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ABSTRACT
Charge transfer plasmons (CTPs) that occur in different topology and dimensionality arrays of metallic nanoparticles (NPs) linked by narrow
molecular bridges are studied. The occurrence of CTPs in such arrays is related to the ballistic motion of electrons in thin linkers with the
conductivity that is purely imaginary, in contrast to the case of conventional CTPs, where metallic NPs are linked by thick bridges with the
real optical conductivity caused by carrier scattering. An original hybrid model for describing the CTPs with such linkers has been further
developed. For different NP arrays, either a general analytical expression or a numerical solution has been obtained for the CTP frequencies.
It has been shown that the CTP frequencies lie in the IR spectral range and depend on both the linker conductivity and the system geometry.
It is found that the electron currents of plasmon oscillations correspond to minor charge displacements of only few electrons. It has been
established that the interaction of the CTPs with an external electromagnetic field strongly depends on the symmetry of the electron currents
in the linkers, which, in turn, are fully governed by the symmetry of the investigated system. The extended model and the analytical expressions
for the CTPs frequencies have been compared with the conventional finite difference time domain simulations. It is argued that applications
of this novel type of plasmon may have wide ramifications in the area of chemical sensing.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040128., s

I. INTRODUCTION

Localized surface plasmons (LSPs) have attracted a great deal of
attention by the ability to strengthen local electromagnetic fields in
different optical processes, which can be important for many appli-
cations. An LSP represents oscillations of free electrons and elec-
tromagnetic fields induced by the charge motion inside conductive
nanoparticles (NPs).1,2 Plasmonic materials are currently used in
photovoltaic cells,1,3–6 water splitting,7 chemical synthesis,8 plasmon
lasers,9 biomedicine and telecommunication,10,11 high-resolution
imaging,12 and so on. In addition, the LSP resonances find wide

applications in chemical and biological sensing.13–17 The properties
of such sensors are often determined by the high sensitivity of the
surface resonant frequency (SRF) to the permittivity of the chemical
environment, which leads to the frequency shift caused, for example,
by chemical adsorption.14–16,18

The SRF strongly depends on the shape and size of NPs and
a material separating them.1,2,14–18 This is due to the strong depen-
dence of the LSP electromagnetic field on the interparticle spac-
ings. This causes a vast variety of shapes of plasmonic structures,
including individual NPs of different shapes and materials19 and 2D
lattices.10,11,20,21
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A significant contribution to understanding the electronic exci-
tations in different systems, e.g., bulk 3D systems, molecular chains,
and clusters, was made by Bernadotte et al.22 It was shown that the
concept of plasmons is applicable even to molecules. Using a step-
by-step analysis, the authors systematized the electronic excitations
in these systems and demonstrated two types of excitations defined
by the poles of the external response function,

χext(r, r′,ω) = ∫ ε−1
(r, r′′,ω)χirr(r′′, r′,ω)d3r′′.

The type-I excitations form a quasi-continuum of the single-particle
excitations that emerges from the poles of irreducible response func-
tion χirr . The type-II excitations are the plasmon excitations orig-
inating from zero eigenvalues of dielectric function ε at a certain
frequency.

It was shown using the time-dependent density-functional the-
ory (TDDFT)23 that, for a periodic 1D system, the plasmon fre-
quency ωpl depends on the wave vector q and turns to zero at
q→ 0. At the same time, for the model of a finite wire or molecular
systems such as the Na20 chain or a tetrahedral cluster, the plas-
mon frequency was several times higher than the HOMO–LUMO
gap.

The presence of a conductive material between two NPs leads to
the occurrence of a new mode called charge transfer plasmon (CTP),
in which the charge periodically moves between two NPs through a
conductive bridge. The CTPs were experimentally observed in a sys-
tem of two Au NPs linked by a thick gold bridge with a radius from
10 nm to 20 nm.15 In Ref. 24, the CTPs were detected using the scat-
tering spectra for bridged gold disk dimers with a nanowire diameter
and length of 95 nm and 30 nm, respectively, and a nanowire width
from 15 nm to 60 nm. For such systems, it was shown that the reduc-
tion in the conductivity of a bridge via decreasing its diameter results
in the shift of the CTP resonance to the near- and mid-infrared
spectral ranges.

The quantum properties of the CTPs supported by a metallic
dimer bridged with a two-level system (TLS), representing an atom,
a molecule, etc., were studied by the TDDFT approach in Ref. 25.
It was shown that CTP appears when an energy level of the TLS
is resonant with the Fermi level of both metallic nanoparticles. It
enables electrons to flow through the junction. At the resonance,
the TLS conductance becomes close to one quantum of conductance
G0 = 2e2/h.

In Ref. 26, a first-principles study of the plasmonic response
of a stretched metallic nanorod was performed. A quantized evolu-
tion of the plasmon modes during the nanorod stretching has been
described, and a correlation between discontinuities of the plasmons
and the discrete number of conduction channels in the break junc-
tion was established. It can be treated as the plasmonic analog of
quantization conduction in atomic-scale junctions.

In Ref. 27, an optical response of two Na380 clusters during
their approach and retract processes was calculated on the basis
of TDDFT theory and in conjunction with the SIESTA package.
It was demonstrated that due to the quantization of the conduc-
tance in metal nanocontacts, atomic-scale reconfigurations play a
crucial role in determining the optical response of the whole sys-
tem. The authors observed sudden changes in the intensities and
spectral positions of plasmon frequencies and found a one-to-one

correspondence between these changes and the quantized transport
as the neck cross section diminishes.

In Ref. 28, the response of a plasmonic trimer metamolecule
with the trigonal D3h symmetry was explored. The near-field
response was measured with the nanoscale resolution using a molec-
ular probe under the circularly polarized light excitation. The exper-
iments showed that the near-field optical chirality can be imprinted
into a photosensitive polymer and used in polarization-sensitive
photochemistry.

The CTPs of this type can be described in terms of the clas-
sical Maxwell electrodynamics since the quantum effects were not
expected to be significant there because of the relatively large NP
and bridge sizes. However, later on, the quantum effects of the CTPs
were investigated in the systems consisting of two NPs separated
by subnanometer gaps.29–31 In such systems, the coupling between
NPs is determined by the interparticle tunneling and screening
effects.

In addition, note that the NP structures with conduct-
ing 1,4-benzenedithiolate (BDT) and biphenyl-4,4-dithiol (BPDT)
molecules linking cuboidal silver NPs32 and gold monolayers,33

respectively, were examined. It was shown that the presence of con-
ductive linkers leads to the occurrence of a screened coupled plas-
mon mode and a shift of the coupled plasmon energy. When a
biphenyl-l-4-thiol molecule was used instead of BPDT,33 a chemical
bond was formed through only one sulfur atom linked to one of the
two Ag NPs (therefore, this cannot be a conductor); when an insu-
lating 1,2-ethanedithiolate molecule was used instead of conductive
BDT,32 these effects were not observed.

Previously,34,35 we studied a system of NP pairs linked by
narrow conductive molecular bridges, expecting the pronounced
quantum effects, and developed a hybrid model for describing
CTPs in such systems. In this work, we further develop the hybrid
model for the accurate description of more complex systems, tak-
ing into account some quantum effects, and derive a general
analytical expression for the plasmonic frequencies of such NP
systems.

II. MODEL OF THE CTP IN ARRAYS OF METALLIC
NANOPARTICLES LINKED BY CONDUCTIVE
MOLECULES

Here, we follow the basic ideas of the model outlined in our pre-
vious works34,35 where the NP size is small, the interparticle bridge
is only a narrow conductive molecular polymer chain, and carriers
move in the ballistic mode. The ac current of the ballistically mov-
ing carriers accumulates the kinetic energy, which periodically flows
into the potential energy of charged particles. It should be noted that,
in the proposed model, there is no loss in the total energy of the
system.

We also assume that, due to similarity, the local dynamics of
the carriers in this narrow bridge and in the corresponding peri-
odic (nanoparticle-bridge) system should be similar. In addition,
we assume that the kinetic energy of every free carrier exhibits the
parabolic dependence E(k) = (

̵hk)2

2m∗ on the carrier wave vector k and
is inversely proportional to the carrier effective mass m∗.

The total kinetic energy Ekin of free carriers in the bridge can be
written as a sum of electrons in the conduction band with different
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quasi-momenta,

Ekin =∑
k,n

nk,n

̵h2k2
k,n

2m∗
, (1)

where nk ,n are the occupancies for the electrons with the quasi-
momentum kk and the band number n. Under the action of a weak
electric field, carriers are only excited near the Fermi level, so the
kinetic energy derivative is

dEkin
dt
= nf

̵hk
m∗
[
d(̵hk)
dt
]

k=kf
, (2)

where nf are the occupancies for the electrons with the Fermi quasi-
momentum k = kf . Due to the spin degeneracy and generation of
holes with the same effective mass upon excitation of electrons near
the Fermi level, below we limit the consideration to the electrons
with nf = 4.

The total time-dependent current I(t) in a 1D bridge can be
calculated as36

I(t) =
−e
L ∑k,n

nk,nv
eff
k,n, (3)

veffk,n =
1
̵h
∂E(k,n)

∂k
=

̵hkk,n

m∗
, (4)

where L is the bridge length and veffk,n is the electron effective velocity.
The total current in a bridge is nonzero because the nk ,n values

for the quasi-momentum of electrons moving in the bridge in the
opposite directions are different due to the difference between the
electrochemical potentials of NPs.

Assuming that, at the weak oscillations, carriers are only excited
near the Fermi level and taking into account Eq. (1), we can write the
total kinetic energy Ekin of the free carriers forming the current I(t)
in the bridge as

Ekin =
L2m∗

2nf e2 I(t)
2
=
αI(t)2

2
, (5)

where the coefficient is

α =
L2m∗

nf e2 . (6)

In Ref. 34, we proved that the potential energy of all investigated
charged (from −2e to +2e) gold NPs with a number of atoms ranging
from 55 to 1415 is well-approximated by the quadratic function of
the charge

Epot = aQ2 + bQ + c (7)

with the determination coefficient R2 above 0.9999. In these
quadratic functions, the coefficient c is the total energy and the coef-
ficient b is the opposite value of the Fermi energy of a corresponding
neutral NP. According to the classic electrostatics, the electrostatic
energy of a charged sphere is E = Q2/(2C), so the coefficient a is
related to the capacity C as C = 1/(2a).

For all NPs studied in Ref. 34, it was found that their capacities
are consistent with the NP radius R (in the atomic system of units),
which was confirmed also by electrostatics of charged spheres.

Based on the aforesaid, we can draw an important conclusion
that the additional charge of an NP is fully localized on its surface.
All this allows us to use the formula for the potential energy of an
isolated charged NP,

Epot =
Q2

2R
+ bQ + c,

where Q is the NP charge.
Following the proposed model for dumbbell structures consist-

ing of two NPs with radius R linked by a conductive bridge with
length L, one can see that the NPs have the opposite electrostatic
charges Q1(t) and Q2(t) = −Q1(t) and the potentials φ1 and φ2 on
the surface of both NPs are

φ1 =
Q1

R
+

Q2

2R + L
, φ2 =

Q2

R
+

Q1

2R + L
. (8)

According to Eq. (3), the potential difference results from the
charge transfer during the plasmon oscillations with the current
I(t) = dQ(t)

dt in the bridge.
Formally, the dumbbell structure we study can be considered

to be an LC oscillatory circuit, in which the total potential energy of
two NPs is

Epot =
Q2

R
−

Q2

2R + L
.

In Refs. 37 and 38, it was proposed to correct this formula in order
to take into account the self-consistent dipole polarization of spheres
during their interaction as

Epot =
Q2

R
−
F(R,L)Q2

2R + L
,

where the correction function F(R, L) is the difference between the
interactions of two conductive spheres (NPs) and point charges at
the center of a polarized sphere. In Ref. 38, it was shown that this
function rapidly decreases from 2.0, when two conducted spheres
are in contact, to 1.0, when L

2R → ∞ and [F(R, L)] ≃ 1.07 at
L

2R = 1.4. Taking into account that this function rapidly drops to
1.0 and recalling that here we study the systems with L ≥ (2R), below
we omit F(R, L) in all the equations.

Thus, the sum of the NP–bridge–NP system potential and the
kinetic energies is similar to the total energy of the LC circuit,

Etot = Epot + Ekin = (
Q(t)2

R
−

Q(t)2

2R + L
) +

αI(t)2

2
. (9)

Assuming the absence of the total energy dissipation, by differ-
entiation of Eq. (9) and dividing the result by I(t), we arrive at the
differential equation of the harmonic oscillations, which contains
the squared modified plasmonic frequencỹω2

pl,

d2Q(t)
dt2 = −

̃ω2
plQ(t),

̃ω2
pl = (

1
R
−

1
2R + L

)
2
α
= 2β, (10)
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where the introduced parameter β is the squared frequency,

β ≡
1
α
(

1
R
−

1
2R + L

). (11)

Thus, the dynamics of the NP–bridge–NP system and the LC
circuit is the same, even though the nature of the energy related to
the current I(t) is completely different. In the LC circuit, the energy
is the current in a magnetic field, while in the NP–bridge–NP sys-
tem, the energy is the kinetic energy of free carriers in the bridge.
This ballistic current in the bridge is changed for the acceleration of
carriers in an electric field of charged NPs.

III. VERIFICATION OF THE CTP MODEL BY THE FDTD
SIMULATION

In order to test the feasibility of the proposed model, we below
compare the plasmon frequency calculated using both the proposed
model and exact Finite-Difference Time-Domain (FDTD) calcula-
tions for the simple systems. Specifically, plasmon frequencies were
calculated for a dimer and for an equilateral triangle of identical
nanoparticles connected by conducting linkers. It should be noted
that calculations of plasmon frequencies for complex systems by
the FDTD method, especially for 3D systems of many connected
nanoparticles, are very time consuming. At the same time, the cal-
culations of the plasmon frequencies of complex systems using the
developed model are extremely simple and fast.

A. Permittivity of a material with the ballistic carrier
transport for the FDTD calculation

Under the assumption that free carriers (electrons and holes)
move in 1D conductive linkers in the ballistic mode, we can consider
these carriers to be particles with effective mass m∗ under the action
of only a local electric field. If n is the carrier density in the linker,
then their motion at velocity υ creates the current density,

j = enυ. (12)

In the Finite-Difference Time-Domain (FDTD) simulation,
conductive linkers can be modeled by thin cylinders with length L
and radius r. If the periodic external field E(t) = E0 exp(−iωt) with
frequency ω is applied along the cylinder axis, one should expect that
electrons will also move back and forth along the cylinder axis at the
same frequency.

Here, we assume that the photon energy ̵hω is lower than the
gap between the occupied and unoccupied nonconductive energy
levels, so the polarizability of a linker in molecular orbitals can be
ignored and only conductive carriers respond to an external electric
field. This means that the polarization of the linker medium is caused
by the intraband excitations, as in the Drude model, but without
scattering. In addition, we ignore the polarizability of a conductive
linker in the direction perpendicular to its axis, thereby setting the
permittivity in this direction to be ε0.

The acceleration of an electron along the linker can be written
as

dυ
dt
=

e
m∗

E0 exp(−iωt). (13)

Integrating Eq. (13) over time and substituting the result into
Eq. (12), we find the current density

j(t) = en ⋅
e
m∗

E0 exp(−iωt)
−iω

= i
e2n
ωm∗

E(t). (14)

Since the optical conductivity is, by definition, the ratio
between the current density and the electric field, we can write the
frequency-dependent complex optical conductivity and the complex
permittivity (in the SI units) of the conductive linker in the form

σ(ω) = i
e2n
ωm∗

, (15)

ε(ω) = ε0 −
e2n

ω2m∗
, (16)

where ε0 is the permittivity of vacuum.
The ballistic transport mode makes the conductivity purely

imaginary and the permittivity purely real, which excludes attenu-
ation in the medium. This is obviously due to the fact that carriers
do not experience scattering, and therefore, there is no energy dis-
sipation in the linker. In contrast to this, conventional metals with
a short electron mean free path conduct in the drift-diffusion mode
and are characterized by the real optical conductivity.

B. FDTD calculation setup and post-processing
To verify the CTP frequencies obtained using our hybrid

model, we employed the FDTD method implemented in the com-
mercial package.39 A standard simulation scheme was used. The
structure was illuminated by a plane wave. The perfectly matched
layer (PML) boundary conditions were established on all sides of a
simulation cell, and the total-field scattered-field (TFSF) technique
was used to reproduce the infinite space. The absorption cross sec-
tion was calculated with a set of discrete Fourier transform (DFT)
monitors surrounding a particle inside the TFSF region and the
scattering cross section, with the monitors surrounding the entire
TFSF region, so that they only read the scattered field. To accu-
rately reproduce the particle shape, an adaptive mesh was used. In
the current density calculation, the material was considered to be a
homogeneous electron plasma cloud.

It is well-known40 that, ignoring the magnetic susceptibility of
a material, one can present the current as

J =
∂P
∂t

, (17)

but, since J∝ e−iωt , we have

J = −iωP. (18)

According to Ref. 40, the polarization vector and the electric field
vector are related as

P =
ε − 1
4π

E. (19)

Substituting this into Eq. (18), we obtain

J = −iω
ε − 1
4π

E. (20)
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In all the FDTD simulations, we modeled the conductive link-
ers by cylinders with a length of L = 2 nm and a radius of r = 0.2 nm
with the permittivities given by Eq. (16). The parameters of carriers
were taken to be m∗ = 0.5 me and n = 1/Ω = 1/(Lπr2). Gold NPs were
modeled by spheres with a radius of R = 1 nm and the tabulated Au
permittivity from Ref. 41.

Following Sec. II, below we generalize the approach developed
in our previous work34 and use it for more complex systems con-
sisting of an arbitrary number of NPs with momentary charges Qj
connected by conductive linkers with currents Ijk.

Under the assumptions made in Ref. 34, we can divide the total
energy of the system into two contributions: the electrostatic poten-
tial energy of NPs and the kinetic energy of charge carriers in the
linkers,

Ekin =∑
jk

αjk
2
I2
jk, (21)

Epot =∑
j≠k

QjQk

Rjk
+∑

j
{ajQ2

j + bjQj + cj}, (22)

where αjk corresponds to the conducting properties of a linker
between the j-th and k-th particles [Eq. (5)], rjk is the distance
between the NP centers, and aj, bj, and cj are the coefficients repre-
senting energy–charge dependence (7) for the j-th particle. In addi-
tion, we hereinafter imply the current Ijk is zero if j = k or when the
j-th and k-th particles are not linked.

The current Ijk transfers the charge from the j-th to k-th particle
and that results in change of the potential energy. Since we expect
the total energy of the system to be conserved, the decrease in the
potential energy equals to the increase in the kinetic part, which is
observed as an increase in the Ijk value,

(φj − φk)Ijk = (
∂Epot
∂Qj

−

∂Epot
∂Qk

)Ijk =
∂Ekin
∂Ijk

dIjk
dt

. (23)

These energy balance equations should be supplemented with
the continuity relations showing that the charge of a particle Qj can
only be changed by the current through the linkers connected to this
particle,

Q̇j = −∑
k
Ijk. (24)

Equations (23) and (24) form a well-defined system, which is
sufficient to solve the charge dynamics in the NP.

For simplicity, hereafter, we treat all the particles and linkers
as identical and set aj [the quadratic term in Eq. (7)] to be inversely
proportional to 2R, where R is the NP radius. All the linear terms bj
in Eq. (23) cancel out. Substituting the partial derivatives in (23) and
dividing both sides by Ijk, we arrive at

∑

s≠j,k
Qs(

1
Rsj
−

1
Rsk
) + (Qj −Qk)(

1
R
−

1
Rjk
) = αİjk. (25)

Taking the time derivative of Eq. (24) and substituting Eq. (25)
into it, we can obtain a system of second-order differential equations

for the particle charges

Q̈j = −
1
α∑k

′⎛

⎝
∑

s≠j,k
Qs(

1
Rsj
−

1
Rsk
) + (Qj −Qk)(

1
R
−

1
Rjk
)

⎞

⎠

, (26)

where the first (primed) summation is made only over the particles
connected to the j-th particle by a linker.

To obtain the equivalent equations for the time evolution of the
currents inside the linkers, one should put (24) to the time derivative
of (25), which yields the second-order differential equation

∑

s≠j,k
(∑

t
Ist(

1
Rsj
−

1
Rsk
)) +∑

t
(Ijt − Ikt)(

1
R
−

1
Rjk
) = −αÏjk. (27)

In this work, we use the latter formulation to find the current
oscillation frequencies.

IV. CTP CALCULATIONS FOR DIFFERENT NP ARRAYS
Here, we study the frequencies ων and the corresponding eigen-

vectors of the currents Iνij in linkers for the CTPs in different com-
plexes (Fig. 1) consisting of identical NPs with radius R connected
by identical conductive linkers with length L and parameter α [see
Eq. (5)].

It is interesting to perform a symmetry analysis of the plas-
monic oscillations described by the currents between nanoparticles
for all the complexes studied (see Fig. 1).

It should be taken into account that, despite the symmetry of
the geometric arrangement of the particles, due to the vector nature
of the currents shown in Fig. 1 by arrows, the point symmetry for
all systems is lower than the symmetry of the particles in them. The
only exception is the four-rayed star that has D4 symmetry.

The lowest symmetry is in a linear chain and in a tetrahedron
that both have only one symmetry element E due to the asymmetric
directions of currents.

In other cases, the systems have cyclic Abelian symmetry
groups. The triangle has C3 symmetry possessing elements E,C3,C2

3 .
Similarly, the square has C4 symmetry and the hexagon has C6 sym-
metry. All of these groups possessing only one-dimensional irre-
ducible representations. Each symmetry element Cm

n has a repre-
sentation character equal to e

2πi
n m. One of these representations is

a completely symmetric representation, having character e
2πi
n 0
= 1

corresponding to a constant current through each linker. Due to
the homogeneity of the currents, the plasmon frequency for this
symmetric representation is zero for all of these three systems.

Because of cyclic characters e
2πi
n m, there are representations for

the square and the hexagon that lead to symmetric and antisym-
metric plasmonic oscillations in these systems (see text below and
Fig. 5).

The D4 symmetry of four-rayed star has five irreducible rep-
resentations: four of them are one-dimensional and one is two-
dimensional. One irreducible representation is completely sym-
metric (breathing mode). However, unlike the other systems with
Abelian groups, this representation leads to the maximum change
of potential energy at a homogeneous charge displacement and,
therefore, has a maximum plasmon frequency (see text below).
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FIG. 1. Investigated CTP complexes.

A. CTPs in regular triangle
Following Eq. (27), we can easily obtain the equations

αİ1 = (φ1 − φ2), (28)

φ1 = (
Q2 + Q3

L̃
) +

Q1

R
, (29)

φ2 = (
Q1 + Q3

L̃
) +

Q2

R
, (30)

Q̇1 = I3 − I1. (31)

Here, we introduce the quantity L̃ = 2R + L. This intercenter
distance is convenient to use in calculating the interaction of charged
NPs.

By the time differentiation of Eqs. (29)–(31) and using Eq. (31),
we obtain

αÏ1 = (
1
R
−

1
L̃
)(I2 + I3 − 2I1). (32)

Rearranging cyclically the indices and assuming the harmonic time
dependence of each current I(t) ∼ eiωt , we obtain the secular equa-
tion, where β was defined in (11),

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2β − ω2
−β −β

−β 2β − ω2
−β

−β −β 2β − ω2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I1
I2
I3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (33)

Solving this equation analytically, we get a solution with the squared
frequency ω2 = 0 and the eigenvector I = [0, 0, 0] corresponding
to the dc current. Another ω2 = 3β is doubly degenerate and corre-
sponds to the eigenvectors I = [−1, 1, 0] and, further, by the cyclic
permutation of the indices corresponding to the current from one
NP to two others with the same value (Fig. 1). It is interesting to
compare the squared frequency of this system with that of the dimer
system ω2 = 2β, Eq. (10).

B. Comparison of the analytical CTP frequencies
with the FDTD data

Figure 2 shows the extinction spectra for the dimer and trimer
of gold NPs.

One can see that the CTP for the dimer arises at λ = 4.48 μm.
For this dimer, the calculation of the CTP frequency and wave-
length using Eq. (10) yields a wavelength of λ = 4.51 μm, which
shows excellent agreement between the results obtained using the
proposed model for calculating the CTPs and the FDTD simulation.
In addition, we used the FDTD simulation to investigate the CTPs
in a regular triangle with the same NPs and linkers as in the dimer.
According to the extinction peak position, the wavelength for this
triangle CTP is 3.860 μm in the asymmetric case, when the exter-
nal field is polarized along one of the triangle sides and 4.01 μm in
the symmetric case (see also Fig. 2). The difference between the CTP
positions obtained by the FDTD method can be attributed to the
dipole–dipole interaction, which is ignored in the proposed model.

According to the proposed model [see (10)] and
Subsection IV A, the triangle plasmon frequency should be

√
3
2

FIG. 2. Absorption spectra of (1) dimer (black) and trimer structures for (2) the
vertical (red) and (3) horizontal (blue) polarizations of the external field. [(4) and (5)]
Spectra for the Au dimer with the Au linker and with the linker with R(nAu) = 0.
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times higher than that for the dimer. This gives the triangle CTP
wavelength λ ≃ 3.682 μm, which is only 4.8% different from the result
of FDTD simulations. We again explain the difference in CTP fre-
quencies obtained by FDTD method and the proposed model by the
dipole–dipole interaction, which is neglected in the model.

Figure 2(4) shows the extinction spectra for the Au dimer with
a linker characterized by the frequency-dependent permittivity of
gold, and Fig. 2(5) presents the spectrum for the same dimer, but
with a linker material with the zero real part of the refractive index.
One can see that replacing the purely real permeability of the linker
[Eq. (16)], leading to ballistic transport, by the permeability of gold
or by the permeability leading to the imaginary refractive index, we
obtain a significant decrease in the plasmon wavelength as compared
with the case of a ballistic linker.

It should be noted that, in all the cases, the system exhibits a
resonant peak in the visible wavelength range, which corresponds to
an individual plasmon of a gold NP, and the frequency of this peak
remains almost unchanged at any linker permittivity.

Figure 3 shows the current configuration at the CTP wave-
length in the trimer structure calculated using Eq. (20) for both
orientations of the external field. It is interesting to find the ratio
between the CTP frequencies in this triangle and the dimer fre-
quency. These ratios were found to be 1.16 and 1.12. According to
the proposed model, this ratio should be

√
3
2 ≃ 1.22 [see Eq. (10)

and Subsection IV A]. We assume that the difference (up to 9.4%)
between the ratios of the frequencies obtained using the FDTD cal-
culation and the hybrid model is caused again by ignoring the dipole
interactions in the model.

C. CTPs in a tetrahedron
For a tetrahedron (Fig. 1), a similar calculation yields the

secular determinant

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2β − ω2
−β −β β 0 β

−β 2β − ω2
−β 0 β −β

−β −β 2β − ω2
−β −β 0

β 0 −β 2β − ω2
−β −β

0 β −β −β 2β − ω2 β
β −β 0 −β β 2β − ω2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

FIG. 3. Current density distribution for (a) the symmetric and (b) antisymmetric
CTP configurations at the maximum extinction wavelengths calculated using the
FDTD method.

The three solutions with a squared frequency of ω2 = 0 corre-
sponded to the dc current flowing along the edges of one face, giving,
for example, an eigenvector I = [1, 1, 1, 0, 0, 0]. Other triply degen-
erate solutions ω2 = 4β correspond to the eigenvectors I = [1, 0, −1,
1, 0, 0] and, similar, correspond to the currents from one NP toward
the opposite face; all the three currents coincide.

D. CTPs in a square
For a square (Fig. 1), a similar calculation yields the secular

determinant

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 ∗ β − ω2 γ − β −2γ γ − β
γ − β 2β − ω2 γ − β −2γ
−2γ γ − β 2β − ω2 γ − β
γ − β −2γ γ − β 2β − ω2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where γ ≡ 1
α(

1
L −

1
√

2L
).

Again, one solution has a squared frequency of ω2 = 0 corre-
sponding to the dc current throughout all the vertices. The doubly
degenerate frequency ω2 = 2β + 2γ corresponds to the eigenvectors
I2 = [−1, 0, 1, 0] and I3 = [0, −1, 0, 1] corresponding to the paral-
lel currents from one square side to another. Another ω2 = 4β − 4γ
corresponds to the eigenvector I = [−1, 1,−1, 1] and, similarly, corre-
sponds to the equal currents from two opposite vertices to the other
two.

E. CTPs in a four-rayed star
For a four-rayed star (Fig. 1), due to the higher complexity, we

only present the frequencies and eigenvectors for the case L̃ ≡ 2R
+ L = 4R. The matrix of all the eigenvectors is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 −1 1
0 −1 1 1
1 0 −1 1
0 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The corresponding vector of the frequencies is ω2
≃

1
Rα [1.37, 1.37,

1.27, 5.98]. The highest frequency corresponds to the fully sym-
metric eigenvector (the breathing mode). The doubly degenerate
oscillations correspond to the two opposite currents from the oppo-
site vertices. The lowest CTP oscillation corresponds to the flow
of symmetric charges from the opposite vertices to another pair of
vertices.

Curiously, for a given L̃ value, the oscillation frequency in a
triangle is significantly lower than the breathing mode frequency
ω2
=

2.25
Rα , and for a dimer, the frequency is ω2

=
1.5
Rα .

F. CTPs in 1D chains and coiled-up chains
of nanoparticles

It is interesting to investigate the CTPs in the systems in the
form of 1D chains of NPs connected by conductive linkers and fol-
low the modification of plasmons in the system in the form of a
coiled-up chain. For the basic configuration, we chose a chain of six
NPs (Fig. 1) with L̃ ≡ 2R + L = 4R again. The oscillation frequency is

ω2
≃

1
Rα
[0.30, 0.94, 1.61, 2.15, 2.50].
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FIG. 4. Current along a chain of six particles. The solid line corresponds to the first
CTP oscillation, the dashed line corresponds to the second one, and the dashed-
dotted line corresponds to the third one.

Let us compare these values with the CTP frequency in a dimer
with the same length: ω2

=
0.38
Rα . It can be seen that the lowest

frequency in the chain almost coincides with the plasmon in the
dimer.

In addition, it is interesting to plot the dependence of all the
eigenvectors, i.e., the currents in linkers, for all plasmons in the
system (Fig. 4).

It can be seen that the vibrational modes are divided into sym-
metric and antisymmetric with respect to the center. In this case,
indeed, the first vibrational mode in a system is similar to the
vibration in the dimer consisting of two NPs and a linker.

Let us follow the evolution of the vibrational modes in this sys-
tem when coiling the chain up. The oscillation frequency in the coil
of six nanoparticles is

ω2
≃

1
Rα
[0.00, 0.98, 0.98, 2.19, 2.19, 2.65].

Here, we plotted four eigenvectors of the currents corre-
sponding to the first, second, fourth, and sixth CTP oscillations
(Fig. 5).

FIG. 5. Current in a coil of six particles. The dotted line corresponds to the first
CTP oscillation, the solid line corresponds to the second one, the dashed line
corresponds to the fourth one, and the dashed-dotted line corresponds to the last
one.

To sum up, we plotted the dependences of the plasmon wave-
lengths for different typical investigated systems (dimer, triangle,
and tetrahedron) on the radius of NPs forming the systems. In this
case, the linker length was constant and equal to L = 2 nm and the
linker conductivity was calculated using Eq. (6) at nf = 4. These
dependencies are presented in Fig. 6.

Using these dependencies, relating the plasmon quantum
energy ̵hω to the electrostatic energy Epot ≃ Q2

2R of all NP charges in
a system and to the kinetic energy of all the currents equal, on aver-
age, to these energies, we can estimate the characteristic charge of
each NP in a system (1e–3e). Consequently, at these plasmon oscil-
lations in the IR spectral range, a very small charge is transferred
through the conducting bridges and the quantum blockade effect in
the bridges is negligible.

G. Interaction of the CTPs with an external
electromagnetic field

Knowing the relation between the time derivative of the charge
of each NP and the currents passing through it [Eq. (24)], we can
find the derivative of the dipole moment ⃗̇P for each vibrational mode
using the formula

⃗̇P =∑
j
Q̇jR⃗j. (34)

Assuming that the interaction of an external electromagnetic field
with the plasmon oscillations is determined by the dipole moment
of a system during this oscillation and, therefore, its time derivative
[Eq. (34)], we can determine the optical activity of all the plasmonic
modes in a system.

Calculating the CTP eigenvectors in the systems under study,
we found that, due to the different symmetries of the CTP oscil-
lations, all the oscillation modes are divided into optically active
and inactive. For example, for a 1D chain (Fig. 1), the derivatives
of the dipole moments for the three modes shown in Fig. 4 are
⃗̇P ≃ [17.39, 0.00,−4.07].

FIG. 6. Dependence of the CTP wavelength on the nanoparticle radius. The blue
solid line corresponds to the CTPs in a dimer, the red dashed line corresponds to
the CTPs in a triangle, and the yellow dashed-dotted line corresponds to the CTPs
in a tetrahedron.
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Similarly, the derivatives of the dipole moments for the
four modes in the six member ring shown in Fig. 5 are
Ṗx ≃ [0.00, 6.93, 0.00, 0.00] and Ṗy ≃ [0.00,−12.00,−0.00,−0.00]

V. CONCLUSIONS
Using the hybrid model, we investigated charge transfer plas-

mons in the arrays of metallic nanoparticles linked by narrow
conductive molecular bridges. The model parameters can be
obtained using ab initio simulations.

More precisely, the arrays in the form of a dimer, a regular
triangle, a tetrahedron, a square, a four-rayed star, a linear chain,
and a coiled-up linear chain were examined. The proposed model
of charge transfer plasmons was based on the consideration of the
energy flow between the electrostatic potential energy of charged
nanoparticles and the kinetic energy of free carriers moving in a
ballistic mode inside conductive linkers.

An important feature of this model is the ballistic motion of
free carriers inside narrow linkers. The limited conductivity of the
linkers together with sufficiently large distances between nanoparti-
cles leads to a weak restoring force acting on free carriers in a system
and, consequently, to the low plasmon oscillation frequency. It was
shown that, for all the investigated systems, the plasmon frequencies
lie in the IR spectral range.

The validity of the model used at the CTP frequencies in the
dimer and trimer arrays was checked by the FDTD method. In this
method, based on the numerical solution of Maxwell’s equations for
the electromagnetic field, the response of a system, which determines
the plasmon oscillations, was calculated. In the calculation, we con-
sidered spherical metallic nanoparticles linked by narrow cylinders
with the conductivity corresponding to that of conductive molecular
bridges.

The ballistic transport mode causes the purely imaginary con-
ductivity and the purely real permittivity, which means the absence
of attenuation in the medium. In contrast to this, in the calculation
of charge transfer plasmons in the systems of nanoparticles linked by
thick bridges made of conventional metals, which have a short car-
rier mean free path, the bridges conduct in the drift-diffusion mode
and exhibit the real optical conductivity.

The FDTD calculation revealed the excitations of two types.
One of them lies in the visible wavelength range and corresponds to
plasmons of individual particles, while the other lies in the infrared
range and corresponds to the charge transfer plasmons. The FDTD
calculation showed that the frequencies of these plasmons are in
good agreement with the frequency determined using the proposed
hybrid model.

We derived the general analytical or numerical equations for
the CTP frequencies in the investigated systems. It was found
that the currents flowing during these plasmon oscillations have
a certain symmetry determined by the system geometry and the
plasmons interact with an external electromagnetic field depend-
ing on the symmetry. It was established that the plasmon oscilla-
tion quanta correspond to minor displacements of a charge of few
electrons.

Let us note that the chemical interaction of linkers with external
molecules results in a strong change in the linker conductance that,
in turn, directly leads to modification of the plasmon frequency that
can be easily measured. It apparently provides the possibilities for

utilization of CTPs with narrow conductive linkers for prospective
chemical sensing.
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