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� Heterostructures based on cobalt

phthalocyanine and PdAu nano-

alloys were obtained.

� Effect of dilution of Pd by Au using

Pd-rich or Au-rich solid solutions

was studied.

� Effect of metal nanoparticles on

sensor response to hydrogen was

investigated.
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In this work, the effect of Pd, Au and PdAu nanoparticles on sensor response of cobalt

phthalocyanine films to hydrogen was studied. For this purpose, novel heterostructures

based on cobalt phthalocyanine and PdAu nanoalloys were obtained by a combination of

vacuum thermal evaporation and pulsed metalorganic chemical vapor deposition (MOCVD)

and investigated as active layers for hydrogen detection. The structural features and phase

composition of the prepared heterostructures were studied by the techniques of X-ray

diffraction, transmission electron microscopy and electron diffraction. The concentration

of metal nanoparticles in the samples was determined by inductively coupled plasma

atomic emission spectroscopy (ICP-AES). The chemiresistive sensor response of CoPc/M

(M ¼ Pd, Au, Pd0.2Au0.8 and Pd0.8Au0.2) to hydrogen (100e400 ppm, room temperature) was

compared with that of bare CoPc films. It was shown that the sensor response of the
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Chemiresistive sensors
Hydrogen
investigated heterostructures to hydrogen (300 ppm) increased in the order CoPc

(0.2%) < CoPc/Pd0.2Au0.8 (1.9%) ~ CoPc/Au (2.2%) < CoPc/Pd (2.7%) < CoPc/Pd0.8Au0.2 (5.6%).

© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
sensitivity of Pddoped (0.2%)mesoporousSnO2was almost ten

Introduction

In recent years, hydrogen has been intensively investigated as

a renewable promising energy source to replace the

petroleum-based fuels [1]. Hydrogen is also used in a wide

range of industries, including oil refining, chemicals, food and

fertilizer production, andmaterials processing [2]. At the same

time, hydrogen is a highly flammable and explosive gas (at a

concentration of more than 4%), and for this reason, the

development of sensor devices for its detection is of particular

interest for ensuring industrial and environmental safety [3].

Stable and efficient sensors for the detection of hydrogen in a

wide range of concentrations are required in the chemical and

electronic industries, mechanical engineering, and biomed-

ical research [4,5]. The detection of hydrogen is also an

important issue for medicine. A hydrogen breath test is used

as a diagnostic tool for small intestinal bacterial overgrowth

and carbohydrate malabsorption, such as lactose, fructose,

and sorbitol malabsorption [6]. If the level of hydrogen rises

above 20 ppm, the patient is typically diagnosed as a fructose

or lactose malabsorption.

Inorganic semiconductors (e.g. metal oxides, nitrides,

transition metal dichalcogenide) [3,7e9], organic compounds

(electroactive polymers and molecular crystals, e.g. metal

phthalocyanines) [10,11], graphene and its hybrid materials

[12] are often studied as active layers of chemiresistive sen-

sors to hydrogen, however, the problem of their selectivity

and sensitivity is still not completely solved, whichmakes the

search for new materials for sensor devices an urgent task.

Although hydrogen is highly flammable at concentrations

greater than 4%, lowering the sensor detection limits for

hydrogen is also important to detect hydrogen leaks at the

lowest possible concentration, which is necessary to prevent

dangerous H2 levels in a particular environment. There are

several studies showing that the detection limit of several

ppbs has been reached by using advanced methods for pre-

paring layers of semiconductor oxides or modifying sensors

with nanomaterials [13,14].

It is known that the sensitivity and selectivity of sensors

can also be increased by modifying the surface of semi-

conductorswith noblemetal nanoparticles, such as Pd, Pt, and

Au [15]. Many reports were devoted to the study of increased

sensitivity of Pd-functionalized semiconductors due to

enhanced catalytic dissociation of hydrogen on the surface of

Pd nanoparticles with subsequent diffusion of the resulting

atomic species onto the surface of semiconductor [4].

A variety of materials are used as active layers in chemical

sensors for hydrogen detection [16]. Hydrogen gas sensors

based on metal-doped semiconductor oxide layers such as

SnO2, ZnO, TiO2,MnO2,WO3, etc.were the subject of discussion

in several reviews [17,18]. For instance, it was shown that the
times higher than that of pure SnO2 (H2 concentration was

1000 ppmat 250 �C) [19]. Toan et al. [20] also studied SnO2 films

decorated with Pd islands and found that the SnO2 layers with

the thickness of ~40 nm and Pd particles with the size of

~10 nm had maximum selectivity and sensitivity to H2 in the

concentration range from 200 to 250 ppm at 400 �C (the

response time was 14 s). Sanger et al. [21] studied the sensor

response of MnO2 nanowalls covered with Pd to hydrogen in a

wide concentration range from 10 to 10,000 ppm at 100 �C.
In addition to metal oxide semiconductors, carbon nano-

materials [12] and organic semiconductors have attracted

considerable interest due to their quick response and regen-

eration, reversibility of the sensor response at room temper-

ature, and the possibility of filmdeposition on flexible carriers.

There are a number of examples of hybrid sensors based on

metal phthalocyanines (MPc), polymers, single-walled carbon

nanotubes and reduced graphene oxide dopedwith palladium

particles in the literature [16,22,23]. For example, Pd-

functionalized single-walled carbon nanotubes were used to

detect hydrogen [24] and methane [25] in air at room tem-

perature. Jaidev et al. [26] demonstrated good sensor perfor-

mance of heterostructures on the basis of graphene-like

carbon-wrapped carbon nanotubes decorated with dispersed

platinum nanoparticles. These heterostructures showed the

higher sensitivity than the corresponding single-component

active layers. Organic polymers (e.g. polyaniline, poly-

methylmethacrylate) decorated with metal nanoparticles

have also useful properties for their application in hydrogen

sensors [16]. J. Hong et al. [27] prepared poly-

methylmethacrylate/Pd nanoparticles/single-layer graphene

heterostructures exhibiting high selectivity and sensitivity to

H2 in the concentration range from 0.025 to 2%.

Metal phthalocyanines are alsowidely used as active layers

of chemical sensors, however the works on their application

for hydrogen detection are not as numerous as in the case of

metal oxides and carbon nanomaterials. Metal phthalocya-

nines have exceptional thermal and chemical stability, ver-

satile chemical system, and excellent processability resulting

in the manufacture of thin films [28]. Unsubstituted MPcs

(M ¼ Cu, Co, Fe) are comparatively cheap commercially

available dyes. Their films with controllable morphology, or-

ganization and thickness can be easily deposited by a physical

vapor deposition (PVD) technique. Unlike most metal oxide

sensors, the phthalocyanine-based active layers exhibit a

chemoresistive sensor response at room temperature with

recovery time of no more than several minutes [29,30]. These

properties make the layers of metal phthalocyanines

competitive with other materials mentioned above, which are

used in chemiresistive sensors. Apart from this, recent studies

showed that bilayer structures consisting of Pd and H2Pc [31]

or various MPc (CuPc [32], PdPc [33], VOPc [34]) demonstrated
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improved sensor performance compared to that of pure

phthalocyanine layers.

Another promising direction for the development of

hydrogen sensors is the use of bimetallic nanoparticles. It is

known that properties of bimetallic nanoparticles differ from

those of their monometallic counterparts due to the synergistic

effects and the changes in the surface electronic structure of

nanoalloys [35,36]. Solid solutions based on palladium (PdAu,

PdAg, PdCu, etc. [37,38]) were shown to have high permeability

and selectivity to H2 and increased chemical resistance to

“poisoning” by CO and H2S. Recent studies demonstrated that

nanostructures based on noble metals had excellent sensor

properties towards various gases.Y. Penget al. [39] reported that

the layers of reduced graphene oxide coated with PdPt nano-

particles had a repeatable and stable response to H2 due to

synergisticeffectsof thecombinationofPt andPdnanoparticles.

Fan and co-authors [40] found that the sensitivity of ZnO

nanorods doped by PtAu nanoparticles to hydrogen (250 ppm)

was much higher than that of pure ZnO and ZnO with mono-

metallic nanoparticles at the operating temperature of 250 �C.
In this work, cobalt phthalocyanine (CoPc) films were

modified with Pd, Au and PdAu nanoparticles by a pulsed

chemical vapor deposition method in order to enhance their

sensitivity to hydrogen (100e400 ppm). The structural features

and phase composition of the prepared heterostructures were

studied by the techniques of X-ray diffraction, transmission

electron microscopy and electron diffraction. The concentra-

tion of metal nanoparticles in the samples was determined by

inductively coupled plasma atomic emission spectroscopy

(ICP-AES). The effect of Pd, Au and PdAu nanoparticles on

sensor response of the prepared heterostructure to hydrogen

was investigated.
Experimental details

Materials and films deposition

Unsubstituted cobalt phthalocyanine was synthesized ac-

cording to the technique described elsewhere [41] by heating a

mixture of phthalonitrile (Sigma Aldrich) and cobalt chloride

at 180 �C. CoPc: C32H16N8Co. Anal. Calc: C 67.3; H 2.8; N 19.6.

Found: C 67.3; H 2.7; N 19.7. IR spectrum (KBr; u, cm�1): 1609,

1591, 1522, 1468, 1425, 1333, 1288, 1165, 1121, 1088, 1001, 951,

912, 874, 779, 754, 571, 517, 434.

MOCVDprecursors, [Pd(hfac)2] (palladium(II) bis(1,1,1,5,5,5-

hexafluoro-2,4-pentanedione)) and [Me2Au(thd)] (dime-

thylgold(III) (2,2,6,6-tetramethyl-3,5-heptanedione)), were

synthesized according to the techniques described elsewhere

[42,43]. All complexes were purified by double sublimation

(CoPc: P ¼ 5$10�5 Torr, T ¼ 430 �C; MOCVD precursors:

P ¼ 5$10�2 Torr, T ¼ 60e80 �C).
First, CoPc layers were deposited by vacuum thermal evap-

oration at P ¼ 5$10�5 Torr. The evaporator temperature was

450 �C, the deposition time was 1 h, and the substrate temper-

ature was 50 �C. Si(100), a freshly cleaved single crystal of NaCl

and glass plates, as well as glass slides with interdigitated Pt

electrodes (IDE, Dropsens: the gaps dimension is 10 mm; the

number of digits is 125� 2 with a digit length equal to 6760 mm;

cell constant is 0.0118 cm�1) were used as substrates.
After that the surface of CoPc filmswas decorated by Pd, Au

or PdAu nanoparticles using a pulsed metal-organic chemical

vapor deposition. The detailed description of the pulsed

MOCVD technique has already been given in our previous

publication [34]. The experimental parameters were selected

based on the available data on thermal properties of the pre-

cursors: evaporator temperatures (Tvap) were 60e75 �С for

[Pd(hfac)2] and 60e75�С for [Me2Au(thd)]; the substrate tem-

perature (Ts) was 250 �С; the ratio of buffer-gas/reactant gas

(Ar/H2) was 4:1,6; the total reactor pressure was ~8 Torr. Metal

nanoparticles PdxAu1-x (x ¼ 0e1) were obtained by varying the

evaporation temperatures and, consequently, the relative

concentrations of the precursors in the reaction zone. The

deposition cycle involves the following steps: evacuation of

the reactor, input of the precursor, input of the buffer and

reaction gases, decomposition reaction and evacuation of the

reactor. The change of the pressure during the deposition

cycle is shown in Fig. S1 (Supporting Information).

Films characterization

Thin filmX-ray diffraction (XRD) patternswere obtained in the

2q range from 3 to 60� using a Shimadzu XRD-7000 powder

diffractometer (Cu-anode sealed tube with Ni filter, Bragg-

Brentano geometry with vertical q-q goniometer, OneSight

SSD-detector, 0.0143� stepwith 240 s equivalent accumulation

time per data point). Al2O3 sample prepared as a fine layer of

powder on the glass substrate surface was used as external

reference standard.

The films microstructure was investigated using a scan-

ning electron microscope JEOLeJSM 6700 F. The microstruc-

ture, phase and element compositions of samples deposited

on a NaCl freshly cleaved crystal were analyzed using a

transmission electron microscopy (TEM), electron diffraction,

and energy dispersive spectroscopy on JEM-2100 transmission

electronmicroscope (TEM, JEOL) equippedwith an Inca x-sight

energy dispersive spectrometer (Oxford). The diffraction pat-

terns were identified using the program DigitalMicrograph

(Gatan) and crystal structure database ICDD PDF 4þ (2020).

A high-resolution spectrometer iCAP 6500 (Thermo Fisher

Scientific) was used for element analysis. The layer of CoPc/M

(M¼ Pd, Au, PdAu) waswashed off the surface of the substrate

using a minimal amount of concentrated HCl and HNO3 (3:1).

The samples were dissolved using screw cap polypropylene

tubes; the process temperature was about 100 �C. The sample

solution was injected into the plasma through a nebulizer of

SeaSpray type using a peristaltic pumpwith the rate of 0.7mL/

min. The following conditions of the analysis were used:

cooling argon flow e 12 L/min, secondary e 0.5 L/min; regis-

tration time on the first slit e 15 s; registration time on the

second slit e 5 s. The power supplied to an ICP inductor was

1150 W. The registration of emission spectra was carried out

at the axial observation of plasma. The following reagents

were used for the samples preparation: Hydrochloric acid ACS

reagent, 37%, Nitric acid 70%, purified by redistillation,

�99.999% tracemetals basis; deionizedwater purifiedwith the

Direct-Q3 system (Millipore) > 18 MU/cm; high purity argon;

Gold Standard for ICP TraceCERT®, 1000 mg/L Au in hydro-

chloric acid; Palladium Standard for ICP TraceCERT®,

1000mg/L Pd in hydrochloric acid. To determineAu and Pd the
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Fig. 2 e XRD patterns for the as-deposited CoPc film and the

films after MOCVD experiment in comparison with the

calculated powder patterns of a-CoPc and b-CoPc. The inset

shows the magnified range from 30 to 50� 2Q.
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most intense spectral lines were used (without the spectral

influence). Spectral lines for Au were 242.595 and 267.597 nm,

while those for Pd were 324.270, 340.458 and 360.955 nm. The

technique verification by spike experiment was provided.

Study of sensor properties

For the investigation of chemiresistive sensor response, the

heterostructures were deposited onto glass slides with

interdigitated electrodes. The samples were placed in a flow

cell, which was alternately injected with hydrogen of the

required concentration and air. The scheme of the sensing

measurement system is given in Fig. 1. Air was used as a

diluent and purging gas. Pure commercial H2 gas were used

as an analyte source. The concentration of hydrogen was

varied from 100 to 400 ppm. The gas-analyte was injected

into the flow cell at a constant flow rate of 300 mL/min; the

exposure time was 15 s. After each input of a gas-analyte the

cell was purged with air. All sensor measurements were

carried out at room temperature; the value of relative hu-

midity (RH) was 10%. To study selectivity of the hetero-

structures their sensor response to ammonia (100 ppm),

carbon dioxide (1000 ppm), ethanol (10,000 ppm) and form-

aldehyde (10,000 ppm) was measured at the same experi-

mental conditions. The change in the film resistance during

the introduction of hydrogen and subsequent air purging

was measured using an electrometer Keithley 236. The

sensor response was defined as (R-Ro)/Ro (Ro is the resistance

of cobalt phthalocyanine film or CoPc-based hetero-

structures before H2 injection, while R is the film resistance

at a certain hydrogen concentration).
Results and discussion

Films characterization

The structure of as-deposited CoPc films and the same films

after MOCVD experimentswas investigated by XRD in order to

study possible structural changes, since it is known that

phthalocyanine films can undergo a phase transition when

heated. XRD patterns for CoPc films before heating and after

MOCVD experiments are shown on Fig. 2 as examples. The
Fig. 1 e Scheme of the sensing measurement system.
calculated powder patterns for a-CoPc [44] and b-CoPc [45] are

also given for comparison. There are two known polymorphic

phases of CoPc, and the calculated diffraction patterns of both

of them contain strong diffraction peaks in this 2q region, viz.

the (100) peak at 7.05� for b-CoPc and the (001) peak at 6.91� for
a-CoPc. The XRD patterns of both films contain one strong

diffraction peak, which indicates the presence of strong

preferred orientation in the samples. The angular position of

this peak is 6.99� 2q for the as-deposited CoPc and 6.96� for the
heated CoPc/PdAu films, which is between the corresponding

diffraction peaks on the calculated XRD patterns of a-CoPc

and b-CoPc. However, the additional diffraction peaks at 7.39�

and 27.92� observed on the XRDpatterns of both films coincide
Fig. 3 e Microstructure of pure CoPc film.
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well with the peaks (100) and (004) of a-CoPc. This fact and the

comparison of XRD patterns with those of a-CoPc films

deposited earlier under the same conditions [46] allows us to

conclude that the CoPc films after MOCVD do not change their

phase composition and consist only of the a-CoPc polymorph.

Because of the small size and low amount of nanoparticles

deposited by the pulsed CVD method only weak and wide

diffraction peak is observed around 40�, which may corre-

spond to the metallic Pd(111) and Pd(200).
Fig. 4 e TEM images and corresponding electron diffraction pat

Pd0.8Au0.2 (e, f).
To study the effect of bimetallic nanoalloys on the sensor

response of CoPc films two types of heterostructures CoPc/

Pd0.8Au0.2 and CoPc/Pd0.2Au0.8 were prepared and tested. The

samples were deposited at the following conditions: Tsub-

¼ 250�С; Tvap([Pd(hfac)2]: [Me2Au(thd)]) ¼ 75:65�С and 60:75�С,
accordingly. These compositions were selected to show the

effect of dilution of Pd by Au using Pd-rich or Au-rich solid

solutions as examples. Fig. 3 shows the microstructure of a

CoPc film. The surface of the CoPc film consists of grains
terns of CoPc/Pd (a, b), CoPc/Pd0.2Au0.8 (c, d) and CoPc/

https://doi.org/10.1016/j.ijhydene.2021.03.082
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Fig. 6 e Sensor response of a CoPc film and CoPc/Pd

heterostructures to hydrogen, measured at room

temperature and RH 10%.

Fig. 5 e Lattice parameter of (Au,Pd) solid solutions vs.

composition. Redrawn according to the data given in

Ref. [47].
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reaching a size of 70e100 nm. The sizes of the depositedmetal

nanoparticles were too small to obtain a high-quality SEM

image, for this reason TEM was used to investigate them.

Fig. 4(aef) shows the TEM images and corresponding

electron diffraction patterns of CoPc/Pd, CoPc/Pd0.2Au0.8 and

CoPc/Pd0.8Au0.2 heterostructures. The full size images of the

electron diffraction patterns are given in Figs. S2eS4 (Sup-

porting Information). The size distribution is broad and the

nanoparticle size ranges from 1 to 7 nm in all investigated

samples (see the insets on the TEM images). In Fig. 4b, the

diffraction pattern contains sets of ring type reflections from

Pd having polycrystalline structure with the fcc lattice (PDF4þ
#00-046-1043) and a-CoPc (PDF4þ #00-055-1995). The intro-

duction of Au leads to the formation of AuePd disordered solid

solution (see Fig. 4d and f) according to the phase diagram.

This can be tracked by changing the diameter of the diffrac-

tion reflections. The diameter of the diffraction rings de-

creases with the growing amount of gold as a result of the

increase in the crystal lattice parameter without changes of

the lattice type. The composition of the (Au,Pd) solid solution

can be determined based on the linear dependence of the

lattice parameter (Fig. 5). Thus, the following concentration

ratios of the solid solutions were estimated from the electron

diffraction patterns (see Fig. 4(d and f)): Pd0.2Au0.8 (a ¼ 4.041 �A)

and Pd0.8Au0.2 (a ¼ 3.928 �A).

In general, the obtained phase composition of the bime-

tallic samples is in good correlation with the data of elemental

analysis, which is the result of phase uniformity.

Investigation of the sensor response to hydrogen

It has earlier been shown that unsubstituted metal phthalo-

cyanines, namely, PdPc, CoPc and VOPc, were used as sensing

layers in chemiresistive sensors for hydrogen detection

[33,34,48]. It is known that similarly to other p-type unsub-

stituted M(II)Pc, CoPc films are insulating in dark, high-

vacuum environments and become semiconducting on

exposure to air [49]. This air induced conductivity has been

attributed to coordination of O2 to surface MPc metal centers,

forming superoxide adducts, which extract electrons,
generating charge carriers (holes) in the bulk film [50,51]. The

initial resistance of the CoPc film was 7$105 Ohm. The intro-

duction of hydrogen to the gas flow cell leads to an increase of

the resistance of CoPc films. A typical sensor response curve

presented as (R-Ro)/Ro for a CoPc film is given in Fig. 6.

The resistance-based sensing mechanism of semi-

conducting sensors has been studied in the literature [52]. The

commonly accepted mechanism is based on the variation of

the surface electron depletion region due to the reaction be-

tween hydrogen and the chemisorbed oxygen on the surface.

It has been assumed in the literature [53] that atmospheric

oxygen absorbs at the air/MPc interface and at grain bound-

aries. It has been reported that the formation of charge-

transfer complexes by coordination of O2 to MPc at the air/

phthalocyanine interface leads to the formation of oxidized

MPcþ and O2
� species and injection of hole charge carriers into

the film's bulk [50,54]. The sensor layer is then exposed to

hydrogen atmosphere and the hydrogenmolecules react with

the adsorbed oxygen species. This reaction is exothermic and

results in the fast desorption of produced H2Omolecules from

the surface [55]. Due to the released electrons a change of the

resistance of the semiconductor is observed. Then the sensor

is again purged with air, and its resistance returns to its

original value.
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Fig. 7 e Dependence of the sensor response of CoPc/Au and

CoPc/Pd heterostructures to hydrogen (300 ppm) on the

concentration of nanoparticles, measured at room

temperature and RH 10%.

Table 1 e Values of the sensor response to hydrogen
(300 ppm), response and recovery times for a CoPc film
and heterostructures containing 1 ± 0.09 mg/cm2 of
nanoparticles.

Sample (R-Ro)/Ro at 300 ppm
H2

Response/recovery time
(s)

bare CoPc 0.0022 20/70

CoPc/Pd 0.0273 30/170

CoPc/Au 0.0216 20/150

CoPc/

Pd0.8Au0.2

0.0556 27/180

CoPc/

Pd0.2Au0.8

0.0188 17/80
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Preliminary experiments have shown that cobalt phtha-

locyanine films exhibit the limit of hydrogen detection in air of

about 100 ppm. For this reason, at this stage of the study, the

range from 100 to 400 ppm of hydrogen was used to compare

the effect of different nanoparticles on the sensor sensitivity

and to select heterostructures with the best sensor charac-

teristics. The sensor response of as-deposited CoPc films was

compared with that of CoPc/Pd, CoPc/Au and CoPc/PdAu

heterostructures. Deposition of Au and Pd nanoparticles onto

the surface of a CoPc film led to the decrease in the resistance

to 4$105 and 1$105 Ohm, respectively. This effect appears to be

due to the charge transfer between nanoparticles and CoPc.

Indeed, charge transfer fromAu(100) single crystalline surface

to Co central metal ion at CoPc/Au interface was demon-

strated by Peisert et al. [56].

Typical sensor response curves for the CoPc/Pd hetero-

structures are given in Fig. 6 in comparison with that of a bare

CoPc film. Similarly, to the case of CoPc films, the introduction
Fig. 8 e Dependence of the sensor response of a CoPc film

and CoPc heterostructures with different metal

nanoparticles on hydrogen concentration, measured at

room temperature and RH 10%.
of hydrogen to the gas flow cell leads to an increase of the

resistance of CoPc heterostructures with metal nanoparticles.

It is important that all sensing layers demonstrate completely

reversible sensor response to hydrogen even at room tem-

perature. Deposition of Pd nanoparticles on the surface of

CoPc films results in a noticeable increase of the sensor

response to hydrogen. For instance, the responses of CoPc

films containing 0.33 and 0.54 mg/cm2 of Pd nanoparticles to

400 ppm of H2 increase by 4 and 7 times compared to the bare

CoPc film. These results are in good agreement with the pre-

viously published work [34], in which Pd nanoparticles were

deposited by the pulsed MOCVD method on the surface of

VOPc thin films, however in that work the effect of Au nano-

particles on the sensor response to hydrogen was not inves-

tigated. Here the sensor response of CoPc heterostructures

containing various amounts of Au nanoparticles was also

studied. An increase of the concentration of Au nanoparticles

from 0.01 to 3.06 mg/cm2 causes the 20-fold growth of the

sensor response to hydrogen.

The dependence of the sensor response to hydrogen

(300 ppm) on the concentration of Au and Pd nanoparticles in

the CoPc-based heterostructures is shown in Fig. 7. In the case

of heterostructures with Pd nanoparticles the dependence is

linear in the investigated concentration range, while in the case

of Au nanoparticles it deviates from the linear fit. The sensor

response of the CoPc/Pd sample is higher than that in the case

of CoPc/Au with a similar concentration of Au nanoparticles.
Fig. 9 e Sensitivity of CoPc/Pd and CoPc/Pd0.8Au0.2

heterostructures to various analytes, measured at room

temperature and RH 10%.
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Table 2 e Sensor characteristics of various heterostructures or composite materials with bimetallic nanoparticles.

Active layer Value of the sensor
response

Concentration
range, ppm

Temperature
range, �C

Response/
recovery
time

Ref.

reduced graphene

oxide/PtPd

46% (3000 ppm, r.t.) 50e8000 25e65 20 min/>35 min

(3000 ppm)

[39]

ZnO nanorods/PtAu 25% (250 ppm, r.t.) 50e2000 20e200 e [40]

porous polymer/

PtPd

15.7% (40,000 ppm) 0.4e40000 room temperature (r.t.) 92 s/304 s

(10,000 ppm H2)

[11]

CoPc/Pd0.8Au0.2 ~6% (300 ppm) 100e400 room temperature 27 s/180s

(300 ppm H2)

this work
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For example, the response of CoPc/Pd containing 1.09 mg/cm2 Pd

nanoparticles is about 1.5 times higher than that of the CoPc/Au

heterostructure with the concentration of Au nanoparticles of

1.05 mg/cm2. This difference is even more significant at the

higher concentrations of nanoparticles (Fig. 7).

It is believed [57,58] that the main reasons for the increase

of gas sensitivity of composite materials based on semi-

conductor oxides and metal nanoparticles are the “spill-over”

effect and/or increased surface area. Palladium is well known

as a hydrogen-spillover metal and an effective catalyst for

reactions owing to its strong affinity to hydrogen [59]. It is

known that hydrogen cannot dissociate on Au(110) surface

[60,61], whereas small gold clusters or narrow films deposited

on different substrates show high catalytic activity [62e64]. H2

adsorption mechanism on AuNPs was shown to depend

strongly on the metal semiconductor support. For example,

the dissociation of H2 on Au/TiO2 Au/Fe2O and Au/Al2O3 sup-

ported catalysts was found to occur at 300 K, and various

chemical studies of the activation of H2 on the Au sites were

carried out [65,66]. Upon contact of hydrogen with the sensing

layer, hydrogen molecules dissociate to the more active

atomic hydrogen H in the presence of catalytic nanoparticles,

which spills-over to the surface of a semiconductor film.

Probably the same process occurs in the case of CoPc/Pd or

CoPc/Au heterostructures. On the surface of CoPc, which is a

p-type semiconductor [67,68], the formed atomic hydrogen

interacts with adsorbed oxygen with the release of electrons,

leading to the formation of hole depletion region and as a

consequence, to an increase of the CoPc film resistance. In the

case of CoPc/Au, the activation of H2 and adsorption of H on

Au are kinetically and thermodynamically less favorable [69]

than in the case of Pd nanoparticles, leading to the less sensor

response. Some researchers suggested that not all surface

atoms of small gold clusters interact with hydrogen and

hydrogen chemisorbs only on their edges and corners [70].

The dependence of the sensor response of CoPc hetero-

structures with different metal nanoparticles on hydrogen

concentration (100e400 ppm) is presented in Fig. 8. The sensor

responses of CoPc/Au and CoPc/Pd0.2Au0.8 heterostructures are

similar and 8e11 times higher than that of the bare CoPc film,

but lower than in the case of heterostructures containing pure

Pd nanoparticles. An increase of the content of Pd in bimetallic

nanoparticles causes the growth of the response to hydrogen;

in the case of CoPc/Pd0.8Au0.2 it demonstrates 22e28 fold in-

crease compared to that of bare CoPc layers, which is even

higher than for CoPc/Pd heterostructures. The detection limit

estimated as 3 s/m, where s is the standard deviation of the
sensor response to 100 ppm of hydrogen and m is the slope of

the plot (Fig. 8, red line), was around 20 ppm for the CoPc/

Pd0.8Au0.2 heterostructure.

The superior properties of metal alloys are often consid-

ered both in terms of electronic and ensemble (geometric)

effects [71,72]. Electronic effects refer to changes in catalytic

properties due to electronic interactions between two com-

ponents of a bimetallic alloy. Ensemble effects are related to

the spatial distribution of the atomic sites where the com-

ponents of alloy are located. Some reactions require large

ensembles of reactive atoms to catalyze the transformation,

and therefore stop when the active atom is dispersed over the

entire inert lattice. Recent studies have shown that low

amounts of Pd can promote H2 dissociation and spillover onto

the other surface. Lucci et al. [69] reported that Pd monomers

on the Au (111) surface can activate hydrogen. At the same

time, Baber et al. [73,74] found that the spillover effect was

not observed for isolated Pd atoms on the surface of Au (111),

but the larger ensembles of Pd were required. It was also

noted that Pd tends to surround itself with host metal atoms

and move to subsurface areas. We can suggest that in our

case in the Pd0.2Au0.8 solid solution containing the larger

amount of Au, palladium can be encapsulated by gold atoms

and not participate in the interaction with hydrogen. For this

reason, the effect of Au nanoparticles and Pd0.2Au0.8 was

almost identical, as shown in Fig. 7. In contrast, in the case of

Pd0.8Au0.2 due to the larger amount of palladium the active Pd

centers, which are necessary for hydrogen dissociation,

appear to form on the surface of nanoparticles. It can be seen

that the study of the atomic-scale structure of the surface of

alloys is a crucial step for understanding this phenomenon,

but this is the subject of a comprehensive separate study and

will not be considered in this publication.

A comparison of the value of sensor response to hydrogen

(300 ppm) as well as the response and recovery times for a

CoPc film and heterostructures containing 1 ± 0.09 mg/cm2 of

nanoparticles is shown in Table 1.

It has already been mentioned that the detection of

hydrogen is also an important issue for medicine, namely in

hydrogen breath tests for the diagnostics of carbohydrate

malabsorption [6]. The quite low limit of hydrogen detection

makes the investigated CoPc/Pd0.8Au0.2 heterostructures

promising material for the preparation of active layers for the

detection of hydrogen in exhaled air. In this connection, it was

interesting to test the sensitivity of CoPc/Pd0.8Au0.2 hetero-

structures to gases and vapors that may enter into the

composition of exhaled air. To study selectivity of the
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heterostructures their sensor response to ammonia (100 ppm),

carbon dioxide (1000 ppm), ethanol (10,000 ppm) and formal-

dehyde (10,000 ppm) was measured. Fig. 9 shows the chem-

iresistive sensor response of CoPc/Pd and CoPc/Pd0.8Au0.2

heterostructures to the above mentioned analytes. This dia-

gram shows that the sensitivity of both heterostructures to

hydrogen is much better than to carbon dioxide, ethanol, and

formaldehyde, but ammonia can interfere with the determi-

nation of hydrogen in the gas mixtures.

Thus, heterostructures based on cobalt phthalocyanine

and bimetallic nanoparticles CoPc/Pd0.8Au0.2 have the best

sensitivity to hydrogen compared to CoPc films and their

heterostructures withmonometallic Pd and Au nanoparticles.

There are only a few examples devoted to the study of

chemiresistive sensors on the basis of heterostructures with

bimetallic nanoparticles in the literature. Table 2 compares

some characteristics of such sensors described in the litera-

ture with the results obtained in this work.
Conclusions

In this work, cobalt phthalocyanine films were modified with

Pd and Au nanoparticles by a pulsed chemical vapor depo-

sition method in order to enhance their sensitivity to

hydrogen. The Pd-rich and Au-rich bimetallic PdAu nano-

particles were also obtained. The structural features and

phase composition of the prepared heterostructures were

studied by the techniques of XRD, TEM and electron

diffraction. It was shown that the nanoparticle size ranged

from 1 to 7 nm; the diffraction patterns contained sets of

rings coming from Pd having polycrystalline structure with

the fcc lattice and a-CoPc. The introduction of Au led to the

formation of AuPd disordered solid solution. The effect of the

amount and composition of metal nanoparticles on the

chemiresistive sensor response of the prepared hetero-

structures to hydrogen (100e400 ppm) was investigated. It

was shown that the sensor response of the investigated

heterostructures to hydrogen (300 ppm) increased in the

order CoPc (0.2%) < CoPc/Pd0.2Au0.8 (1.9%) ~ CoPc/Au

(2.2%) < CoPc/Pd (2.7%) < CoPc/Pd0.8Au0.2 (5.6%). The detec-

tion limit of the CoPc/Pd0.8Au0.2 heterostructures was esti-

mated to be 20 ppm, whichmakes them a promisingmaterial

for the preparation of active layers for the detection of

hydrogen in the presence carbon dioxide and some volatile

organic vapors, for example in exhaled air.
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