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A B S T R A C T   

The size of crystallites is one of the most important factors that determine the key characteristics of nano-
crystalline thin magnetic films that make them very promising media for various applications. In this paper, 
using micromagnetic simulation, we study in detail the influence of the grain size on the magnetic microstructure 
of the films and its relation with high-frequency dynamics of magnetization. When the grain size exceeds some 
critical value Dcr, a sharp broadening and shift of the ferromagnetic resonance line are observed at certain fre-
quencies of the alternating magnetic field. Using a two-magnon scattering model, it is shown that these effects 
are caused by the scattering of spin waves on the inhomogeneous stochastic magnetic structure—magnetization 
ripple. An expression for the determination of the critical size Dcr is obtained. The micromagnetic simulation 
results agree with the main conclusions of the static and dynamic theories of magnetization ripple and also 
confirmed by experimental data reported by other authors.   

1. Introduction 

Nanocrystalline soft magnetic materials have a set of unique prop-
erties rendering them advantageous over ferrites, mono- and poly-
crystalline materials traditionally used in microwave electronics. 
Usually, nanocrystalline alloys have higher values of the magnetization 
saturation and high-frequency magnetic susceptibility, which makes 
them particularly promising for microwave devices [1,2]. Among 
various nanocrystalline soft magnetic materials Fe-based alloys, such as 
FeCuNbSiB alloys [3,4], FeBNbCu alloys [5] and FeZrB(Cu) alloys [6] 
show attractive high-frequency characteristics. In addition to the high 
values of the magnetization saturation and initial susceptibility, they 
also demonstrate substantially lower eddy current losses compared to 
their crystalline analogs [7]. Currently, researchers also actively study 
soft magnetic FeCo-based alloys [8,9] that are promising for microwave 
applications. 

Thin films and multilayers made of nanocrystalline magnetic mate-
rials are of special interest [10]. They have found applications as func-
tional materials in devices compatible with planar technology. For 
instance, thin soft magnetic films are widely used as sensing elements in 
magnetic sensors of various types: in fluxgate [11] spin-dependent- 

tunneling [12] giant magnetoimpedance sensors [13] or sensors based 
on microstrip structures [14,15]. Furthermore, the use of nanocrystal-
line magnetic materials in the form of thin films and multilayers makes it 
possible to significantly increase their magnetic susceptibility and upper 
limit of the operating frequency range [16,17]. The relation between the 
magnetic susceptibility and frequency of ferromagnetic resonance 
(FMR), introduced by Acher and Adenot [18] clearly shows the superi-
ority of thin-film magnetic materials over their bulk counterparts [17]. 
Another advantage in using thin films and multilayers lies in the fact that 
such structures allow for greater flexibility in choosing the composition 
of a nanocrystalline alloy and the technology of their synthesis [19]. For 
this reason considerable efforts have been made to search for nano-
crystalline thin-film structures with high magnetization saturation and 
magnetic susceptibility, and low microwave losses [2,10,20–26]. 

One of the most important results, obtained during the investigation 
of nanocrystalline materials, was the establishment of a complex 
dependence of the magnetic microstructure, anisotropy, coercivity, and 
magnetic susceptibility on the grain size [7,27]. Currently, the random 
anisotropy model (RAM) originally proposed by Alben et al. [28] and 
subsequently modified by Herzer [29] is widely used to interpret this 
intricate dependence. According to this model, when the grain size is 
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smaller than the exchange correlation length, the exchange coupling 
between grains leads to the averaging of the random anisotropy of in-
dividual grains resulting in a significant decrease of coercivity and in-
crease in magnetic susceptibility of the nanocrystalline medium. 
Experimental studies support the validity of RAM not only for single- 
phase materials but also for multiphase and granular materials [30]. 

Because RAM is based on simple and clear concepts, this model is 
extensively used to interpret the soft magnetic properties of bulk ma-
terials as well as two-dimensional nanocrystalline thin films and mul-
tilayers [30–33]. Despite a convincing argument in the RAM theory, it 
can be used only for a qualitative but not quantitative analysis of the 
static properties of nanocrystalline thin films. In thin films, the dipolar 
interaction between grains, which is neglected in RAM, leads to the 
transformation of the shape and size of the region over which the 
averaging of the random anisotropy occurs [34]. The dipolar interaction 
also results in the formation in the film of inhomogeneous demagnet-
izing fields [35]. Specifically, the dipolar interaction together with the 
exchange interaction leads to the appearance of an inhomogeneous 
stochastic magnetic structure, called magnetization ripple. Magnetiza-
tion ripple in nanocrystalline films is a well-established experimental 
fact [36] but it cannot be explained in the framework of RAM. 

A more complete theoretical model, which takes into account both 
exchange and dipolar interactions between grains in thin films was 
considered by Hoffmann [34,35], Harte [37] Ignatchenko [38] back in 
the late 1960s in the framework of the magnetization ripple theory. Due 
to the long-range nature of the dipolar interaction [39] the micro-
magnetic problem of the grain size effect on the static and high- 
frequency properties of nanocrystalline thin films cannot be solved 
rigorously. Therefore, analytical expressions relating the microcrystal-
line structure of the film with its macroscopic magnetic characteristics 
were obtained within the magnetization ripple theory using some ap-
proximations. Today, the following questions are still relevant: (i) How 
justified are the approximations used in the magnetization ripple the-
ory? and (ii) What are the limits of applicability of the analytical 
expressions? 

Recent advances in numerical methods of the micromagnetic simu-
lation and a significant increase in the computational power of modern 
computers have made it possible to investigate various complex mag-
netic structures with high accuracy [39]. To date, the micromagnetic 
simulation has become a standard, extensively used efficient tool that 
can provide an in-depth understanding of the magnetic behavior of 
ferromagnets, thin films in particular. For instance, numerical micro-
magnetic simulation of thin films have made it possible to study the 
magnetic microstructure and its correlation characteristics [40–42], as 
well as the influence of the structural [42–44] and technological [45,46] 
parameters on the coercivity and remanence. On the other hand, the 
simulation of the high-frequency response of nanocrystalline thin films 
is not so common [47,48] due to the significant computational diffi-
culties [49]. In this paper, using micromagnetic simulation, we study in 
detail the influence of the grain sizes on the magnetic microstructure 
and high-frequency susceptibility of nanocrystalline thin films with the 
main focus on the investigation of the causes that lead to the ferro-
magnetic resonance line broadening. 

2. Numerical simulations 

2.1. Justification of the numerical model 

A typical nanocrystalline thin magnetic film is a two-dimensional 
array of randomly oriented crystallites (grains) less than 100 nm in 
size, embedded in an amorphous magnetic matrix [50]. The average size 
D0 and magnetocrystalline anisotropy constant K of grains are one of the 
most important parameters that determine the macroscopic magnetic 
properties of the films. However, the intergranular amorphous phase 
(with a typical thickness of about 1 nm) plays an equally important role 
by implementing the exchange coupling between grains [50]. 

Experiments show that the Curie temperature Tcam of an amorphous 
phase is substantially lower than that of a nanocrystalline phase indi-
cating that the amorphous phase has a lower value Aam of the exchange 
constant than that of grains [7,30,50]. When the operating temperature 
exceeds Tcam or the composition of the nanocrystalline alloy is not 
optimized and Aam = 0, the magnetic coupling between grains is broken 
and the soft magnetic properties degrade correspondingly. 

Nanocrystalline materials are one of the most complicated objects 
from the point of view of numerical micromagnetic simulations [49,51]. 
Since the magnetic anisotropy of individual grains is distributed 
randomly throughout the film, the magnetization processes and 
magnetization dynamics of such an inhomogeneous film can be studied 
only statistically. Therefore, in order to obtain valid and relevant 
simulation results, it is necessary to consider a large (statistically sig-
nificant) number of grains in the model. Moreover, it should be taken 
into account that in real nanocrystalline materials the grains have a 
Gaussian size distribution, and the boundaries between crystalline and 
amorphous phases are complicated curved surfaces. This, in turn, im-
poses additional requirements to the discretization level of the consid-
ered object. Simultaneous satisfaction of all these requirements is not 
possible due to the existing limitations of computing power. Therefore, a 
balanced approach for simplifying the numerical model of a nano-
crystalline thin film is required. 

First, it was shown (see, for example, Ref. [30,50]) that in the 
framework of RAM, multiphase (including two-phase) magnetic systems 
for most nanocrystalline alloys can be considered as single-phase ones 
given that the model parameters were renormalized correspondingly. 
Such systems are described by effective (averaged) model parameters: 
average effective grain size D0, effective local magnetocrystalline 
anisotropy constant K, effective exchange coupling constant A ≈ Aam. In 
this paper, we limited ourselves to considering only the single-phase film 
model, hence, we did not study the effect of the real microstructure on 
the magnetic properties of nanocrystalline thin films. 

Second, it is important to take into account that the magnetic mo-
ments inside the grain are coupled by exchange more strongly than the 
moments of neighbor grains, whose coupling mainly occurs via a thin 
amorphous interlayer. In addition, in this paper, we did not consider the 
magnetization reversal processes. We studied the magnetic microstruc-
ture and high-frequency properties of the films on a reversible part of the 
hysteresis loop. As it will be evident from the simulations results, the 
grain sizes considered in the model is sufficiently smaller than the radius 
of magnetic correlations (exchange and dipolar) within which the 
magnetization is almost uniform. These conclusions give us reason to 
consider individual grains as magnetically coupled uniformly- 
magnetized Stoner–Wohlfarth particles, that is, we use the macrospin 
approximation [52,53]. 

2.2. Micromagnetic model and calculation methods 

To investigate the effect of grain size on the magnetic microstructure 
and high-frequency susceptibility of a nanocrystalline thin film, we used 
the following numerical micromagnetic model. Within the finite- 
difference method [39] the film was discretized on N identical cells of 
volume V0. Each cell corresponded to an individual uniformly magne-
tized grain with the magnetic moment μi = V0 Mi, (i = 1,2,..,N). It was 
assumed that for all grains, the modulus of the magnetization vectors Mi 
was constant and equal Ms = |Mi|. Then the expression for the free en-
ergy F of the film is [44] 

F = − V0

∑N

i=1

⎡

⎢
⎢
⎢
⎢
⎣

HMi −
A

D2
0

∑Ni
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j∕=i
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MiMj

M2
s
) +

1
2
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j=1
MiGm

ij Mj +
K

M2
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2

⎤

⎥
⎥
⎥
⎥
⎦

(1) 

In this expression, the first term describes the energy of an external 
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magnetic field H (the Zeeman energy). The second term describes the 
energy of the exchange interaction between grains, where the inner 
summation is performed only over the nearest Ni neighbors of the ith 
grain. The third term describes the energy of the demagnetizing fields, 
where Gm

ij ∈ R3×3 is a 3 × 3 tensor, which describes the magnetostatic or 
dipolar interaction between grains i and j [44]. Finally, the last term of 
the expression represents the energy of the uniaxial magnetic anisotropy 
K with a random orientation of magnetization easy axes li in the grains. 
Expression (1) can be rewritten in a more convenient and compact form 

F = − V0

∑N

i=1

[

HMi +
1
2
∑N

j=1
MiGijMj

]

, (2)  

where Gij is an effective 3 × 3 tensor describing interactions between 
grains i and j. The tensor Gij does not depend on the magnetization 
orientation Mi, it is determined solely by the intrinsic properties of the 
investigated magnetic system, Gij = Ge

ij + Gm
ij + Ga

ij. Here Ge
ij ∈ R3×3 is a 

tensor describing exchange interaction, and Ga
ij ∈ R3×3 random uniaxial 

magnetic anisotropy. The elements of the symmetric tensors which 
represent the exchange interaction and magnetic anisotropy are given 
by 

Ge
ij =

2A
M2

s D2
0

E, (for the nearest neighbors i and j), Ga
ij =

2K
M2

s
li ⊗ ljδij, (3)  

where E is an identity matrix of size 3 × 3, the sign ⊗ means tensor 
product, and δij is the Kronecker delta. 

The magnetic behavior of the medium is determined by the effective 
magnetic field acting on each grain 

Heff
i (M1,…,MN) = −

1
V0

δF
δMi

= Hi +
∑N

j=1
GijMj. (4) 

If we divide the magnetization and the effective magnetic field on the 
static and dynamic parts Mi = M0i + mi(t), Heff

i = Heff
0i + heff

i (t), the 
equilibrium magnetization M0i of the ith grain can be found from the 
condition [M0i × Heff

0i ] = 0, or, as was shown in Ref. [44] from the system 
of linear inhomogeneous equations with undetermined Lagrange mul-
tipliers νi 

Heff
0i (M01,M02,…,M0N) − νiM0i = 0, (i = 1,…,N) (5) 

According to Eqs. (4) and (5), the static and dynamic parts of the 
effective field are given by 

Heff
0i =

∑N

j=1
GijM0j +H0 = νiM0i, heff

i (t) =
∑N

j=1
Gijmj(t) +hrf (t), (6)  

where hrf(t) is the external high-frequency magnetic field. 
To solve the system of inhomogeneous equations (5), we used an 

approach based on the system relaxation according to the internal 
effective magnetic fields acting on each magnetic moment [44]. At each 
iteration step, the effective local magnetic field was calculated, and a 
new distribution of magnetization was set in the direction of the acting 
force. The iterative process continued until the position of all magnetic 
moments were stabilized within a given accuracy. It is important to note 
that the obtained equilibrium magnetization distribution was checked 
for stability, and if this test was failed, the new search for the equilib-
rium distribution in the direction of system relaxation was launched 
[44]. 

To investigate the dynamic behavior of the nanocrystalline thin 
magnetic films, we used the linearized system of Landau–Lifshitz 
equations. As was shown in Ref. [49] this system can be written as 

∂mi

∂t
=

∑N

j=1
Bijmj +Nihrf , (i = 1,…,N) (7) 

The following notation was used 

Ni = − γ
(

Λ(M0i) +
α

Ms
(Λ(M0i))

2
)

Bij = Ni
(
Gij − νiδijE

)
, Λ(M0i)

≡

⎛

⎜
⎜
⎝

0 − M(z)
0i M(y)

0i

M(z)
0i 0 − M(x)

0i

− M(y)
0i M(x)

0i 0

⎞

⎟
⎟
⎠, (8)  

where γ = 1.76 × 107 rad/s Oe is the gyromagnetic ratio, and α is a 
dimensionless damping parameter. 

We used the numerical realization of the undetermined coefficients 
method to solve the linearized Landau–Lifshitz equations system. This 
numerical approach was described in detail in our previous paper [49]. 
By substituting mi(t) = m0ie− iωt and hrf (t) = h0e− iωt , the system of dif-
ferential equations (7) is reduced to the system of linear inhomogeneous 
equations 

− iωm0i =
∑N

j=1
Bijm0j +Nih0, (i = 1,…,N), (9)  

that can be solved by using standard numerical methods of linear 
algebra [49]. 

After determination of the dynamic magnetization amplitude m0i, 
the magnetic susceptibility χ of a nanocrystalline thin film was deter-
mined from the expression 

χ =
1
N

∑N

i=1

m0i⋅h0

|h0|
2 (10) 

As shown in Ref. [49] the undetermined coefficients method has a 
much lower computational complexity in comparison with the method 
based on the expansion of the solution of the linearized Landau–Lifshitz 
equation in terms of eigenvectors of the magnetic oscillation modes. 

2.3. Modeling details 

The investigated films were monolayers of close-packed grains 
having the randomly oriented axes of uniaxial anisotropy (local 
anisotropy). The number of grains used in the model was N = 1024 ×
1024 × 1. The size of each grain D0 coincided with the size of the 
discrete cell and varied in the range 12–100 nm. To eliminate the effect 
of grain shape anisotropy on the simulation results, we chose a cubic 
shape for the discrete cells. The volume of the cell corresponded to the 
average volume of the grain, V0 = D3

0. Therefore, the thickness d of the 
investigated monolayer film equaled D0. The components of the tensor 
that describe the dipolar interaction between grains were calculated 
using an analytical expression obtained in Ref. [54]. We applied two- 
dimensional periodic boundary conditions for the exchange and 
dipolar interactions [55] to eliminate the edge effects originating from 
inhomogeneity of an internal magnetic field in samples of finite size 
[56]. 

For concreteness, magnetic parameters of the investigated films were 
chosen to correspond to a well-known nanocrystalline alloy 
Fe73.5Cu1Nb3Si13.5B9 [27]: the saturation magnetization 4πMs = 12 kG 
(1.2 T), the effective exchange constant A = 1 × 10-6 erg/cm (1 × 10- 

11 J/m), the damping parameter α = 0.005. We defined the random 
magnetic anisotropy of the film by assigning to each grain the uniaxial 
magnetic anisotropy field and the orientation of the easy axis. For all 
grains, the anisotropy field was the same, Hk = 2 K/Ms = 171.7 Oe (K =
8200 J/m3), while the orientations of the easy axes li (i = 1,2,..,N) were 
random. We note that the orientation of the easy axis li varied randomly 
from grain to grain, satisfying to the following uniform distribution 
function of the vector l in a spherical coordinate system: f(l) = f(θ,φ) =
sin θ/4π, where θ and φ are the polar and azimuthal angles of the vector 
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l. 
The mutually perpendicular external constant H and alternating 

hrf(t) uniform magnetic fields were applied in the film plane. In Table 1 
we additionally show the ratio between the exchange energy Fe =

− VA/D2
0 and energy of the randomly oriented local anisotropy Fa =

− VK, where V is the film’s volume. 

3. Numerical results and discussion 

3.1. Magnetic microstructure 

The main feature of nanocrystalline thin magnetic films is the small 
size of crystallites in comparison with the correlation radius of the ex-
change and dipolar interactions. The magnetic coupling between crys-
tallites leads to the averaging and partial suppression of the local 
magnetic crystalline anisotropy. However, usually local anisotropy does 
not average out completely. Because of that, the film exhibits small 
fluctuations of the magnetization vector from its spatial average direc-
tion. This stochastic micromagnetic structure is known as magnetization 
ripple [34,35,37,38]. 

In magneto-optical experimental studies on magnetization ripple, 
when a sample is magnetized along the x-axis, the intensity of the re-
flected light is proportional to the transversal component of the 
magnetization My [57]. For the corresponding geometry, Fig. 1 shows 
numerically calculated distributions of the reduced transversal magne-
tization component my = My/Ms, over the film surface for the applied 
external field H = 10 Oe and D0 = 12, 24, 42, 75 nm. Here, both the 
constant magnetic field H and the average magnetization < Mi > are 
oriented along the x-axis. The stages of the transversal component my 
transformation with the variation of the applied field are shown in Fig. 2 
for the film with D0 = 24 nm. The color in these figures corresponds to 
the magnitude of the magnetization deviation to the right and left from 
its average direction. The calculated distributions reveal the appearance 
of magnetization ripple and agree well with the images of magnetization 
configuration in nanocrystalline films obtained with Kerr microscopy 
[57]. 

Insets in Figs. 1 and 2 additionally show the distributions of the 
magnetic moments of individual grains depending on the angle of their 
deviation from the average magnetization (that lies along the x-axis). As 
it follows from these figures, with the increase of the grain size D0, the 
magnetic correlations (the size of the regions coupled by the exchange 
and dipolar interactions) decrease, while the amplitude of the magne-
tization fluctuations increases. A somewhat different picture is observed 
when the value of the external magnetic field changes. With the increase 
of the applied constant field H, the size of the magnetic correlations also 
decreases. But, as can be seen from the insets in Fig. 2, the amplitude of 
the magnetization fluctuations reduces significantly indicating that the 
magnetization of the film approaches saturation. 

The most rigorous and consistent static theory of magnetization 
ripple was developed by Hoffmann [34,35]. Hoffmann, following the 
results of electron microscopy studies, introduced a model of magneti-
cally coupled regions formed in the film that do not interact with each 
other. The size and shape of such regions depend on the radius of the 
exchange and dipolar interactions, grain size, and the magnitude of the 
applied field. Generally, this magnetically coupled region is an ellipsoid 
strongly elongated perpendicular to the mean direction of the magne-
tization. The lengths of the major semiaxis R⊥(perpendicular to the mean direction) and minor semiaxis R|| (parallel) in the linear approx-

imation are given by [34]. 

R|| =
̅̅̅̅̅̅̅̅̅̅
D/H

√
, R⊥ = 4

̅̅̅
d

√
D1/4M1/2

s H− 3/4, (11)  

where D = 2A/Ms. Averaging magnetic anisotropy of randomly oriented 
crystallites within the magnetically coupled region, Hoffmann obtained 
the following expression for the dispersion of the transverse magneti-
zation component 

Table 1 
The ratio between the exchange energy Fe and the energy of the randomly ori-
ented local anisotropy Fa of nanocrystalline thin magnetic films for different 
grain sizes D0.  

D0 12 nm 24 nm 32 nm 42 nm 56 nm 75 nm 100 nm 

Fe/Fa  8.47  2.12  1.19  0.69  0.39  0.22  0.12 
Fa/Fe  0.12  0.47  0.84  1.45  2.57  4.61  8.2  

D

y 

x

My Ms

My Ms

Fig. 1. Calculated distributions of the reduced transversal magnetization 
component my = My/Ms in a thin film for four grain sizes D0 = 12, 24, 42, 75 
nm. Applied constant magnetic field H = 10 Oe. Insets show the distribution of 
the magnetic moments depending on the angle of their deviation from the x- 
axis. The applied constant field and the average magnetization are oriented 
along the x-axis. 

H

y 

x

My Ms

My Ms

Fig. 2. Calculated distributions of the reduced transversal magnetization 
component my = My/Ms in a thin film for four values of the applied field H. The 
grain size D0 = 24 nm. Insets show the distribution of the magnetic moments 
depending on the angle of their deviation from the x-axis. The applied constant 
field and the average magnetization are oriented along the x-axis. 
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dm =< m2
y >=

S2

4π
̅̅̅
d

√
M10/4

s D3/4H3/4
(12) 

The expression (12) includes structural constant S that was intro-
duced by Hoffmann for a quantitative description of the magneto-
structural properties of the film. The structural constant is defined as 
S = D0Kσ1/

̅̅̅
n

√
, where σ1 is a constant that characterizes the rms devi-

ation of the easy magnetization axes of crystallites (σ1 = 2/
̅̅̅̅̅̅
15

√
for 

uniaxial anisotropy, σ1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8/105

√
for cubic anisotropy), and n is a 

number of grains over the film thickness. 
We estimated the magnetization dispersion and the size of the 

magnetically coupled regions on the calculated distributions by using 
the correlation function for the reduced magnetization component my 

Km(r) =< my(r
′

)my(r
′

+ r) > . (13) 

The value of the correlation function at r = 0 determines the 
magnetization dispersion, that is dm = Km(0). The magnetic correlation 
radiuses along R|| and transverse R⊥ to the mean direction of the 
magnetization were determined from the function Km(r) as a distance 

(along the corresponding direction) at which the correlations decrease 
by a factor of e ≈ 2.718, that is, from the conditionKm(R||,⊥) = Km(0)/e. 
Fig. 3 shows the dispersion dm and longitudinalR|| and transverse R⊥

correlation radiuses versus the applied magnetic field, calculated from 
the correlation analysis of the equilibrium magnetization distribution 
for the films with D0 = 12, 24, 42, 75 nm. The dashed lines on the plots 
display theoretical dependences of these parameters, calculated using 
formulas (11) and (12). 

One can see that the ripple theory of Hoffmann is in better agreement 
with the simulation results the smaller the grain size is used in the 
calculation. In the range of the large magnetic fields, the observed dif-
ferences are due to the fact that the further decrease of the size of the 
magnetically coupled region with the increase of H is limited by the size 
of the grains. This was noted by Harte [37] who instead of (11) used the 
approximation R|| ≈

̅̅̅̅̅̅̅̅̅̅
D/H

√
+R for the case when the exchange corre-

lation length 
̅̅̅̅̅̅̅̅̅̅
D/H

√
was comparable with the grain radius R = D0/2. In 

agreement with this approximation, the longitudinal correlation radius 
R||, obtained from the micromagnetic simulation, tends to R for H → ∞ 
(Fig. 3b). In the weak fields region, the results of the micromagnetic 
simulation and theory are also in disagreement. In this case, the ratio 
between the value of the applied field and magnetic parameters of the 
sample is such that the linear approximation used by Hoffmann for 
deriving expressions (11) and (12) is no longer valid. As was shown by 
Harte [37] and subsequently by Hoffmann [34] if the rms deviation of 
the magnetization direction < ϕ >≈

̅̅̅̅̅̅
dm

√
180/π is larger than 1◦–2◦, 

then it is necessary to consider in the theoretical model the effect of 
nonlinear terms of the equilibrium magnetization equation. 

These results are also in good agreement with the experimental data 
reported by other authors. Iskhakov et al. [58] measured the dispersion 
dm of the transversal magnetization component as a function of an 
applied magnetic field for the nanocrystalline 10-nm-thick Co93P7 film. 
As in our numerical model, the grain size of the nanocrystalline alloy 
Co93P7 was about the film thickness. The authors showed that in the 
field range 0.2 ÷ 2 kOe, dm ~ H-3/4, in agreement with the expression 
(12) and simulation results shown in Fig. 3. Michels et al. [59] directly 
measured magnetic correlations in a nanocrystalline Co film employing 
small-angle neutron scattering (SANS). The mean grain size of the Co 
film was 10 nm, although the thickness of the film was 160 μm. The 
authors approximated the experimental dependence of the magnetic 
correlation length by the dependenceR|| ∼

̅̅̅̅̅̅̅̅̅̅
D/H

√
+ D0, which again 

agrees quite well with our simulation results. The authors also measured 
the dependence of the dispersion dm on the applied field. They approx-
imated this dependence as dm ~ H-1. However, a careful analysis of the 
experimental dependence dm(H) presented in the paper [59] allows us to 
draw a reasoned conclusion that dm ~ H-3/4 would be the better 
approximation in the wide range (1 ÷ 103 mT) of internal magnetic 
field. 

3.2. High-frequency susceptibility 

The phenomenological theory of ferromagnetic resonance in an 
isotropic uniformly magnetized thin film gives the following simple 
expression for the magnetic susceptibility [60] 

χ(H) = χ ′

− iχ′′ =
1

4π
ωM(ωM + ωH)

ω2
0 − ω2 + iαω(ωM + 2ωH)

, (14)  

where ωM = γ4πMs, ωH = γH, ω0 = 2πf0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ωH(ωM + ωH)

√
is the fre-

quency of the uniform FMR, and ω = 2πf is the frequency of the applied 
alternating magnetic field. 

The random local anisotropy in nanocrystalline thin films can sub-
stantially affect their high-frequency susceptibility behavior [47,49]. 
This is confirmed by the results of χ(H) calculations presented in Fig. 4. 
The dashed lines on this figure show real χ’(H) and imaginary χ’’(H) 
parts of the susceptibility calculated using expression (14), while 

Fig. 3. Dispersion dm (a), longitudinalR|| (b) and transverse R⊥ (c) correlation 
radiuses of the reduced magnetization component my = My/Ms versus the 
applied magnetic field H for several values of D0. Symbols are micromagnetic 
simulation, dashed lines are theoretical calculations according to the expres-
sions (11) and (12). 
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symbols show the results of the numerical simulation. The dependences 
on Fig. 4 were obtained for the several values of frequencies of the 
alternating applied field f = f1 = 10.75, 4.65, 3.5, 2.9, 3.25 GHz, at 
which in the films with D0 = 24, 42, 56, 75, 100 nm the maximum 
broadening of the FMR line was observed. As will be shown below, for 
the film with D0 = 12 nm the FMR line broadening increases mono-
tonically with f and does not have any noticeable maximum. Because of 
that, for this sample as well as for the film with D0 = 24 nm, the 
dependence χ(H) was obtained for f = 10.75 GHz (Fig. 4). 

It is apparent from the results shown in Fig. 4, that for the films with 
the ratio Fe/Fa greater than 1, the exchange interaction between crys-
tallites greatly suppresses the local anisotropy influence. This is notably 
for the film with D0 = 12 nm, where the exchange energy more than 
eight times larger than the energy of the local anisotropy (Table 1). The 
magnetic characteristics of this film are close to that of an isotropic 
uniformly magnetized film, and its field dependence of the magnetic 
susceptibility is almost identical to the curve obtained using expression 
(14). With the increase of the grain size, however, the local anisotropy 
energy begins to dominate over the exchange energy, leading to the 
substantial broadening and asymmetry in χ’’(H) line and also to the shift 
of the resonance field. If the grain size is comparable to the exchange 
correlation length, then the magnitude of the magnetization spatial 
fluctuations rises drastically. This is the case for the film with D0 = 100 
nm, for which the local anisotropy energy is at least eight times larger 
than the exchange energy. As can be seen from Fig. 4, for this film the 
χ(H) dependence deviates from the behavior of the uniformly magne-
tized film most strongly. 

3.3. Resonance field shift and FMR line broadening 

The FMR linewidth of any magnetic material is determined by a 
number of relaxation mechanisms of different nature. These mecha-
nisms are usually divided into two broad classes – intrinsic, that present 
even in an ideal crystal, and are taken into account phenomenologically 
by the damping parameter α, and extrinsic [60]. The latter contribution 
arises due to the presence of inhomogeneities in the material. Among the 
extrinsic relaxation mechanisms, the two-magnon scattering processes 
are of most importance. According to the two-magnon model, the energy 
of the excited uniform FMR mode might scatter on internal inhomoge-
neous magnetic fields to the degenerative spin wave states. These 

inhomogeneous fields (scattering centers) may originate from various 
sources. For instance, the authors of Refs. [48,61] analyzed the influence 
of the randomly oriented local anisotropy on the two-magnon scattering 
processes in polycrystalline thin films, whereas the effect of randomly 
distributed roughnesses on the surface of the film was studied in Refs. 
[62,63]. 

To divide intrinsic and extrinsic contributions to the relaxation, we 
can write the resonance field HR and FMR linewidth ΔH obtained from 
the micromagnetic simulation, as a sum consisting of two parts 

HR = H0 + H(2m),

ΔH = ΔH0 + ΔH(2m),
(15)  

where the first term on the right side of each expression includes only 
intrinsic relaxation mechanism and corresponds to the uniform FMR of a 
thin film, while the effects from the two-magnon scattering processes are 
taken into account in the second term. The resonance field H0 should 
satisfy the condition ω0 = 2πf0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ωH(ωM + ωH)

√
, and at resonance 

frequencies f0 lower than 10–15 GHz, can be approximated as 
H0 ≈ π(f0/γ)2

/Ms. The linewidth of the uniform FMR is determined by 
the well-known expression ΔH0 = 4παf0/γ [60]. 

According to the theory of the two-magnon scattering processes 
developed by Arias and Mills for the inhomogeneous ultrathin films [63] 
the frequency dependence of the FMR line broadening ΔH(2m) is given 
by 

ΔH(2m) = Γarcsin
H0

H0 + 4πMs
= Γarcsin

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f 2
0 + (fM/2)2

√

− fM/2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f 2
0 + (fM/2)2

√

+ fM/2

√
√
√
√
√ , (16)  

that is commonly used to interpret experimental dependencies ΔH(f0) 
[64–66]. Here fM = ωM/2π, and Г is a frequency-independent constant 
that characterizes the “intensity” of magnetic inhomogeneities. As it 
follows from (16), the ΔH(2m) monotonically increases with f0 without 
any peculiarities. 

However, our micromagnetic simulation results show that nano-
crystalline thin films can exhibit a sharp peak in the FMR linewidth at a 
certain frequency f1. This peak emerges only when the grain size D0 
exceeds a certain threshold value. As an example, in Fig. 5a we show 
dependencies ΔH(2m)(f0) obtained by the micromagnetic simulation of 

Fig. 4. The field dependences of the high-frequency magnetic susceptibility χ(H) for nanocrystalline films of various grain sizes D0 = 12, 24, 42, 56, 75, 100 nm, 
obtained at the frequencies of the maximum broadening of the FMR line (symbols). The dashed lines correspond to χ(H) of the uniformly magnetized films 
(equation (14)). 
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high-frequency susceptibility for the films with D0 = 12 and 24 nm. The 
dashed lines on the figure show the approximation of the dependencies 
ΔH(2m)(f0) according to the equation (16). The theory of Arias and Mills 
is in quite good agreement with the results of micromagnetic simulation 
for the film with the relatively small grains D0 = 12 nm and the thickness 
d = D0. On the contrary, for the film with D0 = 24 nm, the micro-
magnetic simulation gives a sharp peak in the FMR linewidth ΔH(2m) at 
the frequency of f1 ≈ 10.75 GHz, while at higher frequencies the simu-
lation and theory are in accord again. 

The broadening of the FMR line by the value of ΔH(2m) due to the 
two-magnon scattering mechanism is also accompanied by the shift of 
the resonance field by the value H(2m), relative to the field H0 of the 
uniform ferromagnetic resonance. This is evident from Fig. 5b, where 
the dependencies H(2m)(f0) calculated for the films with D0 = 12 and 24 
nm are shown. For the film with D0 = 12 nm, the resonance field shift 
H(2m) initially gradually increases with the increase of the resonance 
frequency f0, reaches a maximum of 1 Oe at a frequency of 21 GHz, and 
then monotonically decreases down to zero at a frequency of 160 GHz. 
However, the film with D0 = 24 nm behaves quite differently. The sharp 
increase in the linewidth comes together with the substantial positive 
and negative shift of the resonance field. It is noticeable that H(2m) 

changes sign approximately at the frequency position (f1 ≈ 10.75 GHz) 
of the linewidth peak. It is interesting to note that the behavior of the 
dependencies H(2m)(f0) and ΔH(2m)(f0), considered together, has features 
that are specific to resonance systems. Indeed, H(2m)(f0) and ΔH(2m)(f0) 
bear a formal resemblance to real and imaginary parts of the resonance 
curve describing some “oscillation process”. 

With the increase of the grain size, the found resonance-like behavior 
of ΔH(2m)(f0) and H(2m)(f0) retain (Fig. 6), and at the same time the two- 
magnon contribution to the linewidth quickly increases, while the fre-
quency f1 of the peak on the H(2m)(f0) dependence monotonically de-
creases (Table 2). As can be seen from Table 2, the linewidth increases 
on about a factor of 1.5 for the films with D0 = 24 nm and about 10 for 
films with D0 = 100 nm. For each film in Table 2, we also show corre-
lation characteristics of the magnetic microstructure formed in the film 
in an external magnetic field at which the uniform ferromagnetic reso-
nance was observed at the frequency of f1. The rms deviation of the 
magnetization from the mean direction < φ > increases almost linear 
with the increase of the grain size, from 0.6◦ for D0 = 24 nm to 4◦ for D0 
= 100 nm. This indicates that with the increase of D0, the contribution to 
the relaxation processes from the internal inhomogeneous magnetic 
fields caused by the magnetization dispersion rises. Particularly, as one 
can see in Fig. 6, the magnetization dispersion leads to the distortion and 
“widening” of the ΔH(2m)(f0) and H(2m)(f0) curves, and, as a conse-
quence, to the shift of the linewidth peak frequency f1. 

3.4. Theoretical analysis of the FMR line broadening 

The revealed with the help of the micromagnetic simulation 
resonance-like behavior of the FMR linewidth and resonance field shift 

Fig. 5. The frequency dependencies of the FMR line broadening ΔH(2m) (a) and 
resonance field shift H(2m) (b), obtained by the micromagnetic simulation of the 
high-frequency susceptibility for the films with grain sizes D0 = 12 and 24 nm. 
The dashed lines are approximations according to equation (16). 

Fig. 6. The frequency dependencies of the resonance field shift H(2m) (blue squares) and FMR line broadening ΔH(2m) (red circles) obtained by the micromagnetic 
simulation of high-frequency magnetic susceptibility for nanocrystalline films with grain sizes D0 = 24, 32, 42, 56, 75, 100 nm. The thickness of the films is d = D0. 
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has been theoretically addressed by Ignatchenko and Degtyarev [67]. 
These authors were the first to devise the dynamic theory of magneti-
zation ripple (see also a paper of Ignatchenko [38]). In the paper [67] 
they showed that the shift and asymmetric broadening of the FMR line is 
caused by the excitation of spin waves by an external uniform alter-
nating field due to the inhomogeneities of the internal fields, originating 
from the random field of local magnetic anisotropy and magnetization 
ripple. Ignatchenko and Degtyarev also showed that the shift and 
broadening of the FMR line in such nonuniform films had a resonance- 
like character in the frequency dependencies. They obtained the 
following approximate formula for the determination of the frequency 
f1, at which the broadening of the FMR line ΔH(2m) has maximum and 
resonance field shift H(2m) changes sign 

f1 ≈ 2
γ
d

̅̅̅̅
A
π

√ ̅̅̅̅̅̅
d

D0

√

. (17) 

The dependence of the frequency f1 on the grain size, obtained from 
the micromagnetic simulation results, are presented in Fig. 7 (symbols). 
The dashed line on the figure displays the theoretical dependence f1(D0), 
calculated according to expression (17) while taking into account that in 
the micromagnetic simulation the film thickness d equals the grain size 
D0. One can see that the simulation and theoretical results are in 
reasonable agreement with each other. 

Let us now consider a simple two-magnon model of FMR damping in 
a nanocrystalline thin film. This model makes it possible to clearly 
explain the revealed sharp FMR line broadening and the existence of the 
critical grain size below which this effect disappears. The spin-wave 
dispersion relation for a homogeneous isotropic thin film is given by 
[63] 

ωk = γ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[H + Dk2 + 4πMsNk][H + Dk2 + 4πMssin2ϕk(1 − Nk)]

√
. (18) 

Here, Dk2 is the exchange field for a spin wave with wave vector k (k 

= |k|), φk is the angle between the spin wave propagation direction and 
the equilibrium magnetization, Nk is the demagnetization factor that 
depends on the wavenumber k and film thickness d. In the approxima-
tion of a thin film, in which the magnetization does not vary significantly 
across the thickness of the film, this factor can be written as [37] 

Nk(k, d) =
1 − e− kd

kd
. (19) 

Dispersion relation (18) is schematically shown in Fig. 8(a). In this 
figure, ω0 shows the frequency of the uniform FMR mode with k = 0, and 
the curves with φk = 0◦ and φk = 90◦ correspond to the lower and upper 
limit of the spin-wave spectrum. One can see that dispersion curves with 
ϕk < ϕcrit

k cross the ω0 line. This means that the frequency of the uniform 
FMR mode coincides with the frequencies of a set of spin waves having 0 
< ki < ks. Thus, the excitation of the uniform mode can result in the 
excitation of higher-order degenerate spin waves. However, as we have 
mentioned earlier, this is only possible if the film has magnetic in-
homogeneities. As it was shown in Ref. [68,69], if the magnetic 

Table 2 
The frequency f1 of the FMR linewidth peak caused by the two-magnon scattering on magnetization ripple and the broadening magnitude ΔH(2m) versus grain size D0. 
Also shown the resonance field H0 and linewidth ΔH0 of the uniformly magnetized film. For the corresponding values of D0 and H0, the table gives the correlation 
characteristics of magnetization ripple—dispersion dm, rms deviation < ϕ >≈

̅̅̅̅̅̅
dm

√
180/π, and longitudinal R|| and transverse R⊥correlation radiuses of the magne-

tization component my = My/Ms.  

D0, nm f1, GHz ΔH2m, Oe H0, Oe ΔH0, Oe dm × 104 <φ>, ◦ 2R||/D0  2R⊥/D0  

24  10.75  16.9 1121  38.4  1.2  0.6  1.4  5.4 
32  6.65  25.7 452  23.7  3.8  1.1  1.5  8.8 
42  4.66  35.0 225  16.6  9.5  1.8  1.5  12.8 
56  3.46  47.6 129  12.5  21.2  2.6  1.4  16.8 
75  2.89  82.2 89  10.4  39.3  3.6  1.2  19.3 
100  3.26  123.7 111  11.6  41.4  4.0  1.1  17.6  

D

f

Fig. 7. The dependence of the linewidth peak frequency position f1 on the grain 
size D0. Circles are micromagnetic simulation, dashed line is the theoretical 
result according to equation (17), and triangles are the calculation using the 
two-magnon model of FMR damping. 

Fig. 8. (a) Dispersion dependences of spin waves for different directions of 
their propagation φk in the film plane. (b) Maximum wavenumber of a 
degenerate spin wave ks and wavenumber of magnetization ripple kripple = 1/R||

as a function of frequency f0 = ω0/2π for two values of grain sizes D0 = 12 and 
24 nm. 
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inhomogeneities are periodic in nature, then the energy of the uniform 
mode can be transferred to the spin waves most efficiently when the 
wavenumber of the periodic magnetic inhomogeneities is equal to or a 
multiple of the wavenumber of the degenerate spin wave. 

Magnetization fluctuations arising in nanocrystalline thin films 
(magnetization ripple) induce quasi-periodic magnetic in-
homogeneities. The characteristic size of these inhomogeneities along 
the spin wave propagation direction (φk = 0◦) is determined by the 
longitudinal correlation radius R||. It should be expected that the spin 
waves will scatter on these magnetic inhomogeneities most intensely 
when ks = kripple, where kripple = 1/R||. For a given value of ω0, the 
maximum wavenumber ks is determined from the condition 

ωk( H0, ks, ϕk = 0) = ω0. (20) 

Fig. 8(b) displays the dependencies of ks multiplied by D0 on the 
resonance frequency f0 = ω0/2π. The dependencies were obtained by 
numerical solution of equation (20) for grain sizes D0 = 12 and 24 nm. 
This figure also shows the corresponding dependencies kripple(f0). For the 
calculation of kripple(f0) = 1/R||(f0), we used the values of the longitu-
dinal correlation radius R|| obtained from the micromagnetic simulation 
(see Fig. 3b). From Fig. 8 (b), it is easy to understand why there is no 
sharp broadening of FMR line for the film with D0 = 12 nm. The 
dependence kripple(f0) does not cross the ks(f0) curve, therefore, the 
condition ks = kripple cannot be satisfied in the whole frequency range. On 
the other hand, for the film with D0 = 24 nm the curves kripple(f0) and 
ks(f0) intersect at a point f0 = f1, where the maximum scattering of spin 
waves on magnetization ripple is observed. 

The dependence f1(D0) obtained from the condition ks = kripple for the 
films with various grain sizes is shown by triangles in Fig. 7. This 
dependence correlates well with the micromagnetic simulation results, 
although the f1(D0) values are slightly higher for all points except D0 =

100 nm. The origin of this discrepancy lies in the fact that we calculated 
ks(f0) using the dispersion relation (18) that is valid for homogeneous 
thin films. In the case of an inhomogeneous magnetic medium, the spin- 
wave dispersion relation is modified [70,71]. This, in particular, results 
in the characteristic kinks in the dispersion curves that were observed 
experimentally [72]. However, this modified relation has a much more 
complicated form, so we have decided to use a simpler dispersion 
relation (18) instead. 

From this simple theoretical model, we can readily obtain an 
expression for the critical grain size Dcr, above which the effect of sharp 
FMR line broadening occurs. Fig. 8(b) indicates that ks increase mono-
tonically with f0 until a certain limiting value ks(∞). Considering (19) 
and (20) we have 

ks(∞) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π(1 − Nk(ks, d))

√
/Lex, (21)  

where the exchange length Lex =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2A/M2
s

√

is determined by the 
competition between the exchange energy and dipolar energy [19]. 

The monotonically increasing dependencies kripple(f0) also tend to a 
finite value at large f0. As it was shown in section 3.1, the longitudinal 
correlation radius R|| tends to R = D0/2 at H → ∞, hence kripple(∞) = 2/ 
D0. As can be seen from Fig. 8(b), the condition ks = kripple can be 
satisfied only when kripple(∞) ≤ ks(∞). Thus, using the equality kripple(∞) 
= ks(∞), we can write the expression for the determination of critical 
grain size as 

Dcr = g(d/Dcr)⋅Lex. (22) 

The function g(d/Dcr) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2/π(1 − Nk(k = 2/Dcr, d))

√
in (22) depends 

only on the ratio of grain size to film thickness. Table 3 shows values of 
the g(z) function for several values of its argument z = d/Dcr. With the 
increase of z, the g(z) function rapidly decreases and tends to the con-
stant value of about 0.8. Therefore, for sufficiently thick films 
(compared to the grain size), the critical size approximately equals Dcr ≈

0.8 Lex. In the case of a monolayer, as it follows from Table 3, the critical 
size is Dcr ≈ Lex. Calculation of Dcr according to expression (22) for the 
parameters used in the micromagnetic simulation gives a value of 15.7 
nm, in accordance with the simulation results shown in Fig. 5. 

We should also discuss the approximations used by Arias and Mills to 
derive expression (16). This expression describes the frequency depen-
dence of the FMR line broadening, and it is widely used in practice. 
However, expression (16) cannot explain the sharp, resonance-like FMR 
line broadening revealed with the micromagnetic simulations. Expres-
sion (16) was obtained in the limit of an ultrathin film (kd ≪ 1) having 
small defects (grains), kD0 ≪ 1. The first approximation was used by 
Arias and Mills to approximate the demagnetization factor (19) by the 
expression Nk ≈ 1 − kd/2. This approximation is valid if the quadratic 
term in an expansion of MsNk is much smaller than the quadratic term 
Dk2 in (18), that is, the film thickness must be much smaller than the 
exchange length, d ≪ Lex. Considering the approximation kD0 ≪ 1, the 
size of defects (grains) also must be substantially smaller than Lex. In 
other words, the theoretical model of Arias and Mills is valid for a case 
when D0 < Dcr, which is confirmed by the micromagnetic simulation 
results presented in Fig. 5. 

It is interesting to note that such resonance-like behavior of the FMR 
linewidth frequency dependence has been recently reported for the 
nanocrystalline thin ferromagnetic films of Co40Fe40B20 [73]. In the 
paper, the authors studied the effect of annealing temperature on the 
crystallization processes and ferromagnetic resonance parameters of the 
thin film. They found that with the increase of the annealing tempera-
ture the crystallites became larger. But most importantly for us, it was 
also found that when the crystallite size exceeded a value of about 14 
nm, a peak appeared on the linewidth frequency dependence at the 
frequency of f1 ~ 5.5 GHz, while the resonance field markedly shifted. 
Moreover, this shift changed sign near f1. The estimate of f1 frequency 
according to expression (17) for the parameters of the Co40Fe40B20 film 
from Ref. [73] gives a value of about 5.3 GHz that is close to the 
experimental data. The calculation of the critical grain size for the same 
Co40Fe40B20 film parameters according to expression (22) results in Dcr 
~ 13.2 nm, also in accordance with the experiment. Thus, the findings 
presented in Ref. [73] are possible experimental evidence of the 
revealed here with the micromagnetic simulation effect of magnetiza-
tion ripple on the relaxation processes in nanocrystalline thin films. 

4. Conclusion 

In this work, we investigated the magnetic microstructure and high- 
frequency susceptibility of nanocrystalline thin films. Using micro-
magnetic simulation, we calculated correlation characteristics of the 
inhomogeneous stochastic magnetic structure—magnetization ripple, 
and its influence on the ferromagnetic resonance. We showed that for 
the films having the grain size and thickness smaller than a certain 
critical value, the frequency dependence of the FMR line broadening 
exhibits the monotonous arcsin-like behavior and can be fairly accu-
rately reproduced by the theoretical predictions of Arias and Mills [63]. 
However, when the grains become larger and exceed the critical size, the 
FMR line broadening exhibits a sharp peak at a specific frequency f1, 
which depends on the thickness, grain size, and magnetic parameters of 
the film. This behavior is also accompanied by the substantial shift of the 
resonance field, with the shift value changing sign near the frequency 
position of the peak. We demonstrated that the revealed peak of FMR 
line broadening and resonance field shift are caused by the scattering of 
spin waves on inhomogeneities of the stochastic magnetic structure and 
that these effects can be described in the framework of the dynamic 
magnetization ripple theory developed by Ignatchenko and Degtyarev 

Table 3 
Values of the g(d/Dcr) function from Eq. (22) for several values of the argument.  

d/Dcr 0.25 0.5 1 2 3 5 10 100 

g(d/Dcr)  1.73  1.32  1.06  0.92  0.87  0.84  0.82  0.80  
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[67]. Using a simple two-magnon model of FMR damping in a nano-
crystalline thin film, we explained the revealed effect of the sharp FMR 
line broadening, and we obtained the expression for the determination 
of the critical grain size Dcr. The obtained theoretical results are in good 
accordance with the experimental data reported by other authors. 
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