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a b s t r a c t   

The triple molybdates M5CrHf(MoO4)6 (M = K, Tl) and TlCrHf0.5(MoO4)3 were found upon studying the 
corresponding ternary molybdate systems M2MoO4–Cr2(MoO4)3–Hf(MoO4)2 (M = K, Tl) in the subsolidus 
region using X-ray powder diffraction. The crystal structures of M5CrHf(MoO4)6 (M = K, Tl) and 
TlCrHf0.5(MoO4)3 are refined by Rietveld method. M5CrHf(MoO4)6 (M = K, Tl) crystallizes in space group R3̄c 
with unit cell parameters: a = b = 10.45548 (5), c = 37.24614 (3) Å, V = 3526.14 (4) Å3, Z = 6 for K5CrHf(MoO4)6 

and a = b = 10.53406 (12), c = 37.6837 (5) Å, V = 3621.39 (9) Å3, Z = 6 for Tl5CrHf(MoO4)6. TlCrHf0.5(MoO4)3 

crystallizes in space group R3̄ with unit cell parameters: a = b = 12.9710 (2), c = 11.7825 (2) Å, V = 1716.78 (6) 
Å3, Z = 6. The thermal stability and electrical conductivity of the new compounds were investigated. 
Electrical conductivity measurements gave high values for the triple molybdates M5CrHf(MoO4)6 (M = K, Tl) 
(σ = 5.22 × 10−4 S / cm for K5CrHf(MoO4)6, σ = 1.1 × 10−2 S / cm for Tl5CrHf(MoO4)6 at 773 K) and relatively low 
values for the triple molybdate TlCrHf0.5(MoO4)3 (σ = 4.42 × 10−6 S / cm at 773 K). 

© 2021 Published by Elsevier B.V.    

1. Introduction 

Complex molybdates containing alkaline elements are inter-
esting in their physical properties and rich crystal chemistry [1–19]. 
It is known that molybdates with a framework structure were found 
to undergo polymorphic transformations [20–26]. This leads to a 
disordered structure with high ionic conductivity. Alkaline ions in 
these structures are weakly bonded to the ions of the framework and 
therefore they are conductive. Earlier we synthesized and char-
acterized potassium-, and thallium-containing triple molybdates 
K5RHf(MoO4)6 (R = In, Sc) [25,27], Tl5RHf(MoO4)6 (R = Fe, In, Bi)  
[28–31]. The conductivity of molybdates M5RHf(MoO4)6 (M = K, Tl; R 
= Fe, In, Sc, Bi) is rather high. For example, K5ScHf(MoO4)6 demon-
strates a conductivity of 2.63 × 10−4 at 773 K, Tl5InHf (MoO4)6 e 

7.51 × 10−4 at 773 K. We decided to conduct a study of chromium- 
containing systems due to the fact that systems containing 
chromium as a trivalent ion have not been studied. Chromium is a 
metal with very unusual properties. For the most part, its 

compounds are of interest. To date, a small amount of chromium- 
containing molybdates has been obtained Li3Cr(MoO4)3 [16], 
Na2xZn2Sc2(1-х)(MoO4)3, Na2xCd2Sc2(1-х)(MoO4)3, Na2xMg2Sc2(1-х) 

(MoO4)3 [32], Na1-xMg1-xCr1+x(MoO4)3 (0 ≤ x ≤ 0.3), NaMg3Cr(MoO4)5  

[33], KMgCr(MoO4)3 [21], CsCrZr0.5(MoO4)3 CsCrTi0.5(MoO4)3 [34,35], 
Cs5CrHf(MoO4)6, CsCrHf0.5(MoO4)3 [36], K5CrZr(MoO4)6 [37], 
AgMg3Cr(MoO4)5 and AgMn3Cr(MoO4)5 [38]. Oxide Li3Cr(MoO4)3 

with a NASICON-type structure has a conductivity of about 10−4−10−5 

S / cm at room temperature comparable to that of the well-known 
conductors LiAlSiO4 and LiSbO3 [39,40]. The structure of the low- 
temperature modification of KMgCr(MoO4)3 belongs to the mono-
clinic system, space group С2. The σ value reaches 6 × 10–4 S / cm 
(932 K). It should be noted that significant cation mobility was re-
vealed not only for compounds with small cation sizes (Li+, K+) but 
also for compounds with much larger cations, such as Cs+ or 
Ag+, situated in cavities of three-dimensional frameworks. For ex-
ample, CsCrTi0.5(MoO4)3 compound crystallizing in the R3̄ space 
group possesses an ionic conductivity from 10−6 S / cm at 298 K to 
10−2 S / cm at 780 K. Therefore, not only potassium-containing sys-
tems but also thallium-containing systems are of interest. 

https://doi.org/10.1016/j.jallcom.2021.159828 
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2. Experimental 

2.1. Characterization methods 

PXRD patterns were recorded on a Bruker D8 ADVANCE X-ray 
diffractometer (Bruker, Berlin, Germany) with Cu-Kα radiation 
(λ = 1.5418 A˚) at room temperature. The scanning range is between 
5° and 100° with a scanning width of 0.02 and a rate of 0.1 s−1. 

The variable counting time (VCT) scheme was used to collect the 
diffraction data. The measurement time was systematically in-
creased towards higher 2θ angles, leading to drastically improved 
data quality [41,42]. To collect the X-ray data using VCT scheme, five 
ranges were generated on the diffraction pattern: 5–32.0° (exposure 
per point: 0.5 s; step: 0.0069°), 32.0–59.0° (exposure per point: 1 s; 
step: 0.0069°), 59.0–86.0° (exposure per point: 2 s; step: 0.0069°), 
86.0–113.0° (exposure per point: 4 s; step: 0.0069°) and 113.0–140° 
(exposure per point: 8 s; step: 0.0069°). Total experimental time was 
equal to ~19 h. The esd’s σ(Ii) of all points on patterns were calcu-
lated using intensities Ii: σ(Ii)=Ii

1/2. The intensities and obtained esd’s 
were further normalized, taking into account actual value of ex-
position time, and saved in xye-type file. So transformed powder 
pattern has usual view in whole 2θ range 5–140º, but all high-angle 
points have small esd’s. 

The DSC/TG analysis during heating and cooling was carried out 
using a calorimeter NETZSCH STA 449 F1 TG/DSC/DTA (Jupiter). The 
sample charge was 17–18 mg, and the rate of temperature rise was 
10 K/min under the Ar atmosphere. All the measurements were 
made in platinum crucibles. The DSC curves were calculated using a 
specially developed program from Netzsch. 

Electrical conductivity measurements were carried out on cy-
linder shaped ceramic samples which were 10 mm in diameter and 
2 mm thick, with platinum electrodes by the electrochemical im-
pedance method on a Z-1500J impedance meter in the temperature 
range about 293–993 K. The test frequency can be set from 1 Hz to 
1 MHz at high resolution. Electrical conductivity σtotal for each 
temperature was calculated from:  

σtotal = L / Rtotal × S                                                                (1) 

Where σtotal, L, S and Rtotal the total conductivity, the thickness of 
specimen, and the area of roundsurface and the total resistance, 
respectively. 

Ceramic disks for investigations were prepared by pressing the 
powders at 100 bar by a PLG-12 hydraulic laboratory press and 
sintering at 773 K for 2 h. For the making of electrodes, large surfaces 
of the disks were covered with a paste, which was a mixture of 
hexachloroplatinate (IV) ammonium (NH4)2[PtCl6] in toluene. Then, 
the tablet with the applied paste was annealed at a temperature of 
about 773 K for 1 h. 

The geometric to X-ray density ratio was used for evaluation of 
the density of the ceramics. The geometric density was calculated by 
dividing the weight of the sintered sample by its volume estimated 
from geometric dimensions. The size of the sample was measured 
with an accuracy of ±  0.01 mm. The theoretical density was calcu-
lated by the equation,  

ρx-ray = 1.66MZ/V,                                                                   (2)  

where M is the molecular weight of the formula unit of a sub-
stance, Z is the number of formula units, and V is the unit cell 
volume. 

2.2. Preparation of samples 

The following commercial reagents Tl2CO3 (chemically pure, Red 
Chemist, Russia), K2MoO4 (chemically pure, Red Chemist, Russia), Cr 

(NO3)3 (Joint Stock Company Kyiv Plant of Reagents, Indicators and 
Analytical Products "RIAP"), HfO2 (chemically pure, IGIC RAS, 
Russia), and MoO3 (chemically pure, Red Chemist, Russia) were used 
as the starting reagents. The starting reactants were dehydrated at 
473 K for a day in a muffle furnace. Simple molybdates Tl2MoO4 and 
HfMoO4 were obtained by annealing the appropriate stoichiometric 
mixtures of Tl2CO3, HfO2, and MoO3 at 673–823 K and 673–1023 K, 
respectively, for 100 h. Because that molybdenum oxide sublimes 
below the melting point, the synthesis of simple molybdates began 
at a temperature of 673 K. A stoichiometric mixture of Cr(NO3)3 and 
MoO3 was used for the synthesis of Cr2(MoO4)3 at 623–1073 K for 
100 h. The annealing was started at a temperature of 623 K to avoid 
the release of reagents due to the violent evolution of nitrogen oxide 
and oxygen. The starting reagents were well mixed and ground in an 
agate mortar with a pestle. To accelerate the interaction, the reaction 
mixtures were gradually annealed at the temperatures specified in 
the interval and ground after every 24 h of annealing. 

The phase formation in the M2MoO4–Cr2(MoO4)3–Hf(MoO4)2 (M 
= K, Tl) systems was investigated by the cross-section method in the 
subsolidus region using the literature data on binary systems [47]. 
Therefore, we did not carry a repeated study of these binary systems. 
According to Khaikina E.G [43], two double molybdates KCr(MoO4)2, 
and K5Cr(MoO4)4 composition is formed in the K2MoO4eCr2(MoO4)3 

system. 
Triclinic KCr(MoO4)2 has a layered structure. Layers {[R(MoO4)2]-} 

run perpendicular to the triple-axis. RO6 octahedra are located in 
one layer, in the other e KO12. MoO4 tetrahedra, having common 
vertices with RO6 octahedra, are located in a layer of alkali metal. 
K5Cr(MoO4)4 has a distorted palmierite structure. The system 
K2MoO4–Cr2(MoO4)3 is characterized by a non-quasi-binary inter-
action. This is indicated by the presence of potassium polymolybdate 
and double potassium and chromium polymolybdate in the an-
nealed reaction mixtures of this system. TICr(MoO4)2 phase crys-
tallize in orthorhombic crystal system (space group Pnma, Z = 4)  
[43,44]. The paper Tushinova Yu.L. [45] reports that new compounds 
are not formed in the system Cr2(MoO4)3–Hf(MoO4)2. The two 
compounds forming in the K2MoO4–Hf(MoO4)2 system are the 
congruently melting double molybdates K2Hf(MoO4)3 and K8Hf 
(MoO4)6 [46]. K2Hf(MoO4)3 and K8Hf(MoO4)6 crystallize in the 
monoclinic structure in space groups P21/m and P21/c, respectively. 
According to data [47], there are two double molybdates in the 
system Tl2MoO4–Hf(MoO4)2: Tl8Hf(MoO4)6 (monoclinic system, 
space group С2/m) and Tl2Hf(MoO4)3. 

The verification of the entire subsolidus area in the 
M2MoO4–Cr2(MoO4)3–Hf(MoO4)2 (M = K, Tl) systems consisted of 
preparing appropriate mixtures of the phases. These mixtures were 
subjected to long-term heating at temperatures lower than the tem-
peratures of corresponding solidus planes, and next they were cooled 
to room temperature. The X-ray powder diffraction showed that upon 
prolonged heating at temperatures close to the melting temperatures, 
the phase composition of none of these preparations changed. This 
confirms that the initial mixtures corresponded, as to their composi-
tion, to the earlier identified phases coexisting at equilibrium within 
particular fields of the subsolidus area. This allowed us to determine 
the quasi-binary joins and detect the formation of new triple 
molybdates. It should be noted, that the area of the K2MoO4– 
Cr2(MoO4)3–Hf(MoO4)2 system near K5Cr(MoO4)4 is necessarily con-
sidered as non-quasi ternary. This is due to the presence of potassium 
polymolybdate and double potassium and chromium polymolybdate. 
In this connection, the subsolidus triangulation diagram can be con-
structed for the region KCr(MoO4)2–Cr2(MoO4)3–Hf(MoO4)2eK8Hf 
(MoO4)6. The results of tests carried out on samples of the basic and 
control series allowed to determine a phase diagram for the subsolidus 
area of M2MoO4–Cr2(MoO4)3–Hf(MoO4)2 (M = K, Tl) systems in the 
entire range of component concentrations (Figs. 1 and 2). It can be 
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concluded from the phase diagram presented in Fig. 1 that the sub-
solidus area of the K2MoO4–Cr2(MoO4)3–Hf(MoO4)2 system is 
composed of five partial subsystems, six quasi binary joins 
(KCr(MoO4)2eK8Hf(MoO4)6, KCr(MoO4)2eK2Hf(MoO4)3, KCr(MoO4)2e 

K5CrHf(MoO4)6, K5CrHf(MoO4)6eK8Hf(MoO4)6, K5CrHf(MoO4)6e 

K2Hf(MoO4)3, KCr(MoO4)2eHf(MoO4)2), and one new triple molybdate. 
Eight subsystems, nine quasi-binary joins (TlCr(MoO4)2eTl8Hf(MoO4)6, 
TlCr(MoO4)2eTl2Hf(MoO4)3, TlCr(MoO4)2eTl5CrHf(MoO4)6, Tl5CrHf 
(MoO4)6eTl8Hf(MoO4)6, Tl5CrHf(MoO4)6eTl2Hf(MoO4)3, TlCr(MoO4)2e 

TlCrHf0.5(MoO4)3, Cr2(MoO4)3eTlCrHf0.5(MoO4)3, Hf(MoO4)2e 

TlCrHf0.5(MoO4)3, Tl2Hf(MoO4)3eTlCrHf0.5(MoO4)3), and two new triple 
molybdates of compositions Tl5CrHf(MoO4)6 and TlCrHf0.5(MoO4)3 are 
formed in the Tl2MoO4–Cr2(MoO4)3–Hf(MoO4)2 system (Fig. 2). Oxides 
of the compounds M5CrHf(MoO4)6 (M = K, Tl) were synthesized by 
reacting K2MoO4, Hf(MoO4)2, Cr2(MoO4)3 and Tl2MoO4, Hf(MoO4)2, 
Cr2(MoO4)3 in stoichiometric proportions in the temperature range 
723–770 K (for K5CrHf(MoO4)6) and 723–793 K (for Tl5CrHf(MoO4)6) in 
air, respectively. 

Similarly, TlCrHf0.5(MoO4)3 was prepared from the constituent 
oxides TlCr(MoO4)2, Hf(MoO4)2 around 873 K in air. The formation of 
single-phase products was investigated by powder X-ray diffraction 
(on a Bruker D8 ADVANCE X-ray diffractometer (Bruker, Berlin, 
Germany) with Cu-Kα radiation (λ = 1.5418 A˚)). 

3. Results and discussion 

3.1. Crystal structure 

XRD spectra together with the Rietveld refinement profiles 
(analyzed by TOPAS 4.2 [48] software) of the M5CrHf(MoO4)6 (M = K, 
Tl), TlCrHf0.5(MoO4)3 compounds are illustrated in Fig. 3(a)–(c), re-
spectively. All peaks for M5CrHf(MoO4)6 (M = K, Tl) compounds were 
indexed by trigonal cell (R3̄c) with parameters close to K5InHf 
(MoO4)6 [49]. The In3+ ion was replaced by Cr3+ ion and K+ ion by Tl+ 

ion. The ratio of Hf/Cr in two sites was refined taking into account 
that the sum of occupancies is equal to 1 in each site. In order to 
reduce the number of refined parameters, only one thermal para-
meter was refined for all O atoms. 

Fig. 1. Phase equilibria of the K2MoO4–Cr2(MoO4)3–Hf(MoO4)2 system in the sub-
solidus region 723–773 K, where S1 is K5CrHf(MoO4)6. 

Fig. 2. Phase equilibria of the Tl2MoO4–Cr2(MoO4)3–Hf(MoO4)2 system in the sub-
solidus region 773–823 K, where S1 is Tl5CrHf(MoO4)6 and S2 is TlCrHf0.5(MoO4)3. 

Fig. 3. The X-ray diffraction patterns and the corresponding Rietveld refinement for 
(a) K5CrHf(MoO4)6, (b) Tl5CrHf(MoO4)6 and (c) TlCrHf0.5(MoO4)3 compounds, re-
spectively. 

V.G. Grossman, M.S. Molokeev, B.G. Bazarov et al. Journal of Alloys and Compounds 873 (2021) 159828 

3 



The TlCrHf0.5(MoO4)3 crystallizes in a trigonal structure with the 
space group of R3̄ with parameters close TlFeHf0.5(MoO4)3 [28]. 

Refinement was stable and gave low R-factors (Table 1). Co-
ordinates of atoms and main bond lengths are in Table 2 and Table 3 
respectively. 

The schematic spatial views of the M5CrHf(MoO4)6 (M = K, Tl), 
TlCrHf0.5(MoO4)3 compounds are presented in Fig. 4. In these 
structures, Hf4+ and Cr3+ ions are coordinated to six O2− ions to form 
a (Hf,Cr)O6 octahedrons, Mo6+ ions are surrounded by four neigh-
boring O2− ions in a tetrahedral polyhedron. Each octahedron has 
common vertices with tetrahedra. The atoms arranged in this way 
form zigzag channels extended along with the a and b axes, in which 
thallium and potassium atoms are located, respectively. 

The crystallographic data are deposited in Cambridge 
Crystallographic Data Centre (CSD#2057967–2057969). The data can 
be downloaded from the site (www.ccdc.cam.ac.uk/data_re-
quest/cif). 

3.2. Thermal and electrical properties 

The green compounds of K5CrHf(MoO4)6, Tl5CrHf(MoO4)6, and 
TlCrHf0.5(MoO4)3 molybdates was subjected to DSC/TG 

Table 1 
Main parameters of processing and refinement of the M5CrHf(MoO4)6 (M = K, Tl) and 
TlCrHf0.5(MoO4)3 samples.      

Compound K5CrHf (MoO4)6 Tl5CrHf (MoO4)6 TlCrHf0.5 (MoO4)3  

Sp.Gr. R3c R3c R3c 
a, Å 10.45548 (5) 10.53406 (12) 12.9710 (2) 
c, Å 37.24614 (3) 37.6837 (5) 11.7825 (2) 
V, Å3 3526.14 (4) 3621.39 (9) 1716.78 (6) 
Z 6 6 6 
2θ-interval, º 9–140 5–140 9–140 
Rwp, % 3.18 4.35 6.60 
Rp, % 3.65 4.86 7.05 
Rexp, % 2.37 2.77 2.24 
χ2 1.34 1.57 2.95 
RB, % 2.80 3.32 6.34 

Table 2 
Fractional atomic coordinates and isotropic displacement parameters (Å2) of M5CrHf(MoO4)6 (M = K, Tl) and TlCrHf0.5(MoO4)3.        

a)Fractional atomic coordinates and isotropic displacement parameters (Å2) of K5CrHf (MoO4)6 

Atom x y z Biso Occ.  

Mo 0.35550 (7) 0.06343 (7) 0.033417 (17) 0.79 (2) 1 
Hf1 0 0 0 0.44 (3) 0.795 (3) 
Cr1 0 0 0 0.44 (3) 0.205 (3) 
Hf2 0 0 0.25 0.43 (5) 0.205 (3) 
Cr2 0 0 0.25 0.43 (5) 0.795 (3) 
K1 0 0 0.35325 (8) 2.23 (6) 1 
K2 0.3817 (3) 0 0.25 2.14 (5) 1 
O1 0.1689 (6) 0.0416 (6) 0.03391 (12) 0.79 (10) 1 
O2 0.4897 (5) 0.2462 (5) 0.05334 (11) 0.57 (10) 1 
O3 0.3549 (6) 0.9095 (7) 0.05229 (13) 2.07 (13) 1 
O4 0.3957 (6) 0.0566 (6) 0.99268 (13) 1.65 (13) 1 
b) Fractional atomic coordinates and isotropic displacement parameters (Å2) of Tl5CrHf(MoO4)6 
Atom x y z Biso Occ. 
Mo 0.35664 (17) 0.06422 (17) 0.03390 (3) 1.17 (7) 1 
Hf1 0 0 0 0.50 (8) 0.798 (5) 
Cr1 0 0 0 0.50 (8) 0.202 (5) 
Hf2 0 0 0.25 0.50 (12) 0.202 (5) 
Cr2 0 0 0.25 0.50 (12) 0.798 (5) 
Tl1 0 0 0.35588 (4) 3.18 (7) 1 
Tl2 0.38479 (12) 0 0.25 2.99 (8) 1 
O1 0.1791 (12) 0.0364 (12) 0.0343 (3) 1.65 (13) 1 
O2 0.4757 (10) 0.2326 (11) 0.0508 (3) 1.65 (13) 1 
O3 0.3598 (11) 0.9299 (11) 0.0449 (3) 1.65 (13) 1 
O4 0.4078 (11) 0.0520 (11) 0.9972 (2) 1.65 (13) 1 
c) Fractional atomic coordinates and isotropic displacement parameters (Å2) of TlCrHf0.5(MoO4)3 
Atom x y z Biso Occ. 
Tl1 1/3 2/3 0.50475 (14) 1.80 (13) 1 
Mo1 0.03640 (14) 0.5131 (4) 0.31349 (16) 1.93 (12) 1 
Hf1 1/6 5/6 1/3 1.52 (13) 1/3 
Cr1 1/6 5/6 1/3 1.52 (13) 2/3 
O1 0.0155 (10) 0.4939 (17) 0.1720 (11) 1.7 (2) 1 
O2 0.0838 (12) 0.6558 (15) 0.3644 (13) 1.7 (2) 1 
O3 0.1574 (12) 0.4845 (12) 0.3465 (14) 1.7 (2) 1 
O4 0.9141 (14) 0.4195 (12) 0.3793 (11) 1.7 (2) 1 

Table 3 
Main bond lengths (Å) of M5CrHf(MoO4)6 (M = K, Tl) and TlCrHf0.5(MoO4)3.      

a) Main bond lengths (Å) of K5CrHf (MoO4)6  

Mo—O1 1.848 (3) K1—O3ii 2.716 (6) 
Mo—O2 1.868 (4) K1—O4i 2.902 (5) 
Mo—O3 1.753 (6) K2—O2i 2.934 (4) 
Mo—O4 1.586 (5) K2—O3iii 3.038 (5) 
(Hf1/Cr1)—O1 2.033 (5) K2—O4iv 2.897 (5) 
(Hf2/Cr2)—O2i 1.953 (4)   
Symmetry codes: i) -x + 2/3, -y + 1/3, -z + 1/3; (ii) x-1/3, y + 1/3, z + 1/3; (iii) y + 2/3,  

-x + y + 1/3, -z + 1/3; (iv) -x + y + 2/3, -x + 1/3, z + 1/3 
b) Main bond lengths (Å) of Tl5CrHf(MoO4)6 

Mo—O1 1.742 (7) Tl1—O3ii 2.776 (10) 
Mo—O2 1.703 (10) Tl1—O4i 2.948 (9) 
Mo—O3 1.491 (9) Tl2—O2i 2.994 (7) 
Mo—O4 1.513 (7) Tl2—O4iii 3.134 (8) 
(Hf1/Cr1)—O1 2.157 (11)   
(Hf2/Cr2)—O2i 2.131 (10)   
Symmetry codes: (i) -x + 2/3, -y + 1/3, -z + 1/3; (ii) x-1/3, y + 1/3, z + 1/3; (iii)  

-x + y + 2/3, -x + 1/3, z + 1/3 
c) Main bond lengths (Å) of TlCrHf0.5(MoO4)3 

Mo1—O1 1.687 (13) Tl1—O3 2.979 (14) 
Mo1—O2 1.739 (17) Tl1—O4i 3.135 (13) 
Mo1—O3 1.826 (9)   
Mo1—O4 1.633 (13)   
(Hf1/Cr1)—O1ii 2.042 (13)   
(Hf1/Cr1)—O2 2.029 (17)   
(Hf1/Cr1)—O3iii 2.029 (12)   
Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -y + 2/3, x-y + 4/3, z + 1/3; (iii) -x + y, -x + 1, 

z. 
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measurements in the argon atmosphere. The results of thermal 
analysis of the compounds are presented in Figs. 5–7. The TG re-
vealed that no mass loss of K5CrHf(MoO4)6, Tl5CrHf(MoO4)6, and 
TlCrHf0.5(MoO4)3 compounds is observed. 

Fig. 5 shows DSC/TG curves of K5CrHf(MoO4)6 recorded during 
heating and cooling runs. The endothermic effect at 997 K is due to 
the congruent melting of molybdate. The crystallization process 
from a melt starts at a lower temperature, i.e., 713 K. 

The DSC curve of Tl5CrHf(MoO4)6 (Fig. 6) revealed two en-
dothermic effects of which the first (a small one) at 700 K, while the 
second at 887 K. The first effect at 700 K was assigned to the first 
order phase transition. The second endothermic effect at 887 K re-
lates incongruently melting of the molybdate. 

The DSC curve for TlCrHf0.5(MoO4)3 showed the same as for 
Tl5CrHf(MoO4)6 two endothermic effects, but at significantly higher 
temperatures (Fig. 7). The first effect is observed at a temperature of 
1032 K, and the second, related to the incongruent melting of mo-
lybdate, at 1144 K. 

Even though that the K5CrHf(MoO4)6 and Tl5CrHf(MoO4)6 com-
pounds have the same molar composition, the number of effects is 
different. For comparison, Table 4 shows the thermal characteristics 
of the molybdates known in the literature with the composition 
compounds M5RHf(MoO4)6 (M = K, Tl; R = Sc, Cr, Fe, In, Bi). It follows 
from the table that a phase transition appears with an increase in the 
ionic radius of the monovalent and trivalent elements. The melting 
points of potassium-containing molybdates are higher than those of 
thallium-containing ones. In addition, high values of both the 
melting temperature and the phase transition are observed in mo-
lybdates, which include the indium cation. 

In this work, additional DSC and TG measurements were also 
carried out in the air. It was found that the melting point of the 
potassium compound decreased by 22 K. And for the Tl5CrHf(MoO4)6 

and TlCrHf0.5(MoO4)3 compounds the melting point remained the 
same.Figs. 11 and 12. 

The density of the K5CrHf(MoO4)6, Tl5CrHf(MoO4)6, and 
TlCrHf0.5(MoO4)3 ceramics was determined before and after an-
nealing. Sintering of ceramics at high temperatures leads to an in-
crease in density. For example, for K5CrHf(MoO4)6, the density of the 
ceramic increases from 66% (at the outlet of the PLG-12 hydraulic 

Fig. 4. Crystal structure of (a) K5CrHf(MoO4)6, (b) Tl5CrHf(MoO4)6 and (c) TlCrHf0.5(MoO4)3 compounds, respectively.  

Fig. 5. DSC and TG curves of the K5CrHf(MoO4)6.  

Fig. 6. DSC and TG curves of the Tl5CrHf(MoO4)6.  

Fig. 7. DSC and TG curves of the TlCrHf0.5(MoO4)3.  

Table 4 
Thermal properties of the compounds M5RHf(MoO4)6 ( M = K, Tl; R = Sc, Cr, Fe, In, Bi).        

Compound Tpt, K Tm, K ΔHpt, J/g ΔHm, J/g Ref.  

K5ScHf(MoO4)6   999  -67.35 [25] 
K5CrHf(MoO4)6   997  -100.4 this study 
K5InHf(MoO4)6  910  1015 -1.27 -44.48 [27] 
Tl5CrHf(MoO4)6  700  878 -0.78 -36.72 this study 
Tl5FeHf(MoO4)6  690  874 -1.76 -62.42 [29] 
Tl5InHf(MoO4)6  837  941 -2.27 -7.89 [30] 
Tl5BiHf(MoO4)6  731  871 -3.15 -41.71 [31]    
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press) to 79% (after sintering), for Tl5CrHf(MoO4)6 from 79% to 86%, 
and for TlCrHf0.5(MoO4)3 from 71% to 82%. 

The electrical properties of the materials have been investigated 
by impedance spectroscopy. Complex impedance spectra analysis 
which represents the Z′ and Z" graphical information for all the 
molybdates (K5CrHf(MoO4)6, Tl5CrHf(MoO4)6 and TlCrHf0.5(MoO4)3) 
at different temperatures in the air are given in Figs. 8–10, which 
shows the effect of temperature on impedance behavior. Usually, 
impedance spectra of a typical electrolyte consist of three semi- 
circles. High frequency and low-frequency semicircles represent 
grain and material/electrode contribution respectively, and 

intermediate frequency semicircle represents the grain boundary 
contribution. In practice sometimes not all the characteristic im-
pedance arcs will be clearly observed in the spectrum. In the im-
pedance plots, the position of the semicircles depends upon the 
resistance and capacitance values. The capacitance values estimated 

Fig. 8. Impedance spectra of K5CrHf(MoO4)6.  

Fig. 9. Impedance spectra of Tl5CrHf(MoO4)6.  

Fig. 10. Impedance spectra of TlCrHf0.5(MoO4)3.  

Fig. 11. Dependence of the conductivity of K5CrHf(MoO4)6 on frequency and tem-
perature. 

Fig. 12. Dependence of the conductivity of Tl5CrHf(MoO4)6 on frequency and tem-
perature. 
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experimentally from deformed semicircles using the equation 
C = 1/2πfmaxR, where fmax is frequency of the peak maxima, have 
values of 10−10 F, which can be considered as the average values of 
the capacitances for bulk and grain boundary conductivity (10−12 and 
10−8 F). Thus, the semicircle in the -Z'' vs. Z′ plots associated with the 
sum of both contributions. The diameter of the semicircle decreases 
with the increase of temperature. A decrease in the grain boundary 
resistance with increasing temperature suggests the decrease of the 
barrier to the mobility of charge carriers aiding electrical conduction 
at higher temperatures. The total conductivity (σ-total) of K5CrHf 
(MoO4)6, Tl5CrHf(MoO4)6 and TlCrHf0,5(MoO4)3 molybdates, was 
calculated from the inverse of the total resistivity measured in the 
temperature range from 475 to 830 K for K5CrHf(MoO4)6, from 475 
to 793 K for Tl5CrHf(MoO4)6, and from 475 to 993 K for 

TlCrHf0,5(MoO4)3. The curves of the temperature dependence of the 
conductivity of the K5CrHf(MoO4)6 and Tl5CrHf(MoO4)6 molybdates 
have bends in the temperature range 680–780 K for K5CrHf(MoO4)6 

and 650–800 K for Tl5CrHf(MoO4)6, attributed to the phase transi-
tion. The dependences of electrical conductivity for many similar 
solid electrolytes with conduction by monovalent metal cations, 
studied earlier [21,27,29–31,34,35,37] had a similar shape. In the 
absence of a phase transition in this temperature range for K5CrHf 
(MoO4)6, following DSC data (Fig. 5), this conductivity jump seems to 
be due to a change in conduction mechanisms. Perhaps this is be-
cause in the high temperature region mobile charge carriers occupy 
positions accessible to them in disordered. At low temperatures, the 
cations are arranged in an ordered manner, in the transition region, 
the cations are gradually disordered with increasing temperature, 
and the rigid framework remains unchanged. The conductivity of the 
Tl5CrHf(MoO4)6 is higher than that of the K5CrHf(MoO4)6 and is 
1.1 × 10−2 S / cm at a temperature of 773 K. Above 700 K, the high- 
frequency semicircles for Tl5CrHf(MoO4)6 disappear, which indicates 
a significant ionic conductivity in ceramics (Fig. 9). These values are 

Table 5 
Potassium and thallium ions conductivity data for K5RHf(MoO4)6 (R = Cr, Sc), Tl5RHf(MoO4)6 (R = Cr, In, Bi) and TlCrHf0.5(MoO4)3.        

Composition σ573 K (S/cm) σ773 K (S/cm) d1 (Å) d2 (Å) Ref.  

K5CrHf(MoO4)6 7.93 × 10−5 5.22 × 10−4 3.077(9) 3.128(7) This study 
K5ScHf(MoO4)6 2.92 × 10−5 2.63 × 10−4 2.996(13) 3.105(10) [25] 
Tl5CrHf(MoO4)6 2.94 × 10−4 1.23 × 10−2 3.390(17) 3.428(16) This study 
Tl5InHf(MoO4)6 3.81 × 10−5 7.51 × 10−4 3.185(16) 3.398(14) [30] 
Tl5BiHf(MoO4)6 8.35 × 10−7 4.32 × 10−6 2.995(13) 3.098(11) [31] 
TlCrHf0.5(MoO4)3 5.26 × 10−8 4.42 × 10−6 3.02(3) 3.09(3) This study 

d1 is the shortest distance between tetrahedra at room temperature; 
d2 is the shortest distance between tetrahedron and octahedron at room temperature.  

Fig. 13. Dependence of the conductivity of TlCrHf0.5(MoO4)3 on frequency and tem-
perature. 

Table 6 
Unit cell parameters of triple molybdates M5RA(MoO4)6 (M = K, Rb, Cs, Tl; R = Cr, Fe, Sc, In, Bi, Ln; A = Zr, Hf).         

Compound a = b c V Z Sp. gr. Reference  

K5CrHf(MoO4)6 10.45548 (5) 37.24614 (3) 3526.14 (4)  6 R3c This study 

K5ScHf(MoO4)6 10.56312(8) 37.6251(3) 3635.74(6)  6 R3c [25] 

K5InHf(MoO4)6 10.564(1) 37.632(4) 3637.0(6)  6 R3c [49] 

K5LuHf(MoO4)6 10.6536(1) 37.8434(8) 3719.75(9)  6 R3c [50] 

Tl5CrHf(MoO4)6 10.53406 (12) 37.6837 (5) 3621.39 (9)  6 R3c This study 

Tl5FeHf(MoO4)6 10.5550 (3) 37.7824 (9) 3645.33 (17)  6 R1 [29] 
Tl5BiHf(MoO4)6 10.6801(4) 38.5518(14) 3808.3(2)  6 R3c [31] 

Rb5ErHf(MoO4)6 10.7511(1) 38.6543(7) 3869.31(9)  6 R3c [51] 

Rb5NdHf(MoO4)6 10.7550(2) 38.8427(13) 3891.0(2)  6 R3c [52] 

Rb5NdZr(MoO4)6 10.7561(2) 38.7790(12) 3885.41(16)  6 R3c [53] 

Rb5CeZr(MoO4)6 10.7248(2) 38.796(1) 3864.52(14)  6 R3c [54] 

Rb5EuHf(MoO4)6 10.7264(1) 38.6130(8) 3847.44(9)  6 R3c [55] 

Cs5BiZr(MoO4)6 10.9569(2) 39.804(4) 4138.4(4)  6 R3c [56] 

Fig. 14. Dependence of the unit cell parameters.  
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very high for thallium ion conducting solid electrolytes. Table 5 
shows that the highest conductivity is in the Tl5CrHf(MoO4)6 com-
pound, which has the widest conduction channels in its structure. 
During the synthesis, thallium fills the channels of the structure, 
expanding them in comparison with the compound K5CrHf(MoO4)6. 
In the Tl5BiHf(MoO4)6 compound, bismuth populates the framework 
of the structure. The expansion of the octahedron leads to a nar-
rowing of the conduction channel. The most unfavorable situation 
for ion transport is in the case of the TlCrHf0.5(MoO4)3 compound. 
Along the c axis (Tl – Tl distance 3.81 Å), the cations pass through the 
narrowest part of the channel - between the tetrahedra, the distance 
is 3.02 (3) Å. It should be noted that the conductivity values for 
TlCrHf0.5(MoO4)3 (Fig. 13) are comparable to the conductivity values 
for CsMZr0.5(MoO4)3 M

3+ = Al, In, Sc, Cr, V, Fe [34]. 

4. Conclusions 

Our study of the systems M2MoO4–Cr2(MoO4)3–Hf(MoO4)2 (M = 
K, Tl) revealed a new of trigonal triple molybdates K5CrHf(MoO4)6, 
Tl5CrHf(MoO4)6, TlCrHf0.5(MoO4)3 with three-dimensional frame-
works. The basic structural unit of three phases is a three-dimen-
sional mixed framework consisting of (Cr,Hf)O6 octahedra and MoO4 

tetrahedra connected by common oxygen vertices. The thallium and 
potassium cations occupy wide zigzag channels in the framework 
extended along the a and b axes. The unit-cell parameters and 
structural characteristics of the phases have been refined by the 
Rietveld method. The triple molybdates K5CrHf(MoO4)6, Tl5CrHf 
(MoO4)6, along with M5RA(MoO4)6 (M = K, Rb, Cs, Tl; R = Cr, Fe, Sc, In, 
Bi, Ln; A = Zr, Hf), enter into the isostructural series of K5InHf(MoO4)6 

crystallizing in the space group R3c. The unit cell parameters of these 
compounds are presented in Table 6. Fig. 14 shows the dependence 
of parameters a = b on c. Compounds of this composition known in 
the literature are located in the ellipsoidal area. We observe a regular 
increase in parameters from compound K5CrHf(MoO4)6 to Cs5BiZr 
(MoO4)6, which are located at the vertices of the ellipse. For this 
structural type, a significant change in the cell volume by 15% is 
possible, which creates favorable conditions for the search for new 
compounds using substitution with other cations. 

Molybdate TlCrHf0.5(MoO4)3 and other molybdates 
MRA0.5(MoO4)3 (M = Cs, Tl; R = Al, Cr, Fe; A = Zr, Hf), crystallize in the 
space group R and are isostructural to CsAlZr0.5(MoO4)3 [57]. The 
unit cell parameters of these compounds are presented in Table 7. 
Unfortunately, these compounds and the CsAlZr0.5(MoO4)3-type 
triple molybdates are limited in introducing isomorphic cation and 
anion substitutions, which is a serious obstacle to enhancing their 
monovalent-ion conductivity. For compounds MRA0.5(MoO4)3, in 
contrast to compounds M5RA(MoO4)6, it is possible to change the cell 
volume by only 5%. 

The performed studies allowed us to establish the electrical 
properties of these compounds. The electroconductivity of the best 
solid electrolyte that was synthesized in this work is equal to 
1.1 × 10−2 S / cm at a temperature of 773 K. The electrical conductivity 
measurements showed higher values for triple molybdate Tl5CrHf 
(MoO4)6 not only in comparison with molybdates of similar com-
position [25,27,29–31,37], but also with other known double and 

ternary molybdates (σ = 7.86 × 10−7 S/cm for Li0.87Na0.13Cr(MoO4)2 at 
599 K [59]; σ = 4.8 × 10−6 S/cm for K3NaCo4(MoO4)6 at 663 K [60]; 
σ = 5 × 10−5 S/cm for K3LiMg4(MoO4)6 at 673 K; σ = 4.58 × 10−5 S/cm 
for Na0.5Ni0.5Sc1.5(MoO4)3 at 573 K [61]; σ = 1.63 × 10−2 S/cm for Na9Al 
(MoO4)(6) at 803 K [62]). All this relates K5CrHf(MoO4)6, Tl5CrHf 
(MoO4)6 to structure types that are promising for the design of new 
ionic conductors. 
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