majorana operators �Al� and �Bl� 

(it can be derived using (43)) the coefficients depending on 
the excitation energy and site l are determined. In general, 
the representation (44) can be used for each excitation 
energy, and not only for zero energy. Nevertheless, only the 
zero mode solution should be analyzed. This solution is 
Majorana if b′

1
 and b′′

1
 are spatially separated, for example, 

on different edges. Thus, b′
1
 and b′′

1
 are often considered as 

two Majorana modes. The typical MBS in the TSC with the 
triangular lattice and 120◦ spin ordering is shown in Fig. 7.

(40)
[
�̂�

�̂�∗

]
= V†

[
ĉ

ĉ∗

]
.

(41)�Al� = cl� + c
†

l�
,

(42)�Bl� = i
(
c
†

l�
− cl�

)
.

(43)
�
�̂�

�̂�∗

�
= V†S

�
�̂�A
�̂�B

�
, S =

1

2

⎡
⎢⎢⎢⎢⎣

ÎN1
ÔN1

iÎN1
ÔN1

ÔN1
ÎN1

ÔN1
iÎN1

ÎN1
ÔN1

− iÎN1
ÔN1

ÔN1
ÎN1

ÔN1
− iÎN1

⎤
⎥⎥⎥⎥⎦
,

(44)
[
b̂�

b̂��

]
=

[
�̂� + �̂�∗

i(�̂�∗ − �̂�)

]
.

Fig. 6  Topological phase diagram in the variables of chemical poten-
tial ( � ) and exchange field (h) (see also Fig.  5). Different colors 
denote different topological phases which are determined by the 
topological invariant Ñ3 (see (37)). The values of Ñ3 are marked. The 
topologically trivial phases are the phases with Ñ3 = 0 , the nontriv-
ial phases have Ñ3 ≠ 0 . The Majorana fermions are realized in the 
phases with odd Ñ3
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The same procedure can be also used to find Majorana 
fermions in the 2D lattice. Then, the BdG Hamiltonian (38) 
has the size 4N × 4N  and N = N1N2 . There are few prob-
lems for limited 2D systems. Firstly, the Majorana solution 
becomes localized on the whole 1D edge of the 2D lattice 
(this is not the case of higher-order topological supercon-
ductors, see Sec. 4). Thus, there is no spatial resolution of 
different MMs. Secondly, if a superconductor is nodal (like 
extended s-wave or d-wave), i.e. the gap is closed in the bulk 
spectrum at the nodal lines of BZ, then such trivial bulk 
solutions can have near zero energy and admix to the Majo-
rana solution in the 2D case. The second problem is solved 
in chiral superconductors having predominantly a gapped 
spectrum. MBS in such superconductors are separated by 
an energy gap from other edge states having finite energy.  
It should be noted that this gap may be much smaller than 
the bulk gap. The first problem could be solved considering 
the Abrikosov vorticies and different defects which can be 
controlled. In the topologically nontrivial phases the Majo-
rana modes are formed on such defects and there appears a 
possibility of their braiding. Among the mentioned defects 
one of the intensively studied objects is a skyrmion. Its non-
coplanar spin structure causes TSCty similarly to the long-
range spin ordering. However, unlike the uniform long-range 
order, the localization of Majorana modes depends on the 
structure of the skyrmion. The details are presented in the 
next section.

To conclude this section, we show that the effective triplet 
superconductivity is possible and the odd fermion parity of 
the ground state is realized in the coexistence phase of the 
spin-singlet superconductivity and noncollinear spin order-
ing. These features cause the formation of topologically non-
trivial phases supporting the Majorana modes.

3  Topological Superconductivity in 2D 
Magnetic Skyrmions

3.1  The Main Properties of Skyrmions

With the start of the pioneering research [138, 139] 
topological objects began to attract considerable atten-
tion in the physics of magnetism. F. Bloch was the first 
to make an analytical description of the domain wall in 
ferromagnets [138], while Landau and Lifshitz developed 
a more complete phenomenological theory [139]. Cur-
rently, topological defects in magnetism include both sin-
gular defects (domain walls, anisotropic 2D vortices and 
Bloch points) and continuous ones, including magnetic 
skyrmions [140–143]. For the first time, skyrmions were 
studied by T. Skyrma in nuclear physics as topologically 
nontrivial configurations of the baryon field [140, 141] 
and similar structures were predicted in magnetic systems 
by A.N. Bogdanov and D.A. Yablonsky [142]. Later MSs 
were observed in MnSi [143] as well as in other materials 
[144–147]. In the last decade, the experimental progress 
[148, 149] has made it possible to create and study mag-
netic skyrmions in nanowires and thin magnetic films. In 
this work we will study two-dimensional MSs realized in 
thin films.

Two-dimensional magnetic skyrmions are vortex-like 
distributions of magnetic moments in the ℝ2 plane (see, 
for examples Fig. 8). In the center of the vortex the direc-
tion of the magnetic moment is opposite to the direction 
at the skyrmion boundaries. For the slowly (compared to 
the atomic scale) varying magnetic profile we will use 
the notation ⟨�f ⟩ → �(�) where the magnetization field 
� ∈ �

2 is the continuous functions of � ∈ ℝ
2 . In practice, 

the normalization|�(�)| = 1 is usually used.
Practical interest in MSs is mainly associated with their 

topological stability: despite the nano- or micrometer 
vortex scale, MSs are stable to defects and temperature 
fluctuations. At present, this stability underlies numerous 
schemes for using MSs in logic [151, 152] and memory 
[153, 154] devices. In particular, methods for recording 
and reading magnetic information by creating and moving 
MSs by spin-polarized current [153, 154] are proposed. 
This idea is based on the assumption that MSs do not 
deform into other magnetic structures upon creating and 
reading information.

Mathematically, the possibility of continuous defor-
mation of various magnetic structures is related to the 
homotopy theory [155, 156]. Two magnetic configura-
tions are called topologically (homotopically) equivalent 
if there is a possibility of their continuous deformation 
into each other without overcoming the infinite energy bar-
rier. On the contrary, two configurations are topologically 

0 100 200 300 400
0

0.1

0.2

0.3

Fig. 7  Typical Majorana modes determined by (44) in the quasi-1D 
case (the strip at k2 = −2�∕3 ) with the coexisting superconductivity 
and noncollinear spin ordering
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nonequivalent if such a continuous deformation is impos-
sible. Then, the magnetic distribution exhibits “topological 
stability” if it is topologically nontrivial, i.e. if it cannot 
be deformed into a spatially homogeneous distribution 
belonging to the trivial homotopy class.

The given homotopy arguments explain the stability of 
magnetic skyrmions to perturbations. However, the idealized 
character of these arguments should be noted, as they do not 
take into account the discreteness of the magnetic structure, 
boundary effects, and quantum fluctuations. These factors 
lead to the finite energy barrier necessary to deform the 
profile �(�) to another homotopy class against the infinite 
energy barrier in continuous approximation. The qualitative 
estimates show that this finite barrier can be comparable to 
the room temperature [157].

In this paper, we consider isotropic magnetic structures 
with |�(�)| = 1 on a two-dimensional plane. This means 
that the configuration space of the magnetic order parameter 
�(�) can be mapped on the sphere �2 . The two-dimensional 
plane ℝ2 is also compactified to �2 . Thus, various magnetic 
configurations are characterized by the mapping �2 → �

2 , 
and the homotopy group of these configurations is the group 
�2
(
𝕊
2
)
∼ ℤ . The latter is isomorphic to the group of inte-

gers ℤ.
To establish an exact correspondence between the fields 

�(�) and elements of the homotopy group �2
(
�
2
)
 , we use 

the concept of the degree of the mapping Q. The latter is also 
called “winding number”, “topological index” or “topologi-
cal charge”. For the considered mapping �2 → �

2 it has the 
form [155, 156]:

This characteristic takes the integer values Q ∈ ℤ and its 
geometric meaning is the number of times the vector � 
winds upon the mapping �2 → �

2.
The examples of magnetic structures with the topologi-

cal indices Q = 0 and Q = −1 , as well as their stereographic 

(45)Q =
1

4� ∫
∞

−∞ ∫
∞

−∞

(
� ⋅

[
��

�x
×
��

�y

])
dx dy.

projections, are shown in Fig. 9. In Fig. 9(a) the uniform 
distribution of magnetic moments is demonstrated. On the 
sphere �2 this field can be collected into a point. Thus, the 
ferromagnetic ordering belongs to the trivial class with 
Q = 0 . Fig. 9(b) and (c) shows similar mappings for the 
skyrmions already discussed in Fig. 8. These distributions 
cannot be continuously deformed into a homogeneous struc-
ture, which corresponds to the well-known mathematical 
statement about “the impossibility of combing a hedgehog 
without creating a cowlick”. Thus, the distributions �(�) 
belong to the nontrivial homotopy class and have the topo-
logical charge Q = −1.

The energy functionals which support the local or global 
minima corresponding to MSs should include competing 
interactions. These interactions should, on the one hand, 
tend to collinear magnetic ordering and, on the other hand, 
break the chiral symmetry [158]. For two-dimensional 
magnetic structures, the widely used functionals are of the 
following form:

where Eex , Ean , EZe is the exchange interaction, energy of 
the single-ion anisotropy and Zeeman splitting, respectively. 
These interactions take the form:

where dS = dx ∧ dy . Their role in the energy functional is to 
create a tendency towards collinear ordering along the z axis 
perpendicular to the plane.

(46)E = Eex + Ean + EZe + EDM ;

(47)
Eex = J∫

ℝ2

|∇m|2dS; Ean = K∫
ℝ2

(1 − m2
z
)dS;

EZe = B∫
ℝ2

(1 − mz)dS,

Fig. 8  Adopted from work [150]. Examples of 2D magnetic skyr-
mions of the Néel (left) and Bloch (right) types. The ordering of the 
magnetic moments outside the boundaries of the structures coincides 
with the direction of the moments at the boundary. The direction of 
magnetization in the center of the structure is opposite to the direc-
tion at the boundary

Fig. 9  Examples of various magnetic structures �(�) and demonstra-
tion of their connection with the elements of the homotopy group 
�2
(
�
2
)
 by means of stereographic projection. (a) Homogeneous mag-

netic distribution with Q = 0 . (b) and (c) Skyrmions of the Néel and 
Bloch type with Q = −1
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The Dzyaloshinskii–Moriya interaction EDM is widely 
used as the chiral interaction in the theory of magnetic skyr-
mions. If the Néel and Bloch skyrmions are realized as a 
(meta-) stable configuration, then the functional EDM has 
the form:

where the function � is written as 

1. for the Néel case 

2. for the Bloch case 

It should be noted that EDM is not the only one breaking the 
chiral symmetry functional. In particular, this symmetry can 
be broken spontaneously [159, 160].

3.2  Analytical Ansatz for the Magnetic Profiles 
of Skyrmions

For the above mentioned, skyrmion-type equilibrium 
magnetic configurations can be obtained by solving the 
Euler–Lagrange equations [161, 162]. However, no analyti-
cal solution of these nonlinear equations in the 2D case is yet 
available. Instead, analytical ansatz [144, 161, 162] are used 
for the theoretical description of the MS properties such as 
topological superconductivity. For the magnetic skyrmions 
with Q = ±1 a few ansatz have been proposed. The general 
form of the ansatz is

Here, Φ = n� + �  , where � ∈ ( 0, 2� ] , n ∈ ℤ , and the 
parameters are � = 0 for the case of the Néel skyrmion, 
and � = �∕2 for the Bloch skyrmion. The function Θ(r) 
describes the radial behavior of the skyrmion profile pre-
sented in Fig. 8 and has the form [144, 161, 162]

Here, the parameter R describes the distance from the center 
of the MS to its boundary. It can be related to the radius 

EDM = D∫
ℝ2

�dS,

(48)� = mz

�mx

�x
− mx

�mx

�x
+ mz

�my

�y
− my

�mz

�y
,

(49)� = my

�mz

�x
− mz

�my

�x
− mx

�mz

�y
+ mz

�mx

�y
.

(50)mx = sinΘ cosΦ, my = sinΘ sinΦ, mz = cosΘ.

(51)

Θ(r, R, w) = ΘDW (−r − R, w) + ΘDW (r − R, w) =

= 2 arctan
(
e(−r−R)∕w

)
+ 2 arctan

(
e(r−R)∕w

)
=

= arcsin
(
tanh

(
r − R

w

))
+ arcsin

(
tanh

(
r + R

w

))
+

+ � = 2 arctan

(
cosh (R∕w)

sinh (r∕w)

)
.

of the skyrmion boundary R , for which mz(R) = 0 using 
formula [162]

Such a definition is convenient in view of its unambigu-
ity. The parametrization (50), (51) was used in [162] to 
build an analytical theory of the skyrmion radius. Also, 
the profile described by such a parameterization was com-
pared to the profiles obtained in physical and numerical 
experiments, and it demonstrated excellent agreement. In 
addition, the privilege of the substitution of Θ(r) in the 
form (51) is to use the functions ΘDW (r) which is the exact 
solution of the Euler–Lagrange equations for domain 
walls in 1D chiral magnets. In this case, the parameter w 
describes the domain wall width. If the skyrmion domain 
walls do not overlap and the magnetic moments flip p times 
in radial movement, expression (51) for Θ(r) is generalized 
by replacing

In addition to the accurate and quite complicated skyrmion 
parameterization (50), (51) a less accurate and more simple 
analytical ansatz is also used. The first type of the latter is 
the so-called linear parameterization

Moreover, the so-called exponential parameterization of 
simple skyrmions, defined by the expression

is used. Note that the parameters R characterizing the skyr-
mion radius lead to different skyrmion sizes, with other 
things being equal.

The above parameterizations correspond to the direc-
tion of the field mz = ∓1 in the center (far from the bound-
ary) of the skyrmion, and to the topological index of the 
structure Q = −1 . In general, the relationship between the 
value of the topological index (45) and the parametrization 
functions (50), (51) has the form

The expressions for the energy functionals for the above 
parameterization take the form

(52)R = w arcsin

(
exp (2R∕w) + 1

2 exp (2R∕w)

)
.

Θ(r,R,w) → Θ(r,w,R1,… ,Rp) =

p∑
i=1

Θ(r,Ri,w).

(53)Θ → Θl =

⎧
⎪⎨⎪⎩

𝜋 , r < r0 ;�
r − r0

�
∕R, r0 < r < r0 + pR;

2𝜋 , r > r0 + pR .

(54)Θ → Θe = � exp
(
−
r

R

)

(55)Q =

[
Φ(�)

2�

]�=2�
�=0

[
− cosΘ(r)

2

]r→∞

r=0

.
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It is important to note that the described parameterizations 
refer only to the cases of the so-called simple skyrmions 
with |Q| = 1 . Currently, a zoo of skyrmion-type structures 
(partially described in Sec. 3.6) is open. In Sec. 3.5 we con-
sider antiferromagnetic skyrmions which can be parameter-
ized by (50) and (51) assuming that the neighboring mag-
netic moments have opposite directions when moving in the 
radial direction from the skyrmion center.

3.3  Majorana Modes in Single Skyrmions

The topological stability, locality, and controllability cre-
ate attractive prospects for using MSs as carriers of MBSs. 
Therefore, contrary to 1D superconducting nanowires, the 
braiding of the Majorana modes localized on MSs does not 
require the creation of complex T− , X− and Y− junctions. 
Recently, 2D superconductor/chiral magnet hybrid structures 
have been proposed as one of the systems supporting MMs 
[34, 148]. In these systems, the rotational symmetry in the 
real space is broken due to the s − d(f ) - exchange interac-
tion between itinerant electrons and magnetic vortex. Thus, 
the localization area of MMs is related to one of MS. This 
makes it potentially possible to realize the MM braiding by 
moving MSs using the mechanisms described above. The 
Hamiltonian of the hybrid structure has the form

Here, Ψ̂ =
(
c↑, c↓, c

+
↓
, −c+

↑

)
 is the field operator in the 

Nambu representation; � and � are the vectors of the Pauli 
matrices acting in the spin and electron-hole spaces, respec-
tively; � and m are the chemical potential and the effective 
mass of the itinerant electrons, respectively; J is the param-
eter of the s − d(f ) coupling between the itinerant electrons 
and the localized magnetic moments of an axially symmetric 
skyrmion. The spatial dependence of the skyrmion profile 
�(�) is described by parametrization (50). The function Δ(�) 
describes the spatial dependence of the superconducting 
order parameter which is proximity induced by the bulk 
superconductor. With regard to further consideration of 

Eex = 2�A∫
∞

0

[(
dΘ

dr

)2

+
sin2 Θ

r2

]
rdr,

EDM = 2�D∫
∞

0

[
dΘ

dr
+

sin 2Θ

2r

]
rdr,

Ean = 2�K∫
∞

0

sin2 Θrdr,

EZe = 2�B∫
∞

0

(1 − cosΘ)rdr.

(56)
H =∫S

Ψ̂+(�)H Ψ̂(�) dS,

H =

(
−
�2

2m
− 𝜇

)
𝜏z + J 𝜎 ⋅�(r) +

(
Δ(�) 𝜏+ + h.c.

)
.

type-II superconductors with vortices, we define this func-
tion in the general form

In the last expression, Δ0 is the superconducting order 
parameter, b and Rv characterizes the vorticity and radius of 
the SC vortex. In this section, it will be assumed that b = 0 , 
Rv → ∞ . The effects of the finite b and Rv will be discussed 
in Sect. 3.4.

The energies of the single-particle excitations � and  
single-particle wave functions Ψ(�) are determined from the 
solution of the eigenproblem for the BdG Hamiltonian

In Refs. [12, 35] it is shown that the Hamiltonian H com-
mutes with the modified orbital momentum operator

and therefore, the solution of the eigenproblem can be fac-
tored in the polar coordinate system in the form

where Ψl
m
(r) = [ul

↑
(r), ul

↓
(r), −vl

↓
(r), vl

↑
(r)] is the four- 

component eigenfunctions of the operator

The coefficients ul
�
(r) and vl

�
(r) determine the radial compo-

nents of the particle-like and hole-like wave functions. The 
periodicity of the latter as related to the variable � allows 
us to make a conclusion concerning certain properties of 
MSs hosting MMs. Thus, if Ψm(r, �) = Ψm(r, � + 2�) , then 
the eigenvalues of Jz lie in the integers, l − n∕2 + b∕2 ∈ ℤ . 
On the other hand, the solutions of the BdG equations 
Ψl

m
(r,�) corresponding to MM should be invariant under 

the par ticle–hole symmetry CΨl
m
(r,�) = Ψl

m
(r,�) , 

where C = �y�yK  , and K is the complex conjugation. 
Since { Jz , C } = 0 and Jz Ψl

m
(r,�) = lΨl

m
(r,�) , then 

Jz CΨl
m
(r,�) = −l CΨl

m
(r,�) . Thus, only the solutions 

Ψ0
m
(r,�) corresponding to l = 0 can satisfy the particle–hole 

symmetry, and therefore, they correspond to MBSs. Tak-
ing into account the fact that l − n∕2 + b∕2 ∈ ℤ , it follows 
that the vorticity parameters of the skyrmion and supercon-
ducting vortex must satisfy certain conditions for the MBS 
realization. Therefore, in the homogeneous phase ( b = 0 ) n 
must be even. However, if the bound state of the skyrmion 
and superconducting vortex is realized, then the sum n + b 
must be even.

(57)Δ(�) = Δ0 e
ib�

(
1 − e−r∕Rv

)
.

(58)HΨm(�) = �m Ψm(�).

(59)Jz = −i
�

��
+

n

2
�z −

b

2
�z,

(60)Ψm(�) → Ψ̃l
m
(r,𝜑) = e

𝜑
(
l−

n

2
𝜎z+

b

2
𝜏z

)
Ψl

m
(r),

(61)
Hl = −

1

2m

[
�2
r
+

1

r
�r +

1

r2

(
l −

n

2
�z +

b

2
�z

)2
]
�z−

− ��z + J�z cosΘ(r) + J�x sinΘ(r) + Δ(r)�x.
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Thus, in a homogeneous superconductor, MMs can 
occur only for skyrmions with even n. Other conclusions 
regarding the properties of MMs and MSs can be drawn by 
considering the properties of the solution Ψ0

m
(r) for l = 0 . 

This problem was solved in Ref. [35] using the linear 
parameterization (53) when Θ(r) → Θ(r) + � . Performing 
a unitary rotation in the spin space described by the opera-
tor U(r) = exp(i�y�(r)∕2) , the problem is reduced to the 1D 
one, becoming similar to the problem of the MMs imple-
mentation in superconducting nanowires with the spin-
orbit interaction. This analogy makes it possible to obtain 
the conditions of MMs and analytically find their wave 
functions. Thus, for n = 2 , MMs can appear only with suf-
ficiently strong exchange interactions between the itinerant 
electrons and MS J > �̃�2 + Δ2

0
 , where �̃� = 𝜇 − Θ�2∕8m . In 

this case, a pair of MMs is realized in the system. One 
MM (corresponding to the operator b′ ) is localized in the 
vicinity of the skyrmion center, while the second MM ( b′′ ) 
is localized in the vicinity of the skyrmion boundary at 
r ≈ r0 + pR . The characteristic length � of MMs b′ and b′′ 
with the realistic parameters of the system is � ∼ R . This 
means that weak hybridization of MMs can be achieved 
only for skyrmions with the large radial vorticity, p >> 1 . 
This additionally restricts the structure of MS hosting 
MMs.

The excitation spectrum and probability density

calculated in [35] for different p are shown in Fig. 10. 
Figure 10(a) and (b) show the dependences for the case 
p = 1 . It can be seen that there are no subgap states and 
MMs hybridize forming quasiparticles with finite energy. 
In Fig. 10(c) and (d) similar dependences are shown for 
p = 10 . It is seen that a pair of MMs with weakly overlap-
ping wave functions appears in the system. Finally, in the 
Fig. 10(e) and (f) the intrinsic spin-orbit coupling takes 
into account H → H +Hsoc . The form of the spin-orbit 
interaction

corresponds to the superposition of the Rashba and Dres-
selhaus SOCs. Considering Fig. 10(e) and (f) one can see 
that the spin-orbit interaction stabilizes MBSs in the super-
conducting structures with MS and does not require MS to 
have a large radius.

In addition to MBSs, subgap states of the chiral, but not 
of Majorana type are also realized in the superconducting 
structures with MS. Most of these excitations are localized 
either near the center, or in the vicinity of MS. Among 
these, a relatively small number of the states localized near 
the skyrmion center form a subgap zone with significant 

�m(r) = r

+

Ψ0
m
(r) ⋅Ψ0

m
(r),

(62)Hsoc ∼ { cosΘ, (� × �) ⋅ � } + {sinΘ, (� ⋅ �)}

dispersion, while a number of the remaining low-energy 
excitations localized near the edges of MS form a weakly 
dispersed zone. These excitations have a nonzero orbital 
momentum and low orbital velocity.

The properties of the subgap states with the weak disper-
sion were considered in detail in Ref. [163]. In order to 
exclude the subgap states localized near the skyrmion center, 
conical mapping of the Hamiltonian from the 2D disk to the 
cylinder surface was performed, see Fig. 11. Consequently, 
the excitations are localized only near the edges of the sys-
tem. The mapped Hamiltonian decomposes into the direct 
sum of the terms Hl

eff
 with the given value of l. Inside these 

subspaces Hl
eff

= H
l
wire

+H
l
slope

 . The first term Hl
wire

 
describes the one-dimensional TSC with the spin-orbit inter-
action, which is located in an external magnetic field. This 
system was well studied, supporting as it does the existence 
of MMs in the absence of chiral symmetry breaking interac-
tions. The maximum values of the orbital momentum l host-
ing Hl

wire
 with the gapless spectrum was estimated. Namely, 

if |l| < |l∗| , where |l∗| = R

√
� +

√
J2 − Δ2

0
 , then the term 

H
l
wire

 has a gapless spectrum.
Thus, the term Hl

wire
 is responsible for the formation of a 

topologically stable flat band of gapless excitations. The sec-
ond term Hl

slope
 breaks the chiral symmetry and leads to the 

Fig. 10  Excitation spectrum (left panels) and contributions to the 
probability density �m(r) of the lowest eigenstate in the l = 0 sec-
tor (right panels, with the u0

↑
 , u0

↓
 , v0

↑
 , v0

↓
 components shown in yellow, 

blue, black, and red, respectively). (a), (b) Skyrmion with p = 1 . (c), 
(d) Skyrmion with p = 10 . (e), (f) Skyrmion with p = 1 in the pres-
ence of spin-orbit coupling described by Hsoc (62) [35]
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transformation of the low-energy states from the Majorana to 
chiral ones. This is manifested in the appearance of finite-
energy excitations with the weak dispersion of the corre-
sponding band. It is important that with the realistic param-
eters, Hl

slope
<< H

l
wire

 and therefore, it can be considered as a 
perturbation. This consideration makes it possible to estimate 
the linear character of the dispersion of the edge excitation 
zone as related to l. Moreover, the maximum energy of these 

excitations was estimated as �∗ = (n∕R)

√
� +

√
J2 − Δ2

0
 . 

With the realistic model parameters, this value is small as 
compared to the effective p−wave superconducting gap Δeff  
responsible for the TSCty.

3.4  Majorana States in a Skyrmion‑vortex Pair

The above arguments show that MMs can be realized in 
hybrid superconductor/chiral magnet structures with skyr-
mions of a rather complex morphology. Thus, it is neces-
sary that MS should be characterized by an even azimuthal 

winding number n, and a sufficiently large radial winding 
number p, i.e. it should have a fairly large size. The char-
acteristic energies of the skyrmions of such a morphology 
were estimated based on the analysis of functionals (46), 
(47) in Refs. [12, 164]. In Ref.[164], a discrete version of 
functional (66) was considered, and the skyrmion state with 
a large index p was estimated as a metastable one. In Ref. 
[12] the evolution of magnetic energy, with the skyrmions 
merging with the formation of structures with even n, was 
considered in the continuum approximation. Both research 
results showed a significant excitation energy of the skyr-
mions of complex morphology, corresponding to the large 
p and even n.

One of the ways to overcome this problem was proposed 
in Ref. [12] while considering the bound state of simple 
skyrmions and superconducting vortices, see Fig.  12. 
Indeed, considering expressions (57) and (59) it can be seen 
that the emergence of MBS with l = 0 is possible if n and b 
are odd, in particular |n| = |b| = 1 . It should be noted that 
the studied superconductor/chiral magnet hybrid structures 

Fig. 11  Mapping the skyrmion from a disk to a cylinder (adopted 
from work [163]). (a) The angle � introduces the mapping: � = �∕2 
realizes the disk geometry while the limit � → 0 with r → ∞ and 
r sin� = Rsk realizes the cylinder geometry, where r is the distance 
with respect to the tip of the cone. The core is covered by a white disc 

for clarity. The excitation spectrum � of the original model (b) and 
the model on the cylinder (c), as a function of the angular momentum 
quantum number l (the inset shows the same dependencies on a larger 
scale)
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have attracted great theoretical interest. Thus, magnetic 
skyrmions can induce Yu–Shiba–Rusinov-type states [165, 
166] affecting the Josephson current via superconductor/fer-
romagnet/superconductor junction [167] and they be stabi-
lized by a superconducting dot or antidot located at the top 
of a ferromagnetic film [168]. The superconducting vortices 
and skyrmions can also form bound pairs either due to inter-
play of proximity effect and spin-orbit coupling [169, 170] 
or due to their interaction via stray fields [171, 172].

This problem was mainly considered in Ref.[12] using the 
exponential parametrization of the skyrmion (54), as well as 
the parametrization (57) of the superconducting vortex was 
performed. In addition, the generalized form of the spin-
orbit coupling

was considered, where � is the spin-orbit coupling parame-
ter. Equation (63) describes SOC in which the spin direction 
winds n′ times as it encircles the origin. For n� = 1 this type 
of SOC corresponds to the usual Rashba spin-orbit interac-
tion, while in other cases it varies between the Rashba and 
Dresselhaus types. In particular, if n� = 2 HSOC is identical 
to SOC considered in [35] in the form (62). Moreover, the 
case with the absence of a skyrmion, but with the presence 
of a superconducting vortex and Rashba spin-orbit interac-
tion, can be described in terms of n = 0 , b = n� = 1 . In this 
case, the criterion n�∕2 + b∕2 ∈ ℤ meets the conditions for 
the realization of MM in the absence of a skyrmion in the 
hybrid system. This corresponds to the canonical example 
for the formation of localized MBS which is a vortex in 
the 2D spinless p-wave superconductor [6, 15, 16]. If the 
magnetic skyrmion and generalized spin-orbit interaction, 

(63)HSOC = −2i��ze
−in���z

(
−�y�r +

1

r
�x��

)
,

Eq. (63), are realized in the system, only the case n = n� 
corresponds to the conservation of the generalized rotational 
symmetry and realization of MMs.

The results of the exact diagonalization of Eq. (56) [along 
with Eq. (63) whenever � ≠ 0 ] are shown in Fig. 13. The 
result concerns the case with n = 1 and b = 1 and the skyr-
mion is chosen to be of the Néel type. A pair of the Majo-
rana modes is found at l = 0 , where one of these modes is 
localized at the core of the skyrmion, whereas the other one 
is located at the rim of the system (see panels (a) and (b)). 
Similar to the case of the homogeneous order parameter con-
sidered in the previous section, a number of subgap states 
have been found, some of which are localized at the center 
of the skyrmion, while other ones at the rim of the system. 
These additional bound states exist for two reasons. The 
states localized at the edge are topological ones perturbed 
by a small interaction breaking the chiral symmetry. The 
states localized near the skyrmion center are associated with 
the Yu–Shiba–Rusinov-type ones [165, 166]. In Fig. 13(c) 
and (d) the impact of the vortex radius is investigated. In 
both cases, MBSs are still found. However, the localization 
of the inner MBS becomes weaker with the increasing ratio 
Rv∕R . In the panels (e) and (f) the skyrmion-vortex pairs is 
considered where the effective SOC stems from the winding 
of the magnetization along the radial direction at � = 0 . In 
Fig. 13(e), the system is restricted to the skyrmion, whereas 
the skyrmion is embedded in a region of uniform magnetiza-
tion in the panel (f). The conclusion is that if the skyrmion 
has a surrounding, the outer mode is not localized at the rim 
of the system, but it is rather delocalized between the radius 
of the skyrmion and the rim of the system.

Thus, the bound state of the magnetic skyrmion and 
superconducting vortex as a source of MBS has several 
advantages over the homogeneous superconductor. First, 
this bound state is associated with the well-studied skyr-
mions with |Q| = 1 . Secondly, such a system is compatible 
with the internal spin-orbit Rashba interaction, contrary to 
a rather exotic type of SOC admissible for the homogene-
ous superconductor. Thirdly, the pairs of MMs in such a 
system are localized in the center of the skyrmion and at 
the rim of the system, which can be of importance in the 
implementation of MMs braiding. Note that the localiza-
tion of MMs at the skyrmion radius can be associated with 
the peculiarities of the linear parametrization. And finally, 
studies have recently been carried out on the possibility of 
the experimental realization of the bound state of a magnetic 
skyrmion and superconducting (anti)vortex.

It is necessary to note some unexplored features of the 
bound states of the magnetic skyrmion and supercon-
ducting vortex. The main features are associated with the 
mutual influence of MS and the SC vortex on each other. 
Until recently, there was little research of the issue. How-
ever, recently in Ref. [173], a detailed study of the mutual 

Fig. 12  Scheme (adopted from work [172]) of a Néel skyrmion 
with the radius rsk ≡ Rsk ≡ R creating an antivortex with the flux 
�0 = h∕2e antiparallel to the external magnetic field. The antivortex 
currents js flow at radii up to � . The superconducting order parameter 
|Ψ| is suppressed over a length � ≅ Rv in the vortex core
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influence of the MS profile and the SC vortex current, 
as well as energy of the bound state, has been carried 
out. Three parametrizations of the MS profile were con-
sidered: standard parametrization (51) in the form of the 
superposition of domain walls, exponential (54) and linear 
(53) parametrization. It is shown that the influence of the 
skyrmion profile on the SC vortex significantly depends 
on the type of parametrization, as well as on the skyr-
mion chirality. In particular, in the case of smooth pro-
files, the supercurrent decreases monotonically with the 
increasing distance from the skyrmion center, whereas in 
the case of the linear parametrization, this dependence is 
nonmonotonic. Other features of the interaction between 
MS and the SC vortex depend on the type of MS (Bloch or 
Néel one) as well as on the chirality of the Néel skyrmion. 
Thus, for the Néel skyrmion, depending on the chirality 
sign, it is energetically favorable for the SC vortex to be 
either near the skyrmion center or at some distance from 
it. This dependence is valid both for linear and exponential 
parametrization. In the case of parametrization (51), the 
described behavior manifests itself in a certain relation-
ship between the skyrmion radius and domain wall width. 

For the Bloch skyrmion, it is always energetically advan-
tageous for the center of the SC vortex and MS to be at 
the same point.

It was also shown in Ref. [173] that the SC vortex can sig-
nificantly affect the radius of MS: for Néel MS, the vortex 
increases the skyrmion radius; for Bloch MS, the SC vortex 
can both increase and decrease the skyrmion size. However, 
the intensity of this effect depends on the initial radius of MS. 
It should be noted that in Ref. [173] the effect of the vortex on 
the character of the MS structure is ignored.

Another important problem in the implementation of MBS 
in superconductor/chiral magnet bilayers is the effect of the 
ferromagnetic background outside the MS radius on supercon-
ductivity. As mentioned above, the amplitude of superconduct-
ing pairings can be highly suppressed due to ferromagnetic 
correlations; thus, the conditions for the implementation of 
MM can be significantly restricted. One of the possible ways 
of overcoming the problem is discussed in Sec. 3.5.

The presented results indicate a large number of unex-
plored effects which can have significant influence on MM 
in the bound states of the magnetic skyrmion and supercon-
ducting vortex.

Fig. 13  Adopted from work [12]. Radial probability density (left 
y scale) of the inner (red solid line) and outer (turquoise solid line) 
Majorana modes as well as the radial shape of the skyrmion texture 
in terms of mz (dashed grey line, black right y scale) and the profile 
of the vortex (blue dotted line, blue right y scale). (b) the four com-
ponents of the inner Majorana bound state from panel (a) (left) in 
comparison to two examples of localized core states at nonzero ener-

gies (i.e., not Majorana bound state) in the same skyrmion-vortex pair 
(middle: state at l = −10 , right: state at l = −12 ); (c)–(d) Majorana 
bound state in the cases shown with an extended vortex. (e)–(f) Majo-
rana bound state in the cases of skyrmions with multiple spin flips. If 
the outer radius of the skyrmion does not coincide with the system 
rim the outer mode is delocalized between the outer skyrmion radius 
and the system rim (case (f))
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3.5  Topological Superconductivity in the Skyrmion 
Chain and Lattice

Another way to create superconductor/noncollinear mag-
net bilayers hosting magnetic excitations with a large topo-
logical index Q is to consider skyrmion lattices, ribbons 
or chains with the proximity-induced superconductivity, 
Refs. [36, 174]. In Ref. [36], the conditions supporting 
MMs and their manifestation in the transport properties in 
a skyrmion lattice were investigated. It is important to note 
that in this system, superconductivity is not suppressed 
(or suppressed locally) due to the periodic noncollinear 
magnetic structure. The main reason for the realization of 
TSCty in such a system is the effective spin-orbit inter-
action induced by the noncollinear magnetic structure, 
whose mechanism was discussed in Sec. 2. The spatial 
profile of the skyrmion lattice �(�) , as well as the effec-
tive spin-orbit parameter |�(�)| , is shown in Fig. 14(a) and 
(b), respectively. The topological characteristics of the 
magnetic and electronic subsystems were investigated by 
analyzing the density of the topological charge ns(�) and 
Chern number C(�) defined as

Here, Q is defined by expression (), and the first Chern num-
ber is defined in a standard way

The spatial dependences ns(�) and C(�) are shown in 
Fig. 14(c) and (d). One can see a heterogeneous profile 
of the parameters characterizing the TSCty. The spatial 
dependences of �(�) , |�(�)| and ns(�) are qualitatively 
similar, whereas C(�) demonstrates the opposite behavior. 
The nontrivial spatial behavior of C(�) leads to nontrivial 
values of the Chern number C ≠ 0 , and the topological 
phase diagram of the system shows a wide range of the 
values of C [36]. Another essential feature of the system 
is the nonlinear dependence of |�(�)| on the skyrmion 
radius. Thus, topological transitions can be induced by 
changing the size of skyrmions by applying an exter-
nal magnetic field. At the same time, the critical fields 
required for the topological transitions can be lower than 
those for many conventional superconductors [36]. Tak-
ing into account experimental observations of skyrmion 
lattices in chiral magnets, the latter, in the proximity of a 
conventional superconductor, are considered promising 
for observing the topological phase transitions. In Ref. 

(64)Q = ∫
ℝ2

ns(�) dS , C = ∫
ℝ2

C(�) dS.

(65)
C =

1

2𝜋i ∫BZ

Tr

((
Pk ⋅

[
𝜕Pk

𝜕x
,
𝜕Pk

𝜕y

]))
dkx ∧ dky,

Pk =
∑

𝜀m(�)<0

Ψm(�) Ψ
+
m
(�).

[36] the Josephson scanning tunneling spectroscopy was 
proposed as an effective tool to visualize the spatial pro-
file of Δ(�) . It is shown that if the superconducting order 
parameter of the microscope tip is real, then Josephson  
scanning tunneling spectroscopy allows one to observe the  
spatial profile of the triplet SC pairing amplitudes induc-
ing TSCty.

When considering the skyrmion lattice in the quasi-one-
dimensional geometry, i.e. skyrmion ribbon, in the system, 
the |C| pairs of MMs are realized. However, issues concern-
ing the MM manipulation in the skyrmion lattice and rib-
bons have not been considered and remain open.

MBSs in extremely narrow ribbons, i.e. skyrmion chains, 
were considered in Ref. [174]. To avoid the problem of the 
suppression of superconductivity by ferromagnetic correla-
tions, an antiferromagnetic skyrmion chain (ASC) was con-
sidered, see Fig. 15. The topological transitions and MBSs 
are also realized in this system. Moreover, for topological 
quantum computations, MMs on ASC have advantages over 
those in 1D noncollinear two-sublattice magnets. The main 
advantage is a shorter localization length of MBSs on ASC 
as compared to the case of magnetic chains. The reason 
for this is the partial delocalization of MMs in the trans-
verse direction of the ribbon along the antiferromagnetic 
skyrmions. In ASC, MMs are robust to local fluctuations 
of the chemical potential, s − d(f ) exchange coupling and 
disorder. However, these modes are sensitive to fluctuations 
of the magnetic profile of skyrmions. This feature can be 
considered as an additional advantage of MMs on ASC as 
compared to MMs on magnetic chains, since one can control 
the spatial position of MMs by distorting MSs. Also, the 

Fig. 14  System with the magnetic skyrmion lattice. (a) Schematic 
picture of the skyrmion lattice. Spatial plot of (b) the magnitude of 
the induced Rashba spin-orbit interaction, |�(�)| , (c) the skyrmion 
number density, ns(�) , and (d) the Chern number density C(�) [36]
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braiding of MMs can be performed by externally moving 
MSs by the magnetic tip or spin-polarized current. In Ref. 
[174] the device geometry supporting the braiding of MMs 
was proposed. Also note that another method has recently 
been proposed for creating skyrmion chains with Majorana 
modes. A hybrid structure superconductor–ferromagnet 
hosting a skyrmion lattice was considered, in which the 
geometry of the superconductor corresponded to the planar 
Josephson junctions [37]. The Majorana modes were also 
found and studied in such systems.

3.6  Skyrmions with an Arbitrary Topological Charge

In the conclusion of this section, describing the prospects of 
the topological superconductivity on MSs, let us note some 
possible extensions of this research which seem promising 
to us. In Sec. 3.4, the possibility of realizing the TSCty in 
skyrmions with a rather complex morphology is described. 
Other stable chiral magnetic structures with a large value of 
the topological index Q are magnetic skyrmions of complex 
morphology discovered recently in numerical experiments. 
These studies were carried out by minimizing the discrete 
version of energy functional (46) of the form

Here, i, j are the indices belonging to the two-dimensional 
lattice; ⟨⋅ , ⋅⟩ means the summation over the nearest neigh-
bors. If the vectors �ij (the Dzyaloshinskii–Moriya vectors) 
are directed perpendicularly (along) the bonds connecting the 
nearest neighbors, then the local minima of the functional cor-
respond to the Néel (Bloch) skyrmions. The energy parameters 
of the continuous and discrete models are related to each other. 
Particularly, for the square lattice, this relationship has the form

where a is the lattice parameter and D = |�ij| . Note that the 
continual and lattice functionals, (46) and (66), are equiva-
lent up to the energy of the ferromagnetic ordering.

Among the numerical approaches to minimizing func-
tional (66), let us single out the geodesic nudged elastic band 
method [175], string method [176, 177] and minimum mode 
following method [178, 179] which take into account the 
curvature of the configuration space, allowing us to search 
for saddle points on energy surfaces with the dimensions 
greater than 106 and, thus, to investigate micron-scale struc-
tures with the atomic resolution corresponding to MS stud-
ies. Also, minima (global and local) of the energy function-
als are often searched for using the gradient method.

Recently, using these approaches, the existence of the non-
trivial MS with arbitrary values of the topological index Q has 
been predicted [164, 180–183]. The configuration with several 
skyrmions ( |Q| = 1 ) located inside one skyrmionium ( Q = 0 , 
see Fig. 16) is found to be stable (from the classical point of 
view) and to have a sufficiently low excitation energy [164]. 
These multiple skyrmions with embedded in a magnetic skyr-
mionium are called skyrmion bags. Their spatial magnetic 
profile does not have any continuous rotational symmetry, 
but it is often characterized by the discrete rotation symme-
try [183]. However, their large sizes, arbitrary values of Q, 
and nontrivial morphological structure could make skyrmion 
bags promising objects for the implementation of the TSCty. 
Moreover, structures of this type were found experimentally 
in liquid crystals, where the stability of the structures with the 
large values of Q [182] was shown.

Note that to date the magnetic skyrmion bags are much 
less studied than the skyrmions with |Q| = 1 even in the 
framework of the classical analysis. For example, there is no 
analytical theory for skyrmion bags in contrast to the study 
of MSs in Ref.[162]. Therefore, there is no theory of TSCty 
in skyrmion bags, as well as no theory taking into account 
quantum effects since such theories require an analytical 
parameterization of skyrmion bags.

Note that quantum fluctuations in the features of simple MS 
are currently being investigated, although much less intensively, 

(66)E =
�
⟨i,j⟩
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I�i�j + �ij(�i ×�j)
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Fig. 15  Topological phases induced by antiferromagnetic skyrmion 
chain [174]. (a) Topological phase diagram as a function of the chem-
ical potential and exchange coefficient. The logarithmically-scaled 
color code shows the energy gap, �0 , and the green curves denote 
�0 = 0 . (b) Blow-up of the region enclosed by the dashed gray square 
in (a). The selected phases supporting no Majorana bound states 
(orange square), two (magenta circle), and four Majorana bound 
states (red triangle) are highlighted. (c) Probability density of the 
lowest nonnegative energy state (left) and energy spectrum (right) 
of the selected phases indicated in (b) for the chain composed of 37 
antiferromagnetic skyrmions
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as compared to the classical analysis of MS. It has already been 
shown that spin fluctuations can significantly renormalize the 
spectral and thermodynamic properties of the system in the 
presence of the noncollinear geometry and strong single-ion 
anisotropy [184–195]. In particular, the manifestation of quan-
tum effects can lead to the quantum spin reduction, as well as 
to the renormalizations of the ground state energy [185, 190], 
quantum tunneling to the trivial magnetic profile [191, 194] and 
influence on the kinetic characteristics [184, 192, 193, 195]. All 
these effects can affect the main characteristics of the skyrmion: 
its size, energy, lifetime, and magnon spectrum. However, the 
discussion of these effects is beyond this review.

In conclusion of this section, we note that the presented 
theoretical arguments demonstrate that magnetic skyrmions 
are promising for the realization and braiding of the Majo-
rana modes. The main advantage of MS is their locality and 
controllability. The latter, in turn, stems from the topological 
stability of the skyrmion-type magnetic structure. The main 
problem of the experimental implementation of such systems 
is the need to create MS with nontrivial properties associated 
either with the complex morphology of MS, or with the need 
to create bound states of the magnetic skyrmion, i.e. a super-
conducting vortex. The next section describes 2D systems of 
another type, in which the braiding of MMs is also possible, 
namely higher-order topological superconductors.

4  Higher‑order Topological 
Superconductors in 2D

In recent years, the topological classification of con-
densed matter has been supplemented by so-called higher-
order topological insulators (HOTI) [196]. While the 

conventional topological insulators have a gapped bulk 
spectrum and a gapless edge spectrum, HOTIs have both  
bulk and edge gaps, but support gapless states at the sur-
faces of codimension two and higher. For example, the  
second-order 2D HOTIs contain gapless corner states and 3D  
HOTIs contain gapless hinge states. As for the case of the 
conventional (first-order) topological systems the concept 
of higher-order topology was shortly extended to the case 
of higher-order topological superconductors (HOTSCs).

In addition to general interest in HOTSC as a new topo-
logical class of matter, particular attention is being paid to 
these superconductors due to the possibility of construct-
ing well-localized zero-dimensional gapless modes in 2D: 
Majorana corner modes (MCMs). These modes are neces-
sary for realizing the braiding of the Majorana fermions, 
which provides quantum computation. There are several 
reasons for the attractiveness of 2D HOTSC for this pur-
pose. Firstly, the 2D system is necessary for the braiding 
[14]. While one has to make 2D constructions (such as 
T- [197], X- [198] or Y-junctions [199]) of 1D TSCs to 
meet this requirement, 2D HOTSCs satisfy this condition 
by definition. Secondly, it is rather difficult to construct a 
pure one-dimensional system. Meanwhile, any broadening 
of a 1D chain leads to the delocalization of the Majorana 
state in the direction perpendicular to the chain and chang-
ing of the excitation character from the Majorana-like to 
chiral one [200, 201]. At the same time, though the zero-
energy excitations remain gapped from the bulk excitation, 
there appear gapless excitations in the transverse direction, 
which are not gapped from the Majorana states. HOTSCs 
do not have this disadvantages as MCMs are well local-
ized and gapped both from the bulk and first-order edge 
excitations.

Fig. 16  Morphology of the stable chiral skyrmions with the topologi-
cal charges Q = −3,−2,… , 2 [164]. The top row of the images (a) 
corresponds to the zero magnetocrystalline anisotropy in the external 
magnetic field applied perpendicular to the plane. The bottom row of 
the images (b) corresponds to the case of the uniaxial anisotropy and 

zero external field. All the images are given in the same scale. The 
colors show the direction of the n vectors according to the standard 
scheme: black and white denote the up and down spins, respectively, 
and red-green-blue show the azimuthal angle with respect to the x 
axis
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Whereas there are many specific models providing MCMs 
in 2D systems, their underlying construction principle is the 
same. Generally, MMs (of any codimension) appear at the 
topological defects of the system. In 2D HOTSC this defect 
is a domain wall on the edge of the system. To obtain such 
a wall one needs to take a system containing gapless edge 
excitations protected by some symmetries and add a pertur-
bation, which breaks one of the symmetries and opens the 
gap in the spectrum of the conventional edge excitations. At 
the same time, the effective mass (Dirac mass) of the con-
ventional edge excitations must be different for two adjacent 
edges. In this case, the corner between two edges will play 
the role of the domain wall providing zero-energy excita-
tions located at this corner.

Although the procedure described above is necessary 
for the construction of 2D HOTSC, it is not sufficient. The 
obtained zero-energy excitation has to be protected by a 
symmetry, otherwise it can be removed from the system by 
perturbations. While the topological protection of the gap-
less excitations in the conventional TSC is provided by non-
spatial symmetries (time-reversal, particle–hole, and chiral 
symmetries), the topological protection of HOTSC is pro-
vided by crystalline symmetries. The two most widespread 
symmetries providing the topological protection of HOTSC 
are the inversion symmetry and the mirror symmetry. The 
less common are the C4 and C2 symmetries. Moreover, this 
symmetry can not only be a single pure crystalline symme-
try, but a combination of symmetries, thus sometimes their 
existence is not obvious.

Another feature of HOTSC consists in the fact that while 
the topological phase of the conventional TSC is defined only 
by the bulk properties, the HOTSC phases can be both bulk-
determined and boundary-determined. For example, one can 
first introduce coupling to the conventional TI or TSC to open 
the gap on the whole boundary of the system, making it trivial. 
And then, perturbations can be added to close this gap at the 
specific points on the boundary and to reopen it in such a way 
that domain walls appear in pairs from these (high-symmetry) 
points. In the latter case, the existence of MCMs depends on 
the specific boundary geometry of the system in contrast to 
the conventional TSC.

In the following sections we will briefly describe the mod-
els proposed for the realization of HOTSC in 2D, discuss their 
application for the realization of the braiding procedure and 
mention the HOTSCs problems.

4.1  Topological Insulators with Superconducting 
Coupling

Quantum Spin Hall Insulator with superconducting cou‑
pling and external magnetic field. The general idea of the 
MCMs construction was described in detail in [38] at an 
example of a quantum spin-Hall insulator with the s-wave 

superconducting coupling and external in-plane magnetic 
field. The Hamiltonian of the minimal model in this case 
has the form:

Here, � , � , � are the Pauli matrices acting on the spin, orbital, 
and particle–hole spaces with the basis

The Kronecker product symbol between matrices and uni-
tary matrices s0 , �0 and �0 are omitted, as it was done above. 
±m(k) is the dispersion of two bands with 2m0 intersection 
and v is spin-dependent hybridization induced with spin-
orbit coupling. The magnetic field has the value of B and the 
angle between its direction and the x axis is � . The effective 
g-factor for different orbitals is the same in the x-direction 
and opposite in the y-direction. The proposed model has 
only one crystalline symmetry: inversion symmetry.

The edge states of QSHI (67) in the low-energy limit can be 
solved analytically. The edge energy bands are defined as

where p is the momentum along the edge (in the counter-
clockwise direction). The corresponding wave functions are

where the prefactor A is added for the normalization of the 
wave function and � is the angle between the normal to the 
edge and the x direction, x′ is the axis along the edge and 
y′ is perpendicular to it. While the edge spectrum of the 
system is angular independent, the spinor part of the wave 
functions depends on � . Consequently, the projection of the 
full Hamiltonian (67) on the basis (69) will lead to nondi-
agonal components, depending both on the magnetic field 
and edge orientation. The resulting edge spectrum depends 
on the angle between the magnetic field and the normal to 
the edge:

(67)

H =HQSHI +Hex

HQSHI = m(�)�z�z + v
(
sin kxsz�x + sin ky�z�y

)
− ��z,

Hex = Δ�y�y + g�BB
(
cos ��zsx + sin �sy�z

)
,

m(�) = m0 − 2m
(
2 − cos kx − cos ky

)
.

(ck↑, ck↓, c
†

−k↑
, c

†

−k↓
).

(68)
Ee↑∕↓(p) = ∓vp − �,

Eh↑∕↓(p) = ∓vp + �,

(69)

Ψe↑,p = Aeipx
�

(e�1y
�

− e�2y
�

)
(
1,−iei�, 0, 0, 0, 0, 0, 0

)T
,

Ψe↓,p = isyΨ
∗
↑,−p

, Ψh↑∕↓,p = �xΨ
∗
↑∕↓,−p

,

�1,2 = v∕2m ±

√
(v∕2m)2 − m0∕m + p2,

(70)
E(p = 0) = ±

�
B̃2 + Δ̃2 ± 2�B̃Δ̃�,

B̃ = B sin(� − �), Δ̃ =
√
Δ2 + �2.
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While the magnetic field is small �B < �Δ , the effective mass 
of the edge states are mainly defined by the s-wave supercon-
ducting coupling, and its sign is the same for any direction 
of the edge. For �B > �Δ according to the inversion symme-
try, there appear two intervals, in which the effective mass 
changes its sign due to the magnetic field. Consequently, 4 
domain wall points appear on the boundary of the system at 
which the sign of the effective mass changes, whose position 
is determined as:

These domain walls give rise to MMs in the fully opened 
geometry.

In the open disk geometry, the angles (71) directly point 
to the positions of MMs. MMs appear in two pairs, sepa-
rated by a angle, which depends only on the superconducting 
coupling Δ , chemical potential � and magnetic field B. Two 
pairs correspond to each other due to the inversion symmetry 
and their position on the disk edge can be rotated by rotating 
the in-plane magnetic field (Fig. 17). The latter makes the 
investigated system useful for the braiding and consequently, 
for quantum computations.

The obtained MMs remain in the case of a more compli-
cated boundary. In this case, MMs appears at the corners 
between two edges, whose orientation corresponds to differ-
ent signs of the effective mass term of the edge excitations. It 

(71)
�1∕4 = � ± arcsin(Δ̃∕B),

�2∕3 = � ∓ arcsin(Δ̃∕B) + �.

can be both an advantage allowing one to reduce the number 
of MMs from four to two, and a disadvantage leading to 
the undesirable creation of additional MMs at the defects 
located on the edges or inside the system.

The chosen magnetic field dependence of (67) is not 
the only one allowed. The g-factor can be taken to be 
the same for different directions. This does not affect the 
existence of MCMs in the system [39, 40]. But in this 
case, MMs cannot be controlled by the direction of the 
magnetic field.

The origin of the magnetic field and its structure can 
also be more complicated. As it was proposed in [41], 
QSHI with the conventional s-wave superconducting cou-
pling can be tuned into the HOTSCty regime by covering 
it with a bi-collinear antiferromagnet. According to the 
feature of the bi-collinear magnetic structure, the magnetic 
order along two adjacent edges is different. It is ferromag-
netic in one direction and antiferromagnetic in the other. 
The antiferromagnetic order at the edge does not open the 
gap in the corresponding edge spectrum, while the super-
conducting coupling does. But for the edge with ferro-
magnetic ordering along it, there is a competition between 
the magnetic and superconducting gaps. In the case when 
the ferromagnetic gap dominates, the sign of the effective 
mass at two adjacent edges becomes different, providing 
MCMs in the system.

Quantum Spin Hall Insulator with nodal superconducting 
singlet coupling. While in the previous section, the s-wave 
superconducting coupling is used to open the edge excitation 
gap of the same sign for any direction of the edge, and then, 
the magnetic field is used to close and reopen the gap of 
the opposite sign in some directions, one can use the nodal 
superconducting coupling to open the gap with the opposite 
sign on the adjacent edges at once.

The BdG Hamiltonian of the system can be written in 
the following form [202, 203]

where � , � and � are the Pauli matrices in the spin, orbital and 
Nambu spaces with the basis 

(
ck↑, ck↓, c

†

−k↓
,−c†

−k↑

)
 and the 

superconducting coupling is of the extended s- or d-wave form. 
The superconducting coupling symmetry is considered to be 
the most promising for the practical application: TI grown on 
a cuprate-based or iron-based high-Tc superconductor.

Considering the dx2−y2 case and following the procedure, 
which was described in detail above, one can easily obtain 
the effective masses of the edge excitation spectrum:

(72)

H =
(
m0 + mx cos kx + my cos ky

)
�z�z+

+ �so
(
sin kxsx + sin kysy

)
�x�z − ��z

+ Δ(�)�x,Δ(�) = Δ0 + Δx cos kx + Δy cos ky,

Fig. 17  Majorana modes with the open disk geometry in QSHI with 
the s-wave superconducting coupling and external magnetic field 
[38]. The position of the domain walls providing MMs depends on 
the chemical potential value and magnetic field strength and direction
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for the edges along the x and y directions, correspondingly. 
If TI is in the nontrivial topological phase, then the effective 
mass at the adjacent sides along x and y has the opposite sign 
for mxmy > 0 . This results in MMs appearing at the corners 
of the system.

If the extended s-wave pairing ( s±-pairing) is considered 
in the system, the mxmy < 0 condition for the presence of 
MZMs arises, forcing one to have a hopping amplitude with 
different signs in the x and y direction in the system.

TI with Rashba spin‑orbit interaction and nodal supercon‑
ductivity. While the described above systems have the  
intrinsic spin-orbit interaction of the form proposed by  
Bernevig et al. [205] (BHZ), the explicit form of the interorbital  
spin-orbital hybridization is not crucial for the construction 
of MZMs. The alternative case is the extrinsic interorbital 
Rashba-like spin-orbit coupling. Particularly, one can take 
the minimal model of the two-orbital model with the interor-
bital Rashba-like SOC and extended s-wave coupling [204]:

Here, t is the nearest-neighbor intraorbital hopping term, t1 
is the next-nearest-neighbor intraorbital hopping, � corre-
sponds to the interorbital Rashba SOC, Δ(k) is the s± intraor-
bital superconducting coupling. The t1 term is necessary to  
obtain TI in the absence of superconducting coupling, oth-
erwise for zero t1 the bulk spectrum has no gap at the nodal  
points of SOC. Notably, for this, the next-nearest-neighbor  
hopping can be substituted with the difference between  
the on-site energies for two orbitals.

The hopping amplitude t, as can be seen from (74), has 
opposite signs in the x and y directions, as it was in the 
previous case. The authors of [204] clearly demonstrated 
this necessity. The sign of the effective mass is dictated by 
the sign of the superconducting coupling at the Dirac points 
of the TI edge excitation spectrum (Fig. 18). Consequently, 
the rough conditions for the appearance of MCMs result in 
the sign of Δ(kDx, ky) being opposite to the sign of Δ(kx, kDy) 
for most kx , ky , where kDx , kDy are the momenta of the Dirac 
point in the edge excitation spectrum along the x and y direc-
tion, correspondingly, in the cylinder geometry. In the case 
of the s± pairing, this condition is fulfilled, if one of kD is 

(73)
mI = Δ(m0 + mx + my ± �)∕my,

mII = −Δ(m0 + mx + my ± �)∕mx,

(74)

H =
(
hTI(�) − �

)
�z + Δ(�)�x,

hTI(�) =
(
2t(cos kx − cos ky) + 4t1 cos kx cos ky

)
�z+

+ 2�
(
sin kxsy − sin kysx

)
�x,

(75)Δ(�) = Δ0 + 2Δ1

(
cos kx + cos ky

)
.

equal to zero and the other is equal to � . It is the case of hop-
ping of the opposite signs in the x, y direction.

As in the case of QSHI with the nodal superconducting 
coupling, the s± pairing can be replaced with the dx2−y2 pair-
ing. In this case, the condition discussed above is fulfilled, 
when both kDx and kDy are equal to zero or to � , correspond-
ing to the hopping amplitudes of the same sign in both direc-
tions. The mixed s + id coupling is also appropriate [206].

Quantum Spin Hall Insulator with odd‑parity supercon‑
ducting coupling. The superconducting coupling induced 
in TI does not have to be of the singlet form, but can also 
be of the odd-parity triplet form [207, 208]. While the type 
of the superconducting coupling and the explicit form of 
the excitations change, the situation, in general, remains  
the same: the superconducting coupling leads to the opposite- 
sign masses of the edge excitations at the adjacent  
edges, providing MMs on the domain walls, located at 
the corners.

4.2  Topological Superconductor with Perturbations

p ± ip TSC with the in‑plane magnetic field. Previously, 
we discussed the possibility to construct MMs in TI by 
opening the conventional edge excitation gap due to the 

Fig. 18  The case of the topological insulator with the Rashba spin-
orbit interaction and nodal superconductivity [204]. (a–d) Excitation 
spectrum of (72) with the edge along the x (a–b) and y (c–d) direc-
tion without (a, c) and with (b, d) s±-wave superconducting cou-
pling. (e) s± pairing has different signs for kDx and kDy , resulting in 
the appearance of the Majorana corner modes in the square-shaped 
geometry of the system. (f) Density plot of probability distribution of 
MCMs in the square-shaped geometry and the lowest excitation spec-
trum in the inset
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superconducting coupling and magnetic field. But one can 
also start with the helical TSC and add a perturbation, which 
will open the edge spectrum gap with the opposite sign for 
the adjacent edges. One of the implementations of this 
approach is the combination of p + ip and p − ip TSC. In 
particular, one can take p ± ip TSC with the p + ip pairing 
for the spin-up electrons and p − ip pairing for the spin-
down electrons and then, add the in-plane Zeeman field [42]:

In the absence of the magnetic field, Hamiltonian (76) pro-
vides the gapless first-order surface excitations, propagating 
in the opposite directions along the edge for the opposite 
spin projections. The Zeeman field breaks the time-reversal 
and C4 symmetries of the system, opening the gap in the 
edge excitation spectrum. The corresponding mass term 
depends on the direction of the in-plane magnetic field and 
on the orientation of the edge: meff = B cos(� + �) , where � 
and � are the angles of the magnetic field direction and edge 
normal direction, correspondingly.

The mass term vanishes at two points connected with the 
inverse symmetry around the whole surface in the open disk 
geometry, leading to the presence of two MMs, whose posi-
tions can be controlled by the direction of the magnetic field. 
In the square-shaped geometry, MMs appear at the corners 
between the edges with the opposite mass sign in accordance 
with the general rule of MMs at the domain walls.

Helical TSC with magnetic field. While the model of p ± ip 
TSC is the simplest, it is not the only one. Another suitable 
suggestion is the �-junction of two 2D layers with the oppo-
site SOC term [209, 210]:

Here, again � , � are the Pauli matrices in the spin and  
particle–hole spaces with the basis (ck↑, ck↓, c

†

−k↑
, c

†

−k↓
) , � are  

Pauli matrices acting on the subspace of the top/bottom 
layer, Γ is the inter-layer spin-conserving hopping amplitude.

For Γ < Δ the system is trivial and for Γ > Δ it is in the 
topological phase with the helical first-order edge excita-
tions. The application of the external magnetic field B to 
this system in the topological phase opens the gap in the 
edge excitation spectrum meff = B cos(� − �) . In the man-
ner identical to the previously described case of p ± ip 
TSC, this leads to the presence of two MZMs in the fully 
opened geometry.

(76)
H = �(�)�z − Δ

(
sin kxsx − sin kysy

)
+ ��,

�(�) = � − 2t(cos kx + cos ky).

(77)
H = 2t

(
2 − cos kx − cos ky − �

)
�z + Γ�z�x+

+ �
(
sin kysx − sin kx�zsy

)
�z + Δ�ysy�z.

4.3  Dirac Semimetal/nodal Metal 
with p + ip Superconducting Coupling

Here, it is not necessary to start with an insulating nor-
mal state, as in the previous cases. Another possibility to 
construct MMs [211–214] is to take a double mirror Dirac 
semimetal with a weak p + ip superconducting interorbital 
coupling:

At t = Δ limit, it can be rewritten in terms of the Majorana 
operators:

where Majorana operators and electron annihilation opera-
tors are connected through the relations:

with � =↑ for odd m and � =↓ for even m.
The described system is a 2D analog of the Kitaev 

chain. While the Majorana operators in the bulk and at 
the edge are connected in fours and pairs, correspond-
ingly, and yield the gapped bulk and edge excitation spec-
trum, the uncoupled corner-localized Majorana operators 
provide zero-energy corner modes. As in the case of the 
Kitaev chain, MZMs remain in the system away from 
the special parameter point until the gap in the spectrum 
vanishes.

4.4  Nanowire‑based HOTSC

While the previous method started with the 2D topological 
systems, the second-order TSC can be obtained by cou-
pling of 1D topological superconducting Rashba nanow-
ires. These nanowires are strongly coupled in pairs, and 
the obtained two-wire systems are weakly coupled, to form 
a 2D system. The latter system can be implemented in the 
direction parallel to the pairwise coupling or in the direc-
tion perpendicular to it.

Two‑layered Rashba nanowire system. One can make two 
layers of the parallel Rashba nanowires with The opposite 
Rashba field direction and � superconducting coupling 
phase difference for different layers (Fig. 19). The inter-layer 

(78)
H = t

(
cos kx�x�z + t cos ky�y

)
+

+ Δ
(
sin kx�x�x + sin ky�x�x

)
.

(79)
H = − 2it

∑
mn

(
�2
m,n

�1
m+1,n

+ �4
m,n

�4
m+1,n

−

−�2
m,n

�4
m,n+1

+ �1
m,n

�3
m,n+1

)
,

c�,m,n =
�
�1
m,n

+ i�2
m,n

�
∕
√
2,

c�,m,n =
�
�3
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coupling between the nearest wires is supposed to be strong, 
while the intra-layer coupling is weak. The resulting Hamil-
tonian of the system is [215]

Here, � is the Rashba SOC, Δ is the s-wave superconducting 
coupling, Γ is the inter-layer tunneling, tz , � is the intra-
layer spin-conserving and spin-flipping hopping terms, cor-
respondingly, and Δc is the cross-Andreev superconducting 
coupling.

In the cylinder geometry the examined system is the 
helical TSC with the gapless Majorana modes propagating 
along the edges. Applying the in-plane magnetic field to this 
system results in breaking the time-reversal symmetry and 
opening the gap in the edge excitation spectrum in a man-
ner similar to the previously described one for the helical 
TSC with the magnetic field. This immediately leads to the 
presence of two MCMs in the opposite corners of the two-
layered Rashba nanowire system.

Dimerized monolayer Rashba nanowire system. Another 
way to combine Rashba nanowires was proposed in [216]. 
The wires form a monolayer with equal spaces between the 
wires, leading to equal hopping (and spin-orbital) terms. The 
dimerization of the system is introduced with the supercon-
ducting phase (supposed to be proximity-induced), with 
every second wire having a phase shift. This system was 

(80)

HNW =
(
k2
x
∕2m − 2tz cos kz − �

)
�z − �kx�zsz

+ � sin kz�zsx + Γ�x�z +
(
Δ + Δc cos kz

)
�z�ysy.

found to be topologically nontrivial for a wide range of 
superconducting phase shifts � , providing four MCMs in 
the case of the in-plane magnetic field and two MCMs in the 
case of the magnetic field perpendicular to the plane. In the 
latter case, while the “magnetic field” notation is used, one 
has to introduce it through ferromagnetic atoms deposited 
on the superconductor instead of the external magnetic field 
since the latter can simultaneously destroy superconductivity 
and complicate phase relationships.

4.5  Braiding on 2D HOTSC

One of the possibilities to provide quantum computations 
is the braiding of anions [14]. Anions are the particles or 
quasi-particles, whose two-particle wave function after their 
exchange has the phase different from 0 or � (corresponding 
to bosons and fermions, correspondingly). At the moment 
the Majorana excitations (localized Majorana zero modes 
expressed in Majorana operators) are the most promising 
examples of anions. The exchange of two Majorana fermions 
leads to the phase shift of ±�∕2 . Furthermore, the braid-
ing process can be carried out only in the 2D system [14]; 
thus, 2D HOTSC seems to be a perspective system for this 
process.

The braiding process requires changing the parameters 
of the system adiabatically in such a way that two Majorana 
excitations exchange their position, not intersecting each 
other (or another Majorana excitation) and other Majorana 
excitations must not be disturbed (in addition, avoiding the 
creation of new zero-energy excitations) [59]. At the same 
time, the energy gap between the Majorana excitations and 
other excitations must remain sufficient.

These requirements impose constraints on the HOTSC 
models suitable for the braiding process. Firstly, the HOTSC 
model is to provide the possibility to smoothly control the 
positions of MCMs in the system. Obviously, this cannot be 
done in the systems, whose edge excitation spectrum struc-
ture is determined only by the intrinsic atomic structure 
of the system. Secondly, the Majorana excitations are not 
allowed to be located at the same position. Consequently, the 
systems, in which two Majorana excitations appear in one 
corner, cannot be used for braiding. Thirdly, the zero-energy 
excitations must remain gapped from other excitations dur-
ing the process. The latter prevents the braiding procedure 
in p ± ip TSC with the in-plane magnetic field [42] in spite 
of the fact that the Majorana excitations can be exchanged 
by the rotation of the magnetic field and they are protected 
from collision by the inverse symmetry.

A rather good example of the braiding process was given 
in [217]. The proposed HOTSC was constructed from p ± ip 
TSC by introducing an additional singlet s + d supercon-
ducting coupling and external magnetic field. The proposed 
complicated braiding cycle containing a smooth tuning of 

Fig. 19  (a) Two-layered setup constructed with the Rashba nanow-
ires [215]. (b) In the absence of the magnetic field, the system is the 
helical topological superconductor with the gapless Majorana modes 
propagating along the edges. (c) In the presence of a small magnetic 
field it transforms to higher-order topological superconductor with 
Majorana corner modes located in two opposite corners of the device
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the magnetic field direction, value and s + d superconducting 
coupling terms prevents the edge spectrum gap from closing 
during the whole braiding process and protects MCMs.

A simpler braiding process was described in [38]. While 
the proposed HOTSC model provides four Majorana excita-
tions in the open disk (and square) geometry, one can reduce 
their quantity to one pair by using the triangle geometry. 
In this case there appear two edges with the same sign of 
the effective mass and one edge with the opposite effec-
tive mass sign independently of the magnetic field direction. 
This provides only two domain walls and consequently, two 
MCMs. With the rotation of the in-plane magnetic field one 
can move these MCMs from one corner to another (Fig. 20). 
Along with that only one of the MCMs hops directly from 
one corner to another at any moment, leaving the edge spec-
trum gapped during the whole process.

As was noted earlier, the feature of the g-factor required 
in the latter HOTSC is necessary only to control the position 
of the MMs by the direction of the magnetic field. But as the 
angle between MMs in one pair in the open disk geometry 
depends on the ratio between the magnetic field value and 
the chemical potential, this position can also be controlled 
even without the rotation of the magnetic field, though in 
a restricted manner. By changing the mentioned values, it 

is possible to move one MCM from one corner to another 
in the triangle-shaped geometry. Obviously, the braiding 
process cannot be performed, as it is impossible to move 
MMs without the intersection along the whole boundary in 
this way. However, it is possible to construct a combination 
of triangle islands with independently controlled chemical 
potentials (gate voltages) in such a way (Fig. 21) that two 
Majorana excitations can be exchanged by moving them 
from one island to another [39]. Remarkably, the proposed 
braiding procedure can be done using the electric fields only.

4.6  Experimental Realization and Problems 
of HOTSC

There are several suggestions for experimental realization. 
Concerning TI with the SC coupling as the base of 2D 
HOTSC, possible experimental realizations are HgTe/CdTe, 
InAs/GaSb quantum wells or magnetic TI such as WTe2 or 
PbS with the proximity-induced superconductivity. In the 
case of the extended s-wave superconductivity, its origin 
can be a Fe-based superconductor (e.g. FeTe1−xSex mon-
olayer). For the d-wave superconducting coupling, Cu-based 
high temperature superconductors can be used. While the  
proposed proximity-induced HOTSCty can be constructed in 

Fig. 20  Braiding of Majorana corner modes (MCMs) in the triangle-
shaped quantum spin-Hall insulator with the s-wave superconducting 
coupling and external magnetic field realized by the rotation of the 
magnetic field direction (blue arrow). (a) At the starting point, two 
Majorana modes(MMs) (71) with the open disk geometry (red dots) 
emerges between the normals of two adjacent edges (red lines), pro-
viding MCMs at the corresponding corners. Another two MMs fall 
in one sector between the normals of the adjacent edges, thus caus-

ing the corresponding domain wall to vanish and destroying the cor-
responding MCM. (b–e) The rotation of the in-plane magnetic field 
forces the MMs positions to cross the normals one after another, thus 
moving the sector containing two MMs. Hence, the corner without 
MCMs changes its position, depending on the magnetic field direc-
tion and MCMs exchange the positions. Importantly, MCMs hops 
from one corner to another (b) without spreading along the edge, and 
thus, the gap in the spectrum remains opened during the process (f)n
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general, direct calculations of the proximity effect shows the 
deviation of the results from the those predicted in simple 
models [218]. Instead of using the superconducting proxim-
ity effect, one can also rely on the intrinsic superconductivity 
provided by the electron-electron interactions in TI [208, 
219].

Another possible realization implies the construction 
of more complicated heterostructures. For example, for 
HOTSC constructed from TI with the Rashba spin-orbit cou-
pling, the device will consist of two Rashba layers indepen-
dently connected to the bulk s-wave superconductors with 
the superconducting phase shift [209] and separated by a 
dielectric layer. The dielectric layer restricts the tunneling 
between Rashba layers and act as an origin of Rashba field 
in such a system. In the case of the nanowire-based HOTSC, 
the proposed device consists of the nanowires grown on the 
pairwise connected stripes of the s-wave superconductor 
with the phase shift between the pairs or the pairs of nanow-
ires grown between two s-wave superconductors with the � 
phase shift.

It should be noted that the realization of 2D HOTSC is 
seriously restricted. The proposed HOTSC models have a 
square lattice (one can also find the suggestion for the hexag-
onal lattice). But there are no suggestions for HOTSC based  

on triangle-lattice systems, while they are known to provide 
the first-order TSCty. The C3-symmetric systems are con-
sidered to be forbidden to provide the HOTSC phases [220, 
221].

It is still possible to construct a 2D C3 -symmetric super-
conducting system with corner-localized in-gap excitations 
(even zero-energy ones). Following the same procedure per-
formed for TI with the square lattice, it is possible to take 
a two-band system on the triangular lattice with the inter-
band Rashba SOC, which provides the topological insulator 
phase in this system. Then, one can introduce the d + id 
superconducting coupling corresponding to the triangular 
lattice and obtain corner excitations in this system [222]. 
In the triangle-shaped geometry, there are three excitations 
(one for each corner) in the system corresponding to the 
C3-symmetry (Fig. 22). They are in-gap for a wide range 
of the parameters, well localized, and found to be robust 
against small defects and rather sufficient disorder. One can 
even control these corner excitations with the magnetic field. 
However, the energy of these excitations is not pinned to 
zero, and the excitations are not topologically protected; 
thus, the examined system is not HOTSC.

Another problem arises from the fact that the appearance 
of MCMs in HOTSC depends on the directions of the adja-
cent edges and consequently, on the geometry of the sample. 
As a consequence, the edge defects can influence the reali-
zation of MCMs. Small defects (or roughness of the edge) 
neither destroy MCMs nor create new pairs of MMs in the 
system, but they only affect the gap size [223]. However, if 
the size of the defect is large enough and the geometry of 
the defect generates new domain walls, new undesired MMs 
will appear. Such defects make the system useless for braid-
ing since the uncontrolled creation and annihilation of the 
Majorana excitations break the braiding process. The same 
problem can be caused by the defects inside the system, as 
they generate an additional edge with its own domain walls 
and MCMs.

Finally, the main problem of HOTSCty to date is that 
neither HOTSC nor HOTI is known among electronic sys-
tems. The experimental realizations of the second-order 

Fig. 21  Braiding of Majorana corner modes in the device consisting 
of six triangle shaped islands of higher-order topological supercon-
ductors [39]. (a–g) Movement of Majorana corner modes during the 
procedure. (h) Energy spectrum of the system during the whole pro-
cedure. (i) Variation of �4−6 providing braiding

Fig. 22  Energy spectrum and corner excitation distribution in the 
triangle-shaped topological insulator with the chiral d + id supercon-
ductivity on the triangular lattice [222]
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topological systems in 2D were mostly obtained in photonic 
[224, 225], acoustic [226, 227] and topoelectric systems 
[228–230]. Nevertheless, the advantages of 2D HOTSCs 
are promising enough to continue searching for new ideas 
for their experimental realization.

5  Summary

In the introduction, the general ideas concerning the Majo-
rana modes in one-dimensional and two-dimensional sys-
tems are discussed including the well-known spin-orbit 
coupled quantum wires.

The second section of the review is devoted to differ-
ent materials and structures with the coexisting spin-singlet 
superconductivity and noncollinear magnetic ordering which 
induce the nontrivial topological order in the absence of the 
spin-orbit interaction. The mentioned magnetic structures 
include commensurate helical (spiral) textures, particularly 
120◦ spin ordering, and cycloidal textures. We discuss the 
ideas concerning the effective triplet pairings and odd fer-
mion parity of the ground state which provide a rather sim-
ple description of the topologically nontrivial phases. The 
connection between the noncollinear magnetic order and 
spin-orbit interaction in a uniform magnetic field is given for 
the 1D and 2D cases. The description of different topological 
invariants for simultaneously magnetic and superconducting 
systems is provided. The considered features of the mag-
netic superconductors support the formation of the Majorana 
modes at the edges in the strip (or cylinder) geometry and at 
different defects in the 2D case.

In the third section of the review, the main ideas of the 
realization of the Majorana bound states on magnetic skyr-
mions (MSs) are considered. Skyrmions are topologically 
nontrivial field configurations which are the solutions of 
nonlinear differential equations. Initially, these solutions 
were considered by T. Skyrma in nuclear physics for the 
baryon field. Subsequently, similar field distributions �(r) 
were found in magnetic systems and liquid crystals. At pre-
sent, MSs are experimentally found and considered as prom-
ising systems for prospective logic and memory devices. The 
main practical interest in MSs is their locality and topologi-
cal stability. The latter means the impossibility to convert 
the skyrmion state into the topologically trivial one without 
overcoming a very high energy barrier. These properties 
have recently attracted fundamental interest to the problem 
of hosting the Majorana modes on MSs. Actually, the devel-
oped technologies for controllable movement of MSs make 
braiding of the Majorana modes and creating stable qubits 
essentially possible by using MSs. Currently, 2D supercon-
ductor/chiral magnet bilayers are most often considered as 
physical systems in which MSs hosting Majorana modes  
can be realized. Both superconductors in the Meissner state 

and with vortices, as well as MSs with complex morphology 
are considered.

In the fourth section, a brief revision of higher-order 
topological superconductors (HOTSCs) is provided. Being 
a novel class of the topologically nontrivial system, HOTSC 
contains both bulk and edge gapped spectra and provides the 
Majorana modes on the higher-order boundaries: corners in 
2D HOTSC as well as hinges and vertices in 3D HOTSC. 
The typical way to construct 2D HOTSC is to take a system 
with a gapless edge states and add a perturbation, which 
opens the gap in the edge spectrum with the Dirac mass of 
the opposite sign for the adjacent edges. The corner in this 
case becomes a domain wall, providing zero energy modes 
in the way similar to the boundary between two conven-
tional topological insulators with different topological index. 
While the general idea is the same, the specific method of 
constructing HOTSC can be rather different. It can be a top-
ological insulator or semimetal with the superconducting 
coupling of intrinsic or extrinsic character or a TSC per-
turbed with the magnetic field or magnetic ordering. The 
properties of HOTSC can be not only bulk-determined but 
also boundary-determined in contrast to the conventional 
TSC. In recent investigations, 2D HOTSCs are shown to be 
perspective systems for the realization of the braiding pro-
cedure. The absence of experimental realizations of HOTSC 
still remains the main problem of HOTSC. But the advan-
tages of 2D HOTSC are perspective enough to continue their 
investigation.

In general, this review covers a rather wide field of 
study of topological superconductivity in two-dimensional 
systems.
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