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Abstract
I review the four mechanisms of bound states in the continuum (BICs) in the application of
microwave and acoustic cavities open to directional waveguides. The most simple are
symmetry-protected BICs, which are localized inside the cavity because of the orthogonality
of the eigenmodes to the propagating modes of waveguides. However, the most general and
interesting is the Friedrich–Wintgen mechanism, when the BICs are the result of the fully
destructive interference of outgoing resonant modes. The third type of BICs, Fabry–Perot
BICs, occurs in a double resonator system when each resonator can serve as an ideal mirror.
Finally, the accidental BICs can be realized in the open cavities with no symmetry like the
open Sinai billiard in which the eigenmode of the resonator can become orthogonal to the
continuum of the waveguide accidentally due to a smooth deformation of the eigenmode. We
also review the one-dimensional systems in which the BICs occur owing to the fully
destructive interference of two waves separated by spin or polarization or by paths in the
Aharonov–Bohm rings. We make broad use of the method of effective non-Hermitian
Hamiltonian equivalent to the coupled mode theory, which detects BICs by finding zero-width
resonances.

Keywords: bound states in the continuum, wave localization in one-dimensional wires, open
microwave and acoustic resonators, effective non Hermitian Hamiltonian

(Some figures may appear in colour only in the online journal)

1. Introduction

More than 2 centuries have passed since Thomas Young
presented his well-known double-slit experiment which unam-
biguously proved the wave nature of light, but wave interfer-
ence still offers unexplored phenomena in physics. Among the
last ones to have attracted the close attention of researchers
are the bound states in the continuum (BICs). In 1929, von
Neumann and Wigner [1] claimed that the single-particle
Schrödinger equation could possess localized solutions that
correspond to isolated discrete eigenvalues embedded in
the continuum of positive energy states for some artificial
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Corresponding editor: Professor Masud Mansuripur.

oscillating bounded potential. Extension and some correction
of this work was done by Stillinger and Herrick [2], who pre-
sented a few examples of spherically symmetric attractive local
potentials with the BICs of scattering states in the context
of possible BICs in atoms and molecules (e.g., [3–6]). For a
long time, the phenomenon was considered as a mathemati-
cal curiosity although the physical mechanism is very similar
to the mechanism of the Anderson localization. The BIC as a
localized state is a result of the precise destructive interference
of waves scattered by the bounded potential in such a way that
we have no outgoing wave.

The decisive breakthrough came with a paper by Friedrich
and Wintgen [7], who formulated a general method to find
BICs in quantum systems. The method based on the effective
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Figure 1. Two-dimensional plane resonator with two attached plane
waveguides.

non-Hermitian Hamiltonian originates from the Feshbach uni-
fied theory of nuclear reactions [8, 9] and uses the fact that the
occurrence of BICs is directly related to the phenomenon of the
avoided level crossing. When two resonance states approach
each other as a function of a certain continuous parameter,
interference causes an avoided crossing of the two states in
their energy positions and, for a certain value of the parame-
ter, the width of one of the resonance states may vanish exactly.
Since it remains above the threshold for decay into the con-
tinuum, this state becomes a BIC although each resonant state
has a finite width. Numerous model considerations of different
physical systems have since been presented [10–19].

The Fridrich–Wintgen (FW) approach of the effective
Hamiltonian was first readily applied to a planar metallic inte-
grable billiard (cavity) opened by attachment of two uniform
plane waveguides [17] as shown in figure 1. Readers can find
a description of the system in textbooks on electromagnetic
(EM) fields (see, for example, [20]). It was shown that for the
variation of the resonator width W , numerous events of degen-
eracy of the eigenmodes, say ψ1 and ψ2 , occur. Then, at the
points of degeneracy, one can consider the superposed func-
tion aψ1 + bψ2. If each eigenmode is coupled with a waveg-
uide first channel by means of W1 and W2 for the superposed
function, we obviously have the coupling aW1 + bW2, which
can be tuned to zero by the proper choice of the superposition
coefficients a and b. That is an alternative interpretation of the
BIC occurring at the degeneracy points in the integrable open
resonators. The FW BICs were first experimentally observed
by Lepetit and Kanté in metallic waveguide with two ceramic
disks [21]. Similarly, Olendski and Mikhailovska have shown
that in a curved 2D waveguide, a quasi-bound state formed
as a result of the bend and at some critical parameters of the
curve, it becomes a true bound state within the continuum [22].
Cattapan and Lotti have revealed BICs in a 2D straightforward
stubbed quantum waveguide with impurities [23] and 2D serial
structures [24]. Thus, it has been shown that going beyond 1D
crucially increases opportunities for BICs.

The question of whether a wave can be perfectly confined
(that is, whether a ‘bound state’ can exist) in an open system
is related to a simple frequency criterion. If the frequency of
a wave is outside the continuous spectral range spanned by
the propagating waves, it can exist as a bound state because
there is no pathway for it to radiate away. Conversely, a wave
state with a frequency inside the continuous spectrum can only

be a ‘resonance’ that leaks and radiates out to infinity. This is
the conventional wisdom described in many books. A bound
state in the continuum (BIC) is an exception to this conven-
tional wisdom: it lies inside the continuum and coexists with
extended waves, but it remains perfectly confined without any
radiation.

Besides the Friedrich–Wintgen mechanism of fully
destructive interference, other mechanisms for BICs exist.
The most simple mechanism is symmetry protection. Bolsterli
has treated a special case in which there occur discrete states
in the continuum in separable potentials [25]. In such a
system a symmetry incompatibility decouples the square-
integrable eigenmodes from the propagating modes of the
waveguides [26–28]. It is accepted to determine such BICs as
the symmetry-protected (SP) ones. Less obvious but similar
to the SP BICs are the accidental BICs, when in spite of
absence of symmetry arguments, the coupling between the
cavity eigenmode and the mode of the continuum can turn to
zero accidentally by the variation of the shape of the cavity
as it was demonstrated in an open Sinai billiard [29]. Firstly,
such a possibility was mentioned by Friedrich and Wintgen
in a paper on the physical realization of BICs in a hydrogen
atom in a magnetic field [30]. Later, accidental BICs were
demonstrated in photonic systems [31, 32].

A more sophisticated but transparent mechanism of BICs is
Fabry–Perot (FP). Assume, we have two ideal metallic mirrors
parallel to each other and with the distance L between them.
All states are bounded in this system with the eigenfrequencies
ωn = πn/L, n = 1, 2, 3, . . . . If the mirrors have a finite trans-
mission probability, all bound states become resonant states
with finite line widths because of leakage through the mir-
rors [33]. Such a system is analogous to the simplest quan-
tum mechanical problem of a single particle in double barrier
potential. In this one-dimensional system, there are no BICs.
However, in 1999 Kim and Satanin [34] put forward the idea of
going beyond the one-dimensional case, applying temporally
periodically driven barriers. Then, the effective dimensional-
ity of the one-dimensional double barrier potential becomes
two [35, 36] allowing for transmission zeros even for poten-
tial barriers of a finite height. The possibility of localizing the
quantum particle in a tight-binding chain with an off-channel
impurity driven by an ac field was later considered by Longhi
and Della Valle in a series of papers on Floquet BICs [37–39].

Straightforward FP models which support BICs were con-
sidered by Fan et al [40] in the framework of coupled mode
theory (CMT) [41]. In a series of papers [16, 42–44] two-
dimensional identical quantum dots were used as FP mir-
rors. Then, the BICs were engineered by tuning the distance
between the resonators coupled by wire. A similar approach
was also used by Ordonez [45]. The same mechanism of
BICs was exploited in photonic crystal systems [40, 46–49]
in which one- and two-dimensional photonic crystals were
used as perfectly reflecting mirrors. The occurrence of BICs
in these systems is accompanied by the collapse of the Fano
resonances when the transmission zero coalesces with the
transmission unit [17, 21, 34]. Another variant of waveguides
which supports BICs is the double bend waveguide [50], due
to transmission zeros in the bend [22].
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Up to now, I have briefly discussed bound states with
discrete frequencies embedded into the waveguide continua
which are quantized by the finite width of the waveguide (see
figure 1). It is easy to realize the FW BIC embedded into the
first continuum, which is separated from the next continua
by afinite gap, for example a variation in the length of the
resonator [17, 51–53] or the obstacle size in the waveguide
[24, 54]. The state of the art is BICs embedded into a few con-
tinua of the waveguide [55]. At first glance it seems impossible
to support BICs in the radiation continuum of free space given
by a continuous spectrum of light line (cone) ω = ck, where
c is the light velocity. The closed metallic resonator in free
space is an exceptional case because of its equivalence to
quantum mechanical well potential with infinitely high walls.
Similarly, there might be BICs in plasmonic nanostructures
[56, 57]. This agrees with the theorem that there are no BICs
in a bounded domain that is the complement of an unbounded
domain [57, 58]. However, in infinite periodic arrays of dielec-
tric particles, light can leak only into a discrete number of
diffraction orders, allowing us to find BICs embedded into a
finite number of diffraction continua [59–61]. Therefore the
infinite periodic dielectric structures can support BICs, which
has attracted the growing interest of the optical community
because of the possibility of confining light. In this review I
skip photonic BICs since they have already been the subject of
recent reviews [62–66].

2. Applications of BICs

An orthogonality of BIC to the extended propagating states of
the continuum, i.e. decoupling of the BIC from the continuum,
is the reason for the existence of a localized state with dis-
crete energy or frequency embedded into the continual spec-
trum [67]. In this view, the BIC is invisible to manipulation
by probing incident fields also propagating in that continuum.
At first glance, this renders BICs totally useless for practi-
cal purposes. However, if the scattering problem is granted an
extra dimension by introducing a control parameter, one can
immediately see that the traces of BICs emerge in the scatter-
ing spectrum as narrow Fano features once the control param-
eter is detuned from the BIC point transforming BIC into a
quasi-BIC. The extremely high response of the quasi-BICs and
the possibility of manipulating them has become extremely
important in modern science and opens up many applications.
I briefly review these applications although the list of them will
hardly be exhaustive because of extensive ongoing theoretical
and experimental studies of applications of BICs.

(a) Lasing from BICs. The high Q factor of the BICs enor-
mously enhances the intensity of the EM fields in the
resonators or near the zone of photonic crystal structures
which support the bound states in the radiation contin-
uum. The exploitation of the significant field enhancement
of BICs to reduce the lasing threshold of miniaturised
sources and boost their efficiency has been the subject
of intense research. The first discussion of lasing from
BICs in Γ-point of a two-dimensional periodical struc-
ture of InGaAsP quantum wells was reported by Kodigala

et al [68]. Vortex lasing from BICs has also been demon-
strated [69–72].

(b) Sensing and biosensing. The ability to detect biologically
active molecules is of crucial importance for fundamen-
tal studies in biochemistry, applications in drug devel-
opment, and point-of-care diagnostics. A broad class of
label-free photonic biosensors exploits optical resonance
effects. They experience a shift in the resonance frequency
in response to a change of the refractive index of the
medium surrounding the sensing area. Therefore BICs
allow us to engineer optical sensors with a good sensitivity
and an excellent figure of merit [73–78]. The sensitivity is
affected by the spatial overlap between the non-radiating
near field of the BIC and the surrounding cladding, while
the figure of merit is proportional to the Q factor and
ultimately represents the sensor capability to follow tiny
changes in the environment refractive index [79–81].

(c) Magneto-optics, optical dichroism, etc. A magnetic cir-
cular dichroism near 100% from monolayer graphene has
been achieved by use of BICs [82]. The rotationally sym-
metric chiral meta surfaces can support sharp resonances
with the maximum optical chirality determined by pre-
cise shaping of BICs [83]. Being uncoupled from one
circular polarization of light and resonantly coupled to
its counterpart, a meta surface hosting the chiral BIC
resonance exhibits a narrow peak in the circular dichro-
ism spectrum with the quality factor limited by weak
dissipation losses. Also assisted by the quasi-BICs with
ultrahigh Q factors, the Goos–Hanchen shift [84] can be
greatly enhanced to greater than or equal to four orders
of wavelength [85], and the photonic spin Hall effect can
be enhanced [86]. Next, it was shown that the infrared
photoluminescence emission from Ge(Si) quantum dots
enhanced with collective Mie modes of silicon nanopil-
lars (BICs at Γ-point) results in strong reshaping of the
photoluminescence spectra [87].

(d) Enhancement of nonlinear effects and generation of
the second harmonics. With very few exceptions, non-
linear effects due to the Kerr effect in dielectric res-
onators are very small and require rather strong incident
power. Therefore the straightforward possible applica-
tions of high-quality resonance modes such as BIC are
found in the enhancement of the optical nonlinear effects
[88–91]. One of the goals of any practical use of nonlinear
effects is achieving efficient conversion of the fundamen-
tal frequency pump to the second harmonic signal [92].
Moreover, the SP BIC can convert many harmonics (the
frequency comb) with a frequency step governed by the
pumping power due to the coupling of the BIC mode with
other modes that can emit into the continuum [93–103].

(e) Light storage in BICs and release by demand. For illu-
mination of dielectric structures, the exact bound states
in the radiation continuum have no effect in scattering of
EM waves. However, owing to the Kerr effect, the BIC
is coupled to other resonances of the structure that trans-
form BICs into quasi-BICs whose decay time depends on
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the intensity of incident light. Therefore, with illumina-
tion by a light pulse, this quasi-BIC traps some fraction
of the pulse power, which remains preserved by the true
BIC when the pulse passes the structure. The secondary
pulse again couples the BIC with the radiation continuum
and therefore releases storage power. These effects were
shown in different structures supporting the SP BICs, the
FW and FP BICs [104].

(f ) Routing and multiplexing via BICs. As early as 1999,
Fan et al [40] published general principles of channel
drop processes (multiplexing). Propagating states can be
transferred between the continuums through the double
resonator system which supports the FP BICs. Later,
the nonlinear mechanism of switching of channels was
developed by use of the FW BICS in a single resonator
positioned between two parallel waveguides [105]. More
sophisticated schemes of resonators were proposed for
experimental realization of multiplexing via the BICs in
reference [106].

3. The effective non-Hermitian Hamiltonian

One powerful and unambiguous means to diagnose BICs is the
method of effective non-Hermitian Hamiltonian [8, 107–111]
which is equivalent to the CMT [41, 112]. An important advan-
tage of the effective non-Hermitian Hamiltonian approach is
the possibility of calculating the coupling matrix between
closed system and continuum when the eigenmodes of sub-
systems are known [109, 113]. The approach of the effective
non-Hermitian Hamiltonian [107–109] has found numerous
applications in various branches of physics including atomic
nuclei [110, 114], chaotic billiards [113, 115–119], tight-
binding models [36, 111, 120–122], potential scattering [110],
photonic crystals [123], etc.

The objective of the present paper is to revisit the concept
of the effective non-Hermitian Hamiltonian in applications to
open resonators with the Dirichlet or Neumann boundary con-
ditions. The problem of resonant scattering typically involves
a cavity (which could be quantum dot, microwave or acous-
tic cavity, etc) and scattering channels coupled to the cavity.
The mainstream idea is to split the full Hilbert space into sub-
spaces: subspace B formed by the eigenfunctions of discrete
spectrum localized within the scattering center, and subspaces
C which spans the extended eigenfunctions of the scattering
channels. Therefore, the exact description of the open system
meets a problem of matching the wave functions of discrete
and continuous spectra. In 1958 Feshbach [8] introduced the
idea of projecting the total Hilbert space onto the discrete
states of subspace B. Operating on the Hamilton operator of
the whole system

Ĥ = ĤB +
∑

C

(ĤC + V̂BC + V̂CB) (1)

with projection operators, Feshbach derived the effective non-
Hermitian Hamiltonian [9]

Ĥeff = ĤB +
∑

C

V̂BC
1

E+ − ĤC
V̂CB. (2)

Here, ĤB is the Hamiltonian of the closed system, ĤC is the
Hamiltonian of the scattering channel C, V̂BC, V̂CB stand for
the coupling matrix elements between the eigenstates of closed
cavity and the eigenstates of the scattering channels, and E
is the energy of scattered particle (wave). An expression for
the effective Hamiltonian (2) is easy to obtain through wave
function presentation [107, 120, 124]:

|Ψ〉 =
∑

b

ab|b〉+
∫

dE′a(E′)|E′〉. (3)

Then we obtain two equations for expansion coefficients from
the Scrödinger equation Ĥ|Ψ〉 = E|Ψ〉,

〈b|Ĥ|Ψ〉 = Ebab +

∫
dE′a(E′)Vb(E′) = Eab,

〈E′|Ĥ|Ψ〉 = E′a(E′) +
∑

b

abV∗
b (E′) = Ea(E′),

(4)

that give us the following equations:

a(E′) =
1

E − E′

∑
b

abVb(E′) (5)

and respectively

Ebab +
∑

b′

∫
dE′ Vb(E′)V∗

b (E′)
E − E′ a′

b(E′) = Eab. (6)

Equation (6) exactly corresponds to the eigenvalue problem
in the subspace of discrete states of the closed system B:
Ĥeff|b〉 = E|b〉.

For an EM wave or acoustic transmission E = ω2, where
ω is the frequency. The term E+ = E + i0 ensures that only
outgoing waves will be present in the solution in scattering.
As a result, the effective Hamiltonian (2) is a non-Hermitian
matrix with complex eigenvalues zλ which determine the
positions and lifetimes of the resonant states as Re(zλ), and
−2 Im(zλ) [107, 109]. Assuming that the propagation band
of the continuum is not bounded, then the effective non-
Hermitian Hamiltonian takes the most simple form widely
used in the scattering theory [108, 114, 117]:

Ĥeff = ĤB − i
∑

C

ŴCŴ†
C, (7)

where ŴC is a column matrix whose elements account for the
coupling of each individual inner state to the scattering channel
C. The scattering matrix SCC′ is then given by the inverse of
E − Ĥeff [108, 117]:

Ŝ = δCC′ − 2iŴ+ 1

Ĥeff − E + i0
Ŵ, (8)

where C = L, R. Therefore for the case of energy-/frequency-
independent coupling matrix, the complex eigenvalues coin-
cide with the poles of the S-matrix.

However this formulation of the effective Hamiltonian is
oversimplified because of an unbounded spectrum of the con-
tinuum. Commonly the spectrum is bounded, at least below.
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For example, the electron has the spectrum E = �
2k2

2m and
EM waves have the spectrum ω = ck. Although the form
for the effective Hamiltonian (7) is preserved, the coupling
matrix elements become dependent on the energy or fre-
quency [111–113]. In what follows, we apply the method
of the effective non-Hermitian Hamiltonian to several physi-
cal systems: (1) one-dimensional wires with off-channel cav-
ities in the Aharonov–Bohm rings, (2) a two-dimensional
microwave planar metallic waveguide consisting of the cavity
and two attached waveguides and microelectronic waveguides
(figure 1), and (3) three-dimensional acoustic cylindrical and
spherical resonators with attached cylindrical waveguides.

4. Friedrich–Wintgen concept of BIC

One can see that the effective non-Hermitian Hamiltonian (7)
consists of Hermitian part ĤB whose eigenvalues are the eigen-
frequencies of the closed cavity and the second anti-symmetric
imaginary part. This part is a result of the coupling of the cavity
with the continua C of waveguides. The complex eigenval-
ues of the effective Hamiltonian have a clear physical mean-
ing. Their real parts respond to the position of the resonances
while their imaginary parts respond to the half resonant widths
[107, 108]. In other words, if one prepares some field as the
eigenmode of the closed cavity, it will decay because of the
leakage of the mode into waveguides. Therefore the BIC is eas-
ily found out by turning one of the imaginary parts of the com-
plex eigenvalues of the non-Hermitian effective Hamiltonian
to zero, which was first established by Friedrich and Wintgen
[7] in a generic two-level Hamiltonian. When two resonance
states approach each other as a function of a certain continuous
parameter, interferences cause an avoided crossing of the two
states in their energy positions and, for a certain value of the
parameter, the width of one of the resonance states vanishes
exactly. Since it remains above the threshold for decay into
the continuum, this state becomes a BIC. The Friedrich and
Wintgen (FW) approach is significant in that it can be applica-
ble to any waveguide system, in particular to microelectronic,
microwave or acoustic resonators opened by the attachment of
waveguides [17, 120, 125].

Let the cavity undergoes degeneracy, for example, the vari-
ation of shape. In the neighborhood of this degeneracy, it is rea-
sonable to truncate the Hamiltonian of the cavity by only those
eigenvalues, say E1 and E2, which are crossing. Moreover
we assume that there is only one continuum with which the
cavity modes are coupled. That gives the following two-level
effective Hamiltonian:

Ĥeff =

(
ε− iγ1 u − i

√
γ1γ2

u − i
√
γ1γ2 −ε− iγ2

)
, (9)

where without loss of generality, we take E1,2 = ±ε. Also we
introduce γ1 = W2

1 , γ2 = W2
2 which could define the resonant

widths of the levels E1,2 if the effective Hamiltonian (9) was
diagonal. Wn, n = 1, 2 are the coupling constants of the cavity
modes in waveguide propagating mode. Parameter u is respon-
sible for repulsion of the eigenfrequencies of the closed cavity
due to, for example, an inner perturbation which removes the

integrability of the cavity. For example, in section 7 we con-
sider a hole inside the cavity transforming into a Sinai billiard
where the eigenlevels are avoided.

The advantage of the two-level approximation is that the
BIC can be considered analytically [12, 17]. Let us write
the transmission amplitude in the biorthogonal basis of the
eigenstates of the effective non-Hermitian Hamiltonian (9):

Ĥeff|λ ) = zλ|λ ) , (λ|λ′) = δλ,λ′ , |λ ) = |λ〉, (λ| = |λ)c = 〈λ|∗,
(10)

i.e. the left states are related to the right states via transposing.
Then using the condition of completeness∑

λ

|λ ) (λ)| = 1

we can rewrite the transmission amplitude as sum of the
resonant terms [111]:

T = −2i
∑
λ

VL
λVR

λ

E − zλ
= −2i

∑
λ

V2
λ

E − zλ
, (11)

where VC
λ = Vλ, C = L, R are the coupling constants of res-

onant states with the continuum or the propagating mode of
waveguides. Expression (11) immediately shows us that the
complex eigenvalues zλ are the poles of the S-matrix, pro-
vided that the matrix elements of the effective Hamiltonian
are energy independent. Otherwise, we are to use the com-
plex scaling method [126] or to solve nonlinear fixed point
equations for real and imaginary parts of the complex eigen-
values zλ, which define the resonant positions and the resonant
widths [109]. The relation of Vλ with the coupling constants
Wn of the states of closed cavity with waveguides will be given
below. Let us first consider the integrable resonator with u = 0
shown in figure 1. Then

z1,2 = −iΓ±
√

(ε− iΔΓ)2 − γ1γ2, (12)

where
Γ =

γ1 + γ2

2
, ΔΓ =

γ1 − γ2

2
.

For simplicity we take the coupling constants of the cav-
ity eigenmodes with the propagating mode of the waveguide
equal, γ1 = γ2. Such an simplification substantially shortens
the algebra of the eigenstates of the effective non-Hermitian
Hamiltonian. Then the right eigenstates are

|1 ) =
1√

2η(η + iε)

(
−γ

η + iε

)
, |2 ) =

1√
2η(η − iε)

(
γ

η − iε

)
(13)

with corresponding eigenvalues

z1,2 = −iγ ± η, (14)

where η =
√
γ2 − ε2. Let us write the following identity

Ŵ = Ŵ
∑
λ

|λ )

(
λ| =
∑
λ

Vλ|λ
)

, (15)

where Vλ is the coupling constants between the resonant states
and the continuum. Therefore from equation (13), we obtain
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Figure 2. The transmittance, eigenlevels of a closed system (dashed
white lines), resonant positions (solid green lines), resonant widths
(solid lines, below) and BICs (open circles) in a two-level
description of the effective Hamiltonian (9). (a) and (b)
γ1 = γ2 = 0.1, u = 0; (c) and (d) γ1 = 0.1, γ2 = 0.2, u = 0; (e) and
(f) γ1 = 0.1, γ2 = 0.2, u = 25.

the link between coupling constants Wn, where n enumerates
the closed resonator states and Vλ, where λ enumerates the
resonant states:

V1 =
W√

2η(η + iε)
(η + iε− γ), V2 =

W√
2η(η − iε)

(η − iε+ γ),

(16)
where W = W1 = W2.

The BIC occurs when ε = 0. The eigenstates are limited to

|1 ) =
1√
2

(
−1
1

)
, |2 ) =

1√
2

(
1
1

)
. (17)

From equation (16), one can see that the resonant state |1 )
decouples from the continuum at ε = 0 while the state |2 )
acquires maximal coupling with the continuum (superradiant
state). Therefore the state |1 ) can be qualified as the FW BIC
decoupled from the continuum owing to the exact destructive
interference of leaking eigenmodes of the closed cavity |1〉 and
|2〉. For such a simplified case of equal coupling constants and
u = 0, we see the difference between the FW BIC, which is
V1(ε = 0) = 0 with respect to the eigenstates |λ ) of Ĥeff and
the SP BIC which has W1 = 0 with respect to the eigenstate
of ĤB of the closed cavity. The general case of N levels was
considered in [67], where it is proved that decoupling from all
channels of the continuum described is a necessary and suffi-
cient condition for a resonance state to be the BIC, i.e. the state
with vanishing decay width.

The transmittance is plotted in figure 2(a), which demon-
strates that at the BIC point E = 0, ε = 0 the maximal trans-
mittance coalesces with the maximal reflectance (collapse of
the Fano resonance [34]). Simultaneously at the BIC point, we
observe in figure 2(b) that the resonant width turns to zero.

Let consider the transmittance in the vicinity of the BIC’s
point ε = 0, E = 0. The eigenvalues of Ĥeff can be approx-
imated as z1 ≈ −iε2/2Γ, z2 ≈ −2iΓ. Then the transmission
amplitude (11) takes the simple form

T(E, ε) ≈ − 2iEΓ
2EΓ+ iε2

. (18)

It follows |T| = 0 for E = 0, ε �= 0, and |T| = 1 for ε = 0,
E �= 0. Therefore, the BIC is a singular point in the sense that
the value of the transmission amplitude depends on the way
to approach this point. If ΔΓ �= 0 the transmission zero fol-
lows E = εΔΓ/Γ. In the general case of different coupling
constants γ1, γ2 and u �= 0 we will follow Kikkawa et al [127].
We have for the eigenvalues of the effective Hamiltonian (9)

(z + ε+ iγ1)(z − ε+ iγ2) − (u − i
√
γ1γ2)2 = 0. (19)

Then we have for the roots of this equation according to the
Vietta’s formula

z1 + z2 = − i(γ1 + γ2),

z1z2 = − (ε+ iγ1)(ε− iγ2) − (u − i
√
γ1γ2)2

= −ε2 − u2 + 2i(u
√
γ1γ2 − ε(γ1 − γ2)). (20)

At the BIC’s point one of the roots, say z1, is real. In that case,
the roots can be expressed using real quantities A and B as

z1 = A,

z2 = B − i(γ1 + γ2).
(21)

Substitution of equation (21) into equation (20) gives

A + B = 0,

AB = −ε2 − u2.
(22)

On the other hand, by comparing the imaginary parts of both
sides of equation (20) we obtain

A = − ε(γ1 − γ2) + 2u
√
γ1γ2

γ1 + γ2
. (23)

Finally from equations (22) and (23) we obtain the following
equation for the BIC’s point:

u(γ1 − γ2) = 2ε
√
γ1γ2. (24)

First, this equation for the BIC point in a two-level approxi-
mation was obtained by Volya and Zelevinsky [12], and the
solution is shown in figures 2(e) and (f).

5. Application to one-dimensional structures

5.1. Potential well

Let us consider the textbook problem of quantum particle prop-
agation in a one-dimensional potential relief like shown in
figure 1 of a review by Hsu et al [62]. The wave functions in
the segments of the structure are the following:

ψL(x) = exp(ikx) + r exp(−ikx),

ψ(x) = a exp(iqx) + b exp(−iqx), (25)

ψR(x) = t exp(ikx).
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By using the boundary conditions, we can write the following
equation for the solution:

L̂
ψ = 
g, (26)

where L̂(k) is the following matrix:⎛⎜⎜⎝
−1 1 1 0
k q −q 0
0 eiqL e−iqL −eikL

0 q eiqL −q e−iqL −0 eikL

⎞⎟⎟⎠ , (27)


gT = (1 k 0 0), 
ψT = (r a b t), and L is the width of the
potential well. The determinant of matrix L̂(k) equals

2i(k2 + q2) sin(kL) + 4kq cos(kL), (28)

which is the denominator of the S-matrix [128], zeros of which
define its poles. The BIC is the solution of the inhomogeneous
part of equation (26) when
g = 0. In order for there to be a BIC,
the determinant (28) is to be turn to zero, which cannot be ful-
filled for the case of a one-dimensional potential well. There-
fore the one-dimensional potential cannot support localized
states with energy embedded into the continuum of extended
states with E > 0. This is the conventional wisdom described
in many books. A bound state in the continuum (BIC) is an
exception to this conventional wisdom: it lies inside the contin-
uum and coexists with extended waves, but it remains perfectly
confined without any leakage. In 1929, von Neumann and
Wigner [1] discovered that the long-range oscillating attrac-
tive one-dimensional potential can support BICs. The BIC is a
classical paradox of a quantum particle with enough energy to
leak from the potential well and nevertheless remaining spa-
tially confined. The Neumann–Wigner BIC emerges due to
precise destructive interference of waves scattered by a bound
potential in such a way that we obtain a localized state. The
physics of localization is similar to Anderson localization in
random potential [129]. For a long time, the phenomenon was
considered as a mathematical curiosity because potentials such
as those invented by von Neumann and Wigner (corrections
of the potentials were done by Stillinger [2]) can hardly be
realized experimentally.

5.2. BICs in Aharonov–Bohm rings

The Aharonov–Bohm oscillations of conductance are another
bright example of wave interference when an electron encir-
cling upper or down arms of ring acquires additional magnetic
flux phases ±γ/2 where γ = 2πΦ/Φ0,Φ = BπR2 is the mag-
netic flux,Φ0 = 2π�c/e [130]. In this subsection we show that
particular case of fully destructive interference gives rise to the
localization of electron inside the ring, i.e. BICs [131].

Following Xia [132] we write the wave functions in the
segments of the structure shown in figure 3(a) as

ψ1(x) = exp(ikx) + r exp(−ikx),

ψ2(x) = a1 exp(ik−x) + a2 exp(−ik+x),

ψ3(x) = b1 exp(ik+x) + b2 exp(−ik−x),

ψ4(x) = t exp(ikx),

(29)

where k− = k − γ, k+ = k + γ. All variables are dimension-
less via the ring length 2πR. The boundary conditions (the
continuity of the wave functions and the conservation of the
current density) allow us to find all coefficients in (29). We
write the corresponding equation in matrix form

F̂ 
ψ = 
g, (30)

where F̂(k, γ) is the following matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 1 0 0
−1 0 0 0 1 1

0 −1 eik−/2 e−ik+/2 0 0

0 −1 0 0 eik+/2 e−ik−/2

1 0
k−

k
−k+

k
k+

k
−k−

k

0 −1
k−

k
ei k−

2 −k+

k
e−i k+

2
k+

k
ei k+

2 −k−

k
e−i k−

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(31)

gT = (1 1 0 0 1 0). The vector 
ψT = (r t a1 a2 b1 b2) is the
solution for the scattering wave function:

r = 2(3 cos k − 4 cos γ + 1)/Z,

t = 16i

(
sin

k
2

cos
γ

2

)
/Z,

a1 = 2(2 eiγ − 3 e−ik + 1)/Z,

a2 = 2(eik + 1 − 2 eiγ)/Z,

Z = 8 cos γ − 9 e−ik − eik + 2,

(32)

b1,2(k, γ) = a1,2(k,−γ). In figure 3 we show lines of the trans-
mission zeros (|t(k, γ)| = 0, dashed lines) which cross the lines
of the transmission ones (|t(k, γ)| = 1, solid lines) at points

km = 2πm, m = ±1,±2, . . . ,

γn = 2πn, n = 0,±1,±2, . . . .
(33)

As can be seen from the expression of the denominator
Z in equation (32), the imaginary part of the poles van-
ishes at these points. Simultaneously, a degeneracy of eigen
energies of a closed ring (km − γ)2 occurs at these points.
Here m is the azimuthal index (magnetic quantum number)
that defines the eigenfunctions of the closed ring ψm(x) =
exp(ikmx). The point k = 0 is excluded from the consider-
ation since it gives zero conductance. The existence of the
peculiar points (33) was shown in [14] as points where the
density of states shows similar collapses as those of the Fano
resonance in transmission. To show that the BICs appear
at these points (33), let us consider one of the points, say,
s0 = (k1, γ1) = 2π(1, 1). All the other points are equivalent
because of the periodical dependence of the system on k and
γ. In the vicinity of the point s0, we write equation (32) in the
following approximated form:

t ≈ Δk
Δk + i(Δγ)2/2

, r ≈ i(3Δk2 − 4Δγ2)
4(2Δk + iΔγ2)

,

a1 ≈
3Δk + 2Δγ

4Δk + 2iΔγ2
, a2 ≈ Δk − 2Δγ

4Δk + 2iΔγ2
, (34)

7
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Figure 3. (a) One-dimensional ring thread by the magnetic flux γ and opened by attachment of two leads. (b) Transmission through the ring
vs the magnetic flux and wave number k =

√
E. Green dashed lines show transmission zeros |t|2 = 0 and solid red lines show transmission

ones |t|2 = 1. The BICs are marked by blue closed circles. Thin blue solid lines show wave numbers as dependent on the flux k = (m − γ)
where m are integers. Reprinted by permission from Springer Nature Customer Service Centre GmbH: JETP Letters [131] © 2006.

where Δk = k − k1,Δγ = γ − γ1. The transmission ampli-
tude in the vicinity of the BIC point s0 in (34) is similar to
the expressions obtained for a shifted von Neumann–Wigner
potential [4] or the two-level approximated approach (see
equation (18)). One can see that all amplitudes a1,2, b1,2 of the
inner wave functions are singular at the point s0. Such a result
for the BIC points was firstly found by Pursey and Weber [4].
At this point the matrix (31) takes the following form:

F̂(s0) =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 0 1 1 0 0
−1 0 0 0 1 1
0 −1 1 1 0 0
0 −1 0 0 1 1
1 0 0 −2 2 0
0 −1 0 −2 2 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (35)

The determinant of the matrix F̂(s0) equals zero. Therefore,
F̂ 
f0 = 0. By direct substitution of the vector 
f0

T = 1
2 (0 0 1 −

1 − 1 1) one can verify that 
f 0 is the right eigenvector, which
is the null vector. The corresponding left null eigenvector is

̃f 0 = 1

2 (−1 1 1 − 1 0 0). It is well known from linear alge-
bra that if the determinant of matrix F̂ is equaled to zero, then
the necessary and sufficient condition for the existence of a

solution of the equation (30) is that the vector 
̃f 0 is orthogonal

to vector
g [133]. In holds, indeed, that 
̃f 0 ·
g = 0. Therefore,

the null vector 
̃f 0 is proven to be the BIC. The general solution
of equation (30) at the point s0 can therefore be presented as


ψ(s0) = α
f 0 + 
ψp, (36)

where α is an arbitrary coefficient and 
ψp is particular trans-
port solution of equation (30). By direct substitution one can
verify that 
ψp

T =
(
0 1 3

4
1
4

3
4

1
4

)
is the particular solution of

equation (30). It is worthwhile to note that this result com-
pletely agrees with the scattering theory on graphs [134, 135].
Texier has shown that for certain graphs, the stationary scat-
tering state gives the solution of the Schrödinger equation for
the continuum spectrum separately for a discrete set of ener-
gies where some additional states are localized in the graph

and thus are not probed by scattering, leading to the failure of
the state counting method from the scattering.

5.3. Zeeman localization

Although when open the Aharonov–Bohm ring consists of
1D wires, the ring is two-dimensional in order for the elec-
tron to encircle the flux. In this subsection we present
the model which is indeed one-dimensional but capable of
localizing the electron. We go beyond the scalar Helmhotz
equation and employ the interference of spin-polarized reso-
nant states of the one-dimensional electron transmission [136].
Let us consider three domains in which an external station-
ary magnetic field is applied as sketched in figure 4. We
assumethat the external magnetic field 
B inside the central
layer is tilted relative to the outer magnetic field oriented
along the z-axis. We also assume that the inner layer has
the potential shifted relative to the outer layers by a value
U0. Outside of the central layer, the electron has two split
energy spectra E = k2

σ ∓ B, σ = ↑, ↓ which specify the con-
tinua by the wave vector 
kσ . In the central layer, the spin-
dependent spectra have the form E = q2

s + U0 ∓ B, s = 1, 2,
which specify spin-dependent channels by the vector 
qs.
Owing to choice of the potential step (U0 = −20) as depicted
in figure 4 in green, both spin channels being open in the cen-
tral layer while outside only the spin up continuum is open for
E < B, only the electron with spin up participates in electron
transmission and reflection.

Let us write the Schrödinger equation for the toy model of
electron in magnetic field (see figure 4):[

1
2m

(
i�∇+

e
c

A
)2

+ U0(z) − σB(z) − E

]
Ψ = 0. (37)

The orbital motion has characteristic length a2
B = �c

eB , which in
the magnetic field of 103Oe equals 100 nm. Then for layer of
thickness L  aB, we can disregard the orbital contribution in
equation (37) and rewrite it as follows:[

∇2 − U0(z) + σB(z) + E
]
Ψ = 0. (38)

8
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Figure 4. An one-dimensional spin model for illustration of BICs
due to the fully destructive interference of spin-polarized resonant
states. Beyond the central layer, the magnetic field 
B is directed
along the z-axis; inside the central layer 
B is tilted by angle φ. The
spin-up electron falls by angle θ with the energy below the spectrum
of spin-down and splits into two states specified by
k1 and
k2.
Reproduced from [136]. CC BY 4.0.

Next we substitute the step-wise magnetic filed as shown in
figure 4. Then Hamiltonian (38) will take the following form:

Ĥ =

⎧⎪⎪⎨⎪⎪⎩
− d2

dz2
− σxB if |z| > L/2;

− d2

dz2
+ U0 − σxB cos(φ) − σzB sin(φ) if |z| < L/2.

(39)
In the outer layers, which form the radiation continua, with the
following propagating solutions

Ψ
kσ
(
x) = exp(i
kσ
x)|σ〉, (40)

where σ =↑, ↓,

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
, (41)

and
E = k2

σ ∓ B. (42)

Respectively for the inner layer we have

Ψ
qs (
x) = exp(i
qs
x)|s〉, (43)

where s = 1, 2,

|1〉 =
(

cos(φ/2)
sin(φ/2)

)
, |2〉 =

(
− sin(φ/2)
cos(φ/2)

)
, (44)

and
E = q2

s + U0 ∓ B. (45)

Let us choose the energy of incident electron that only spin
up channel is open. Then at the left (z < −L/2) we have

ΨL(
x) = (ei
k↑
x + r↑e−i
k↑
x)|↑〉. (46)

Figure 5. Reflection probability of the spin-up electron for B = 10
tilted by angle φ = π/3 and U0 = −20 vs (a) incident energy E and
central layer thickness L at angle of incidence θ = π/4, and (b) vs
angle of incidence θ and L at incident energy E = 30 and φ = π/4.
Green plus symbols mark the points of the BICs symmetric with
respect to the center of the layer, while times symbols mark the
points of antisymmetric BICs. Reproduced from [136]. CC BY 4.0.

Figure 6. The BIC solutions, symmetric and antisymmetric, in the
layered structure.

Inside the defect layer (|z| < L/2) both channels are open due
to proper choice of the potential U0 = −20 and therefore one
can present the solutions as follows

ΨB(
x) =
∑
s=1,2

(as ei
qs
x + bs e−i
qs
x)|s〉. (47)

Finally, at the right side (z > L/2) we write

ΨR(
x) = t↑ ei
k↑
x|↑〉. (48)

Here r↑ and t↑ are the reflection and transmission amplitudes.
Next, assume an electron with spin σ incidents with wave vec-
tor 
kσ = (kxσ , kzσ) and reflecting with the reflection amplitude
rσ . Because of the preservation of the transverse component of
moment kxσ = kxs = kx we obtain the following equations:

1 + r↑ = (a1 + b1) cos(φ/2) − (a2 + b2) sin(φ/2),

kz↑(1 − r↑) = qz1(a1 − b1) cos(φ/2) − qz2(a2 − b2) sin(φ/2),

r↓ = (a1 + b1) sin(φ/2) + (a2 + b2) cos(φ/2),

9
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Table 1. Quantum/optical correspondence. Reproduced from [136].
CC BY 4.0.

Quantum mechanics Optics

Electron Photon
ψ, ∂ψ∂z E,B
Spin Polarization
Energy Frequency
| ↓〉 TE-wave
| ↑〉 TM-wave
Magnetic field Anisotropy axis

−kz↓r↓ = qz1(a1 − b1) sin(φ/2)

+ qz2(a2 − b2) cos(φ/2),

t↑ eikz↑L = (a1 eiqz1L + b1 e−iqz1L) cos(φ/2)

− (a2 eiqz2L + b2 e−iqz2L) sin(φ/2),

kz↑t↑ eikz↑L = qz1(a1 eiqz1L − b1 e−iqz1L) cos(φ/2)

− qz2(a2 eiqz2L − b2 e−iqz2L) sin(φ/2),

t↓ eikz↓L = (a1 eiqz1L + b1 e−iqz1L) sin(φ/2)

+ (a2 eiqz2L + b2 e−iqz2L) cos(φ/2),

kz↓t↓ eikz↓L = qz1(a1 eiqz1L − b1 e−iqz1L) sin(φ/2)

+ qz2(a2 eiqz2L − b2 e−iqz2L) cos(φ/2). (49)

The transmission probability versus the thickness of potential
well L and incident energy or angle of incidence θ is plotted
in figures 5(a) and (b) respectively, where one can see typi-
cal points for BICs when the collapse of the Fano resonance
is observed. These points unambiguously indicate the BIC
points. Indeed, the BIC as a localized mode inside the layer
can be found from the equations of continuity at the interfaces.
These equations can be simplified with account of symmetry
relative to z →−z. Then the symmetric BIC can be written as

ψBIC,sym(z) =

{
a cos(qz1z)|1〉+ b cos(qz2z)|2〉 if |z| < L/2

c e(−|kz↓|z)|↓〉 if |z| > L/2,
(50)

where the last contribution is the result of evanescent mode
with spin down and asymmetric BIC:

ψBIC,asym(z) =

{
a sin(qz1z)|1〉+ b sin(qz2z)|2〉 if |z| < L/2

sign(z)c e(−|kz↓|z)|↓〉 if |z| > L/2.
(51)

We imply that the modes equal zero at the spin up continuum
and obey the continuity equations for the evanescent mode spin
down. As a result, we obtain the following equations for the
symmetric BIC:

a cos(φ/2) cos(qz1L/2) − b sin(φ/2) cos(qz2L/2) = 0,

a sin(φ/2) cos(qz1L/2) + b cos(φ/2) cos(qz2L/2) = c e(−|kz↓|L/2) , (52)

aqz1 sin(φ/2) sin(qz1L/2) + bqz2 cos(φ/2) sin(kz2L/2) = c|kz↓|e(−|kz↓|L/2).

Thus, we obtain the following equation for the symmetric BIC
points:

− tan2(φ/2) =
qz2 tan(qz2L/2) − |qz↓|
kz1 tan(qz1L/2) − |kz↓|

, (53)

and respectively for the asymmetric BIC points:

− tan2(φ/2) =
qz2 cot(qz2L/2) + |kz↓|
qz1 cot(qz1L/2) + |kz↓|

. (54)

The solutions of equations (52) and (53) are marked in figure 5
by pluses and times symbols respectively which exactly coin-
cide with points of the Fano resonance collapse. The low-
est symmetric and antisymmetric BIC solutions are shown in
figure 6.

In table 1 we establish the one-by-one correspondence
between the spin of the electron and the polarization state
of light. This comes about because the BICs were veri-
fied experimentally by fully destructive interference of light
paths with TM and TE polarizations in the anisotropic
layer [136].

6. BICs in two-dimensional planar open cavities

Two- and three-dimensional wave transmission through cav-
ities is distinct to one-dimensional transmission. First, by
changing the shape of the 2D or 3D cavity we can achieve a
degeneracy in the 1D resonator and therefore avoid the cross-
ing of resonances. Second, 2D and 3D waveguides attached
to the 2D and 3D cavities can support a finite number of open
channels and is dependent on wave frequency. The other chan-
nels are closed forming evanescent modes whose role is cru-
cially important for BICs. The evanescent modes of the waveg-
uide shift the BIC points and ‘blow out’ the BIC modes from
the open resonator. Moreover in 3D resonators the evanescent
modes play a principal role in giving rise to the BICs.

In order to illustrate these statements, we start with the pla-
nar microwave metallic cavity or resonator with the Dirihclet
boundary conditions at the walls. Such a system is convenient
in that the solutions with different polarizations, TE and TM,
are separated [137]. The total system can be viewed as consist-
ing of three subsystems: two semiinfinite planar waveguides
and rectangular plane resonator. In each subsystem the solution
obeys the Helmgoltz equation [115]

−∇2 ψ(x, y) =
ω2

c2
ψ(x, y). (55)
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In what follows, all quantities are measured in terms of the
light velocity c. This equation is completely equivalent to the
case of electron transmission in a semiconductor, leading to

−∇2ψ(x, y) =
2m∗E
�2

ψ(x, y),

where m∗ is the effective electron mass with energy E. In the
plane waveguides the solutions are given by TE propagating
waves [137]

ψp(x, y) =

√
1

2πkp
exp(ikpx)φp(y) (56)

φp(y) =
√

2 sin(πpy) (57)

with the eigenfrequency spectra

ω2 = k2
p + π2 p2, p = 1, 2, 3, . . . . (58)

Here ψp(x, y) = Ez(x, y) responds to the electric field compo-
nent of EM field. The integer p numerates channels which are
opened for increasing of the frequency as shown in figure 7.
Other components of EM field can be easily expressed through
ψ(x, y) by use of the Maxwell equations [137]. The solutions
inside the closed rectangular resonator are the following:

ψmn(x, y) = 2

√
1

LxLy
sin

(
πmx
Lx

)
sin

(
πny
Ly

)
(59)

with the discrete eigenfrequencies

ω2
m,n =

π2m2

L2
x

+
π2n2

L2
y

(60)

where m and n are integers. Here and below, all dimensional
quantities are measured in terms of the waveguide’s width
d, i.e. d = 1. These eigenfrequencies, dependent on the res-
onator width W, are shown in figure 8. With respect to the
non-Hermitian effective Hamiltonian approach, it is impor-
tant to note that the Helmgoltz equation (55) one by one is
equivalent to the quantum mechanical description of the elec-
tron transmission through quantum dots with attached quan-
tum wires. The squared frequency can be expressed as the
quantum energy E = ω2 and the electric field directed per-
pendicular to metallic planes is equivalent to the quantum
wave function [115] Ez = ψ(x, y). However the effective non-
Hermitian Hamiltonian (7) is to be modified with account of
dispersion properties of microwave waveguides (58) as follows
[111, 113]:

Heff = HB − i
∑

C=L,R

∑
p

WCpW†
Cp, (61)

where the matrix elements of the coupling matrix elements
between the m, nth eigenmode of the closed resonator and the
pth propagation channel of the Cth waveguide equal

Wmn;pC =

√
1
πkp

∫ 1/2

−1/2
dy sin

(πpy
d

) ∂ψmn(x, y)
∂x

∣∣∣∣∣
x=xC

, (62)

Figure 7. Dispersion curves of open channels in a planar waveguide
with a rectangular cross-section.

Figure 8. Selected frequencies (60) of the closed rectangular
resonator vs width Ly. E0 = c2/d2.

C = L, R enumerates the interfaces between the left and
right waveguides shown in figure 1 by dashed lines
xL = −Lx/2, xR = Lx/2. We note that the overlapping is given
by derivatives of the eigenfunctions of the closed resonator
over the transmission direction but not the eigenfunctions
themselves, which equal zero at the boundaries shown in
figure 1 by the dashed lines. In the present case of planar res-
onator, this is the x-direction as shown in figure 1. For the case
of TM waves, the magnetic field Hz(x, y) serves as the wave
function ψ(x, y) with the Neumann boundary conditions at the
metallic walls of waveguide, which makes the problem fully
equivalent to the transmittance of acoustic waves in a hard wall
resonator. In that case, the form of the effective Hamiltonian
remains the same but the coupling matrix elements takes the
following form [112, 113]:

Wmn;pC =

√
kp

π

∫ 1/2

−1/2
dy sin

(πpy
d

)
ψmn(x, y)

∣∣∣∣∣
x=xC

. (63)
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Figure 9. The transmittance in log scale through the rectangular
resonator shown in the inset versus energy E = ω2 and width W of
the resonator (in terms of the width of the lead). The dark areas
correspond to low transmittance. The length of the resonator along
the transport axis equals 4. The eigenfrequencies of the closed
billiard are marked by times symbols (×). The positions of the BICs
are shown by closed red circles. The patterns of the two BICs A and
B are shown in figure 11. Reprinted figure with permission from
[17], Copyright (2006) by the American Physical Society.

The S-matrix is given by [108, 117]

SCC′ = δCC′ − 2iŴC 1

E − Ĥeff
ŴC′

. (64)

In figure 9 we show the transmittance in the first open chan-
nel vs the incident frequency E = ω2 and the width of reson-
ator W.

In the framework of this formalism, the positions and
decay widths of the resonance states follow from the complex
eigenvalues of the non-Hermitian effective Hamiltonian

Ĥeff|λ ) = zλ|λ ) (65)

where zλ = Eλ − iγλ/2. The biorthogonal eigenstates are nor-
malized as (λ|λ′) = δλ,λ′ , where (λ| is given by transpose of
|λ). Similar to the two-level approach for description of BICs
in section 3 the BIC of the present formalism is given by
those eigenstate of the effective Hamiltonian, whose eigen-
value is real. However as distinct of phenomenological case
by Friedric and Wintgen [7] (see also [12]) the coupling matrix
elements (63) are frequency dependent through equation (58).
Then the resonant positions and widths are obtained by solving
the corresponding fixed-point equations [109]

Eλ = Re(zλ(Eλ)), 2γλ = −Im(zλ(γ, Eλ)). (66)

Moreover the rank of matrix of the effective Hamiltonian is
defined by number of the eigenmodes of closed resonator
whose number rigorously speaking is infinite. In order to solve
the eigenvalue problem one has to decimate the matrix how-
ever a convergenceof the matrix of the effective Hamiltonian is
controversial for the Dirichlet BC [112]. In practice we explore
the tight-binding approach for the effective Hamiltonian [111]
which is equivalent to finite difference method of solution of
the Helmholtz equation (55). The one half of eigenvalues of the

Figure 10. The evolution of resonance width Im(z) and position
Re(z) of one of the two resonance states in the vicinity of the BIC B
in figure 9. Im(z) vanishes at Ly = 4.45 (marked by an x). The
widths of the other resonance states are much larger and are not
shown here. Reprinted figure with permission from [17], Copyright
(2006) by the American Physical Society.

effective non-Hermitian Hamiltonian (61) are real and corre-
spond to the SP BICs because they are antisymmetric relative
to y →−y and therefore have zero couplings (62) with the
first channel continuum p = 1 provided that ω2 < 4π2. The
second half of the eigenvalues is complex and correspond to
resonances for wave transmission through the rectangular res-
onator. However a very few of these complex eigenvalues have
a tendency to acquire zero imaginary parts for variation of the
width of the resonator at the vicinity of those points where a
degeneracy of the eigenfrequencies (60). One of such events is
shown in figure 10 where other eigenfrequencies are excluded
in order to avoid obscure picture.

One can see from figure 9 that these BICs are located in
very close vicinity to the points of degeneracy of the eigen-
modes of the close resonator. Indeed when the eigenmodes,
say ψ1 , become degenerate one can superpose the eigen-
modes as ψ = a1ψ1 + a2ψ2. Although each eigenmode is
coupled with the continuum |C〉 via the coupling constants
W1 = 〈C|ψ1〉 �= 0 and W2 = 〈C|ψ2〉 �= 0, the coupling of the
superposed state W = 〈C|ψ〉 = a1W1 + a2W2 can be canceled
by a proper choice of the superposition coefficients a1 and a2

[17]. Then this state ψ becomes the BIC, which is decoupled
from the waveguides for the case E < 4π2.

The BIC function. In general case the scattering wave
function obeys the following equation [111, 112]:

ψL(x, y) =
1√

4πk1

[
eik1 xφ1(y) +

∑
p

S1L;pL e−ikpxφp(y)

]
, x < −Lx/2,

ψB(x, y) = −i
∑
m′n′

Gmn;m′n′

√
kp=1

π
Wm′n′;1Lψm′n′ (x, y), −Lx/2< x<Lx/2,

ψR(x, y) =
∑

p

1√
4πkp

S1L;pR eikpxφp(y), x > Lx/2, (67)

where SpC,p′C′ are components of the S-matrix (64) and the

Green function Ĝ is the inverse of the matrix ω2 − Ĥeff. So,
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inside the resonator the wave function is given by the Lipp-
mann–Schwinger equation [111, 112]:

(ω2 − Ĥeff)|ψB〉 = ŴLp=1a∗
L,p=1|L, p = 1〉, (68)

where the waveguide states are given by the incoming wave
amplitude a+

L,p=1 for the present case of 2D wave transmis-
sion shown in the inset of figure 9. We imply that the wave
enters through the left waveguide. Equation (68) has an unam-
biguous solution until the operator at the left can be inverted.
However, if

‖ω2 − Ĥeff‖ = 0, (69)

the inverse operator does not exist, and the solution becomes
ambiguous.

Such a precedent was revealed in a periodical structure
(grating slab) [138] and is a consequence of bound states in
the diffraction continuum [31, 32]. If equation (69) is ful-
filled, then the solution of equation (68) can be presented as
superposition [133]

|ψB〉 = α|BIC〉+ |ψp〉, (70)

where the first part is the solution of the homogeneousequation

(ω2 − Ĥeff)|BIC〉 = 0, (71)

while the second contribution is the particular solution
of equation (68). In the presentation of eigenstates (65)
equation (69) takes the following form:∏

λ

(ω2 − zλ) = 0. (72)

Obviously, equation (69) is fulfilled if some of complex eigen-
values become real, i.e. at the BIC point. Then, the neces-
sary and sufficient condition for existence of solution of the
equation (68) is that the vector [133]

〈BIC|ψp〉 = 0. (73)

This equation has the clear physical meaning that the BIC
solution is orthogonal to the solution which propagates in
waveguide, and therefore cannot leakfrom the cavity.

It might seem that the BIC solution (47) can be presented
by only those eigenfunctions (59) which undergo degener-
acy, events of which are shown in figure 8. In particular, let
us consider the eigenmodes ψ4,3 and ψ2,5 with corresponding
eigenfrequencies

ω2
4,3 = ω2

a =
42

L2
x
+

32

L2
y

,

ω2
2,5 = ω2

b =
22

L2
x
+

52

L2
y
.

(74)

All dimensional units are measured in term of the waveguide
width d, and frequency is measured in term of

√
E0 =

c
d . The

degeneracy point is given by relation Ly
Lx

= 2√
3

and respectively

the BIC frequency equals ωc =
4π
Lx

√
1 + 27

64 . In numerics we

have chosen Lx = 4 that gives ωc = 3.746. Then the coupling
matrix elements (62) equal

W4,3;1L = W4,3;1R = Wa =

√
2
k1

8π

L3/2
x L1/2

y

×
∫ 1/2

−1/2
dy cos(πy) cos(3πy/Ly) ≈ 0.618,

W2,5,1L = W2,5;1R = Wb =

√
2
k1

4π

L3/2
x L1/2

y

×
∫ 1/2

−1/2
dy cos(πy) cos(5πy/Ly) ≈ 0.4.

Thus, the BIC solution in a two-level approximation can be
written as the linear superposition, at least, at the point of
degeneracy ω = ωc,

ψBIC(x, y) = ψ0(Wbψa(x, y) − Waψb(x, y)), (75)

where indices 4, 3 and 2, 5 are absorbed by the indices a and b
respectively. One can easily verify that this function is orthog-
onal to the first continuum of both waveguides given by p = 1
and turns to zero at the boundaries x = ±Lx/2, and therefore
is localized inside the resonator. The matrix of the effective
Hamiltonian (61) takes the following form:

⎛⎜⎜⎜⎜⎜⎝
ω2

1 − 2iW2
1 −2iW1W2 . . . −2iW1Wa −2iW1Wb

−2iW1W2 ω2
2 − 2iW2

2 . . . −2iW2Wa −2iW2Wb

...
...

. . .
...

...
−2iW1Wa −2iW2Wa . . . ω2

a − 2iW2
a −2iWaWb

−2iW1Wb −2iW2Wb . . . −2iW2
b ω2

b − 2iWaWb

⎞⎟⎟⎟⎟⎟⎠ = 0.

(76)
The equation for the BIC takes the following form:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω2
1 − ω2

2iW2
1

+ 1 1 . . . 1 1

1
ω2

2 − ω2

2iW2
2

. . . 1 1

...
...

. . .
...

...

1 1 . . .
ω2

a − ω2

2iW2
a

1

1 1 . . . 1
ω2

b − ω2

2iW2
b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(77)
One can see that at the points of degeneracy ωa = ωb and
ω = ωa, the determinant (77) turns to zero to realize the BIC
as the linear superposition of degenerate states (75).

What is the role of the evanescent modes? First, we show
that the evanescent modes shift the BIC point. The effective
Hamiltonian (61) can be rewritten as follows for ω2 < 4π2:

Ĥeff =
̂̃HB − 2iŴ1Ŵ†

1, (78)

where ̂̃HB = ĤB − 2
∑
p>1

̂̃W p
̂̃W†

p, (79)
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where the coupling matrix Ŵ p=1 is defined by equation (62) or

equation (63) while the coupling matrix ̂̃W p>1 originated from
the evanescent modes and equals

W̃mn;p>1 =

√
1

π|kp|

∫ 1/2

−1/2
dy sin

×
(πpy

d

) ∂ψmn(x, y)
∂x

∣∣∣∣
x=±Lx/2

. (80)

The factor 2 in equations (78) and (79) is the result of equal
contribution of both the left and right waveguides. The matrix̂̃HB is Hermitian and can be interpreted as the effective Hamil-
tonian of the cavity modified by evanescent modes. Substitut-
ing modified eigenvalues into (77) we obtain that their points
of degeneracy define the exact BIC points.

Second, the approximate BIC solution (75) turns to zero
at the boundaries between the resonator and waveguides
x = ±Lx/2. The exact BIC solution is defined by
equation (71), which can be expressed in series of the
eigenfunctions of the closed resonator

ψBIC(x, y) =
∑
mn

amnψmn(x, y), (81)

where the expansion coefficients are given by the eigen-
vector of equation (71). Although each eigenfunction ψmn

(x = ±Lx/2, |y| < 1/2) = 0, the BIC solution (81) is to be
sewed with the evanescent modes in the waveguides, which
exponentially decay when we move away from the boundary
of the closed resonator:∑

mn

amnψmn(x = ±L/2, |y| < 1/2)

=
∑
p>1

ap√
4πkp

φp(y) ≈ a2√
4πk2

φ2(y). (82)

We note that if restricted by only two eigenfunctions which
undergo degeneracy in the vicinity of the BIC point, the left
hand expression in equation (82) would turn to zero. Only due
to the infinite series over the eigenfunctions does the left hand
expression (82) differ from zero. Thus, the second role of the
evanescent modes is in the exponential weak blowing of the
BIC solution into waveguides that provides smooth behavior of
the BIC solution, as seen from figure 11. These BIC solutions
are found numerically from equation (71) with a sufficiently
large rank of the effective Hamiltonian. Thus, there are two
important features of the BICs caused by evanescent modes.
First, the BIC solution is overflowed from the resonator due
to coupling to the evanescent modes, as seen from figure 11.
A degree of the overflowing is given by the exponential con-
tribution of the first evanescent mode exp(−

√
(2π)2 − ω2

(x − Lx/2)) in the right waveguide. The same holds in the
left waveguide, however for x < −L/2. Second, the BIC point
is shifted relative to the points of degeneracy of the eigen-
modes of the closed resonator because of the contribution in
the effective Hamiltonian (79). The details of these effect will
be given below for the 3D resonators, where the contribution

Figure 11. The patterns of the two BICs A and B marked in figure 9
by bold circles. Reprinted figure with permission from [17],
Copyright (2006) by the American Physical Society.

of evanescent modes has principal importance for existence of
BICs.

7. Accidental BICs in the Sinai shaped open cavity

The rectangular cavity is an example of an integrable sys-
tem where the variables x and y are separated that reduces
the eigenvalue problem to a one-dimensional one with mul-
tiplicative eigenfunctions (59). Thus, for the variation of one
of the scales of the resonator, say width W, we have multi-
ple events of degeneracy, each of which gives rise to the BICs
in the Friedrich–Wintgen scenario, as described in previous
section. In fact there are only a few integrable resonators and
elliptic and equilateral triangles which are specified by the
Poisson distribution of the nearest distances between the eigen-
levels. All the rest are considered non-integrable, whose eigen-
levels undergo avoided crossings for the variation of some
parameter with the Wigner distribution and form so-called
chaotic billiards [115]. The Bunimovich and Sinai billiards are
well-known examples of chaotic billiards. Experimentally it is
easy to transform the integrable billiard into a chaotic one by
embedding a dielectric or metallic disk inside the plane rect-
angular cavity as sketched in figure 12. Then the FW mech-
anism of the BIC due to the degeneracy of the eigenstates of
the closed billiard is not applicable. However there is another
way to realize the BIC, by decoupling an individual eigenmode
of the Sinai billiard from the first continuum of the waveg-
uides [50, 55]. For that we smoothly deform the eigenmodes
by, for example, variation of the radius or the position of the
disk inserted inside the rectangular cavity. The effect of disk
can be described by a circular potential perturbation

V(x, y) = Vg exp

[
− (x − x0)2 + (y − y0)2

R2

]
(83)

added into the effective Hamiltonian (61). To be specific, we
consider the Neumann boundary conditions because of the
good convergence of the results with the growth of rank of the
matrix Ĥeff for low lying eigenfrequencies [112].

In what follows we fix the radius R = 1.5 and position of
circular potential at x0 = 0, y0 = 1 in terms of the waveguides’
width d and vary the height Vg of the potential (83) that effec-
tively varies the radius of the circular potential. Because of
the symmetry of the full system relative to x →−x the con-
tinua of both waveguides are identical. Respectively we have
identical coupling matrix elements of the Sinai resonator with
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Figure 12. Dielectric or metallic disk inside the rectangular open
resonator.

Figure 13. Eigenvalues and eigenfunctions of the soft Sinai
resonator vs height of the potential (83). Insets show a few patterns
of corresponding eigenfunctions even (a) and odd (b) relative to
x →−x. Open circles mark the BIC points. Reprinted from [29],
Copyright (2017), with permission from Elsevier.

waveguide continua

Wb,pC =

√
1
kp

∫ d

0
dyφp(y)

∂ψb(x, y)
∂x

∣∣∣∣
x=±L/2

, (84)

where C = L, R enumerates the interfaces between the left and
right waveguides shown in figure 12 by dashed lines, and ψb

are the eigenfunctions of the closed Sinai billiard.
The eigenfunctions are classified as even and odd

ψ(x, y) = ±ψ(−x, y). Respectively, the eigenvalues in each
irreducible representation undergo avoided crossings with
variation of Vg as illustrated in figure 13. For clarity we show
some patterns of the eigenfunctions at Vg = 50 in figure 13.
One can see that the eigenfunctions are depleted inside by the
potential (83) at Vg = 50. A variation of another parameter of
the potential (83), for example, the radius or position, gives a
similar result. Thus, we have no degeneracy of the eigenfunc-
tions of the same irreducible representation in the chaotic Sinai
resonator.

Figure 14 shows the transmittance calculated via
equation (64). In order for the reader to observe that peaks of
the transmittance follow the eigenvalues of the closed Sinai
resonator, we reduce the coupling between the waveguides and
the resonator by implementation of diaphragms between the
waveguides and the billiard [139] that narrows transmission
peaks. The BIC occurs if the resonance width turns to zero,
given by the imaginary part of the complex eigenvalues of the
effective non-Hermitian Hamiltonian

Ĥeff = ĤB + Vg − i
∑

C=L,R

∑
p

ŴC,pŴ†
C,p, (85)

Figure 14. Transmittance of the Sinai resonator in log scale vs Vg

(effective radius of the circular hole shown in figure 12) and incident
frequency. The BICs are shown by open circles. Reprinted from
[29], Copyright (2017), with permission from Elsevier.

Figure 15. Evolution of the resonant widths for variation of the
potential. Red open circles mark BICs. Reprinted from [29],
Copyright (2017), with permission from Elsevier.

where ĤB is the Hamiltonian of the closed rectangular res-
onator, and ŴC,p are columns of matrix elements (84) labeled
by the eigenstate indices b. The numerically computed evo-
lution of the resonant widths is presented in figure 15, which
shows multiple events of the resonant widths turning to zero,
i.e. BICs in the Sinai resonator. The even BICs sorted by their
energies are shown in figure 13(a) by open circles. Respec-
tively, the odd BICs are shown in figure 13(b). Besides these
BICs, one can see in figure 15 numerous SP BICs at the point
Vg = 0, which are the eigenfunctions of the rectangular res-
onator antisymmetric relative to y →−y for ω < 2π. There-
fore, they are incompatible with the symmetric propagating
mode in the first channel p = 1 (57).

Figure 14 clearly demonstrates that the BIC points are posi-
tioned at those points in the parametric space of E and Vg
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Figure 16. Evolution of the coupling matrix element (84) with Vg.
Reprinted from [29], Copyright (2017), with permission from
Elsevier.

Figure 17. Patterns of even BICs enumerated according to table 2
with coefficients of the modal expansions. Position of potential (83)
is shown in green circles.

where the transmission zero coalesces with the transmission
unit, similar to the FW BICs [17] and illustrating the collapse
of the Fano resonance [34]. However, in the Sinai billiard, the
BICs occur accidentally under variation of the circular poten-
tial (83) that changes the eigenfunctions of the closed Sinai
resonator as shown in the insets in figure 13. That in turn
changes the coupling matrix elements (84) so that some of
them can turn to zero as illustrated in figure 16. This is the
mechanism of the accidental BICs patterns shown in figures 17
and 18. These figures also depict the modal expansion coeffi-
cients |ab| of BICs over the eigenmodes of the closed Sinai
resonator

ψBIC(x, y) =
∑

b

abψb(x, y). (86)

One can see that indeed basically one eigenfunction con-
tributes into the BIC mode. There is also a background of
other eigenfunctions, which is the result of thecontribution of
evanescent modes into the effective Hamiltonian (see discus-
sion in previous section).

In what follows we will prove that if one of the coupling
matrix elements Wb,p=1 vanishes, then the accidental BIC
occurs embedded into the continuum of the first propagating
channel p = 1 of both waveguides C = L, R. Let us choose, for
example, the eigenfunction of the closed billiard, say b = 3,
whose coupling with the first channel p = 1 turns to zero. Then
we can write the coupling matrix (84) as follows:

Wb,1 = (W1 W2 0 W4 . . .). (87)

Table 2. BICs even relative to x →−x marked by open circles in
figure 13(a). Reprinted from [29], Copyright (2017), with
permission from Elsevier.

Number of the even BIC E Vg

1 12.550 4.5
2 13.029 34.45
3 13.244 −36.65
4 14.026 −19.2
5 19.709 −40.7
6 21.025 33.05
7 22.355 −47.7
8 25.541 −22.8
9 28.236 46.7
10 29.608 16.05
11 30.181 39.35
12 31.418 −31.55
13 31.960 −34.2
14 32.002 27.75
15 34.333 6.00
16 38.495 17.15

Figure 18. Patterns of odd BICs enumerated according to table 3
with coefficients of the modal expansions.

Table 3. BICs odd relative to x →−x marked by
open circles in figure 13(b).

Number of the odd BIC E Vg

1 13.133 −29.6
2 14.155 37.1
3 20.882 −2.4
4 21.307 −34.8
5 22.927 25.85
6 28.844 26.25
7 31.099 48.95
8 33.063 −40.9
9 33.189 −33.5

Because of symmetry relative x →−x, the coupling matrix
(87) is invariant relative to choice of waveguides C = L, R.
Then there is a vector

ψ+
3 = (0 0 1 0 . . .), (88)

which is the eigen null vector of the matrix WW+ψ3 = 0. On
the other hand, the vector (88) is the eigenvector of the closed
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billiard with the Hamiltonian

ĤB =

⎛⎜⎜⎜⎜⎜⎝
ω2

1 0 0 0 . . .
0 ω2

2 0 0 . . .
0 0 ω2

3 0 . . .
0 0 0 ω4

4 . . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ (89)

with the eigenfrequency ω3. Thus the null eigenvector (88) is
the eigenstate of the effective non-Hermitian Hamiltonian (85)
with the real eigenfrequencyω3, and therefore is the BIC with
this frequency. This result does not depend on the other cou-
pling matrix elements in (87). Following references [31, 32],
we define such BICs as accidental. Note that this conclusion
is correct in neglecting the evanescent modes of waveguides.
The contribution of evanescent modes can be performed as in
section 6. However in this case, the eigenstate (88) ceases to
be the eigenstate of the effective Hamiltonian. As a result, as
figure 18(a) shows, the accidental BIC blows off the Sinai bil-
liard and modal expansion shows a noticeable background of
all other eigenmodes of the billiard.

8. The cylindrical resonator with
non-axisymmetric waveguides. The twisted BICs

The aim of this section and those that follow is to demonstrate
the nontrivial role of the waveguides whose attachment breaks
the symmetry of the closed resonators with nontrivial BICs
embedded into continua of these waveguides. For example, the
closed cylindrical resonator with radius R and length L is a typ-
ical textbook case [137] that allows separation of variables in
the cylindrical system of coordinates. If one attaches cylindri-
cal waveguides coaxially as shown in figure 19(a), the axial
symmetry of the total open system is preserved. We skip this
case of coaxially connected waveguides where the FW BICs
are accessed via the variation of the length of the resonator
L [140], similar to section 6 (planar rectangular resonators).
However if one of the waveguides is shifted off the symmetry
axis of the resonator as shown in figure 19(b), the axial sym-
metry of the total system breaks. We consider the case of non-
axisymmetric waveguides which are identical but are attached
to the resonator by different angles so that the waveguides are
unwrapped by angular difference Δφ as shown in figure 19.
This does not change the strength of the coupling matrix ele-
ments with continua but differs the continua by phase. We
show that, nevertheless, the BICs exist but have to be twisted
by the angle Δφ.

The Helmholz equation (55) can be applied for acoustic
transmission through duct–cavity structures in a hard wall
approximation. The equation takes the following form in the
cylindrical system of coordinates:[

∂2

∂r2
+

1
r
∂

∂r
− m2

r2
+

∂2

∂z2
+ ω2

]
ψ = 0, (90)

for the non-dimensional velocity potential ψ where the non-
dimensional coordinates r and z are normalized by the

Figure 19. Cylindrical resonator with (a) a coaxially and (b) a
non-coaxially attached non-axisymmetric cylindrical waveguide.
The input waveguide can freely move along the resonator axis and
rotate about the symmetry axis of the resonator. Reprinted from
[141], Copyright (2018), with permission from Elsevier.

waveguide radius rw. The dimensionless frequency ω is
defined through the dimensional frequency ω̃ as follows ω =
ω̃rw/c0 and c0 is the sound speed.

The propagating modes in the sound hard cylindrical
waveguides with Neumann boundary conditions are described
by

ψpq(ρ,α, z) = ψpq(ρ)
1√

2πkpq
exp(ipα+ ikpqz), (91)

ψpq(ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2
J0(μ0q)

J0(μ0qρ), p = 0,√
2

μ2
pq − p2

μpq

Jp(μpq)
Jp(μpqρ), p = 1, 2, 3, . . . ,

where ρ,α are the polar coordinates shown in figure 20, μpq

is the qth root of equation

dJp(μpqρ)
dρ

∣∣∣∣
ρ=1

= 0

imposed by the Neumann boundary condition on the walls of
sound hard cylindrical waveguide:

k2
pq = ω2 − μ2

pq. (92)

The dimensional quantities ρ, z, kpq are measured in terms of
the radius of the waveguide ρ, and the frequency is mea-
sured in the terms of the ratio s/ρ, where s is the sound
velocity. The propagating bands degenerate with respect to
the sign of azimuthal index and are classified by two indices,
the azimuthal index p = 0,±1,±2, . . . and radial index q =
1, 2, 3, . . . . Profiles of the propagating functionsψpq(ρ) cos pα
are depicted in table 4.

The Hilbert space of the closed cylindrical resonator is
given by the following eigenmodes:

Ψmnl(r,φ, z) = ψmn(r)

√
1

2π
exp(imφ)ψl(z), (93)

where

ψmn(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2
RJ0(μ0nR)

J0

(μ0nr
R

)
, m = 0√

2
μ2

mn − m2

μmn

RJm(μmnR)
Jm

(μmnr
R

)
, m = 1, 2, 3, . . . ,

ψl(z) =

√
2 − δl,1

L
cos[π(l − 1)z/L], (94)
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Figure 20. Filled areas show the overlapping integration area in the
coupling matrix (96). Reprinted from [141], Copyright (2018), with
permission from Elsevier.

Table 4. Cut-off frequencies and corresponding shapes of the
propagating modes in the circular waveguide.

Channel Cut-off frequency Indices Mode shape

1 0 p = 0, q = 1

2 1.841 18 p = ±1, q = 1

3 3.0542 p = ±2, q = 1

4 3.831 706 p = 0, q = 2

l = 1, 2, 3, . . . and z are measured in terms of the waveguide
radius. The corresponding eigenfrequencies are

ω2
mnl =

[
μ2

mn

R2
+

π2(l − 1)2

L2

]
, (95)

where μmn is the nth root of the equation dJm(μmnr)
dr

∣∣
r=R

= 0
which follows from the Neumann BC on the walls of hard
cylindrical resonator.

The matrix elements of Ŵ are given by overlapping inte-
grals [112, 141]:

WC
mnl;pq =

∫
ΩC

ρ dρ dαψpq(ρ,α)Ψ∗
mnl(r,φ, z = zC)

=

∫ 2π

0
dα
∫ 1

0
ρ dρψpq(ρ,α)Ψ∗

mnl

× (r(ρ,α),φ(ρ,α), zC)

= ψl(zC)
∫ 2π

0
dα
∫ 1

0
ρ dρψpq(ρ,α)ψ∗

mn

× (r(ρ,α),φ(ρ,α)), (96)

where ΩC,C=L,R are the interfaces positioned at zC = 0, L.
Integration is performed over a circular cross section of the

attached waveguides as shown in figure 20. One can link the
polar coordinates of the resonator with that of the immovable
waveguide

r sin φ = ρ sin α, r cos φ = r0 + ρ cos α,

where r0 is the distance between the axes of the waveguide and
resonator.

According to equation (93) we have

ψl(z = 0) =

√
2 − δl,1

L
, ψl(z = L) = ψl(0)(−1)l−1.

(97)
Substituting (97) into (96) we obtain the following relation
between the left and right coupling matrix elements:

WL
mnl;pq = (−1)l−1 ei(p−m)ΔφWR

mnl;pq. (98)

Therefore the matrix of the effective Hamiltonian takes the
following form:

〈mnl|Ĥeff|m′n′l′〉 = ω2
mnlδmm′δnn′δll′

− i
∑

pq

kpq[1 + (−1)l+l′ ei(m′−m)Δφ]

× Wmnl;pqW∗
m′n′l′;pq. (99)

The transmittance of sound waves in the p, q propagating chan-
nel through the resonator is given by the following equation
[112]:

Tpq;pq = 2ikpq

∑
mnl

∑
m′n′l′

Wmnl;pq e−im′Δφ

× Gmnl;m′n′l′W
∗
m′n′l′;p′q′ , (100)

where

Ĝ =
1

ω2 − Ĥeff
, (101)

that is, the propagation of waves through the resonator is
described by the Green function which is inverse of the matrix
ω2 − Ĥeff and coupling matrices of the resonator with the input
(left) waveguide and the output (right) waveguide. However,
the most noteworthy feature in equation (100) is the complex
phases of the coupling matrix elements between states the with
different azimuthal indices, m and p. As we show below this
drastically changes the transmittance.

8.1. Variation over the length of resonator at Δφ = π/4

The case of Δφ �= 0 is interesting in that we are faced with
the problem of embedding the BIC into two continua which
differ in their phases. First, the problem of the BIC resid-
ing in a finite number of continua was considered by Pavlov-
Verevkin and coauthors [142]. A rigorous statement about the
BICs was formulated as follows. The interference among N
degenerate states which decay into K non-interacting continua
generally leads to the formation of N − K BICs. The equiva-
lent point of view [17] is that the linear superposition of the
N degenerate eigenstates

∑N
n=1 anψn can be adjusted to have

zero coupling with K different continua in N − K ways by
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Figure 21. Transmittance of a cylindrical resonator vs frequency
and length of the resonator L at (a) Δφ = 0 and (b) Δφ = π/4.
Dashed lines show eigenlevels of the closed resonator with
corresponding indices mnl. The positions of the BICs are shown by
closed circles. Reprinted from [141], Copyright (2018), with
permission from Elsevier.

variation of the N superposition coefficients an. Respectively,
that involves K-parametric avoiding crossing. The number of
continua can grow due to a number of reasons, for example,
non-symmetrically attached waveguides, multiple propagation
subbands in the waveguides, or two polarizations of the radi-
ation continuum in case of EM BICs. Each case puts the
problem of searching for BICs embedding into many continua
on the edge of art [31, 55, 59, 143–145].

In what follows we take both waveguides with the unit
radius shifted relative to the central axis of the resonator with
radius R = 3 by a distance r0 = 1.5. We consider transmis-
sion in the first channel p = 0, q = 1 in the frequency domain
0 < ω < μ11 = 1.8412 (see table 2). Although rotation of the
waveguide does not alter its propagating modes (continua),
it provides the complex phases in the coupling matrix ele-
ments of the resonator eigenmodes with the continua as given
by equation (98). That effects the transmittance as shown in
figure 21.

As before, the BIC points are detected by finding a zero
resonant width for variation of the resonator’s length L at fixed
Δφ = π/4 as shown in figure 22. We marked in circles only
those BICs which are listed in table 5 and will be analyzed
below. The positions of the BICs and expansions coefficients
over the eigenmodes of closed resonator (93)

ψBIC(r,φ, z) =
∑
mnl

amnlΨmnl(r,φ, z) (102)

are collected in table 5. Figure 23 shows the third and fourth
BICs marked in figure 21(b), which are the eigenmodes of the
non-Hermitian effective Hamiltonian (99). Figure 23 clearly
shows that the BICs at Δφ �= 0 are decoupled from the first
channel owing to twisting of the BIC modes by the rotation
angle Δφ.

8.2. Arbitrary Δφ. Wave faucet

Equation (100) shows that the phase difference Δφ due to
the rotation of the input waveguide brings an important con-
tribution into the interference between resonances. Figure 24
vividly illustrates the high sensitivity of the transmittance to
the rotation angle Δφ. As seen from figure 21 the eigenmode
012 crosses the eigenmodes±111 around L = 5. Respectively,
the transmittance is basically given by the interference of these

Figure 22. Evolution of resonant widths under the variation of the
resonator length at Δφ = π/4. Circles mark BICs listed in table 3.
Reprinted from [141], Copyright (2018), with permission from
Elsevier.

Table 5. BICs at Δφ = π/4. The waveguides with the unit radius
are shifted relative to the axis of cylindrical resonator with radius
R = 3 by a distance r0 = 1.5.

BIC ω2 L mnl amnl |amnl|

1 0.385 5.065

012 −0.113 + 0.272i 0.294
111 −0.478(1 − i) 0.675
−111 0.675 0.675

2 1.055 3.051

012 −0.261(1 − i) 0.369
211 0.656i 0.656
−211 0.656 0.656

3 1.0535 3.833

211 0.658i 0.658
−211 0.658 0.658
112 −0.237 − 0.098i 0.256
−112 −0.098 − 0.237i 0.256

4 1.065 3.869

211 −0.505 0.505
−211 0.505 0.505
112 −0.455 − 0.189i 0.493
−112 0.189 + 0.455i 0.493

resonances in the vicinity of this crossing L = 5,ω2 ≈ 0.385
(see parameters of the first BIC in table 5). According
to equation (98) we have WL

012;01 = −WR
012;01, WL

±111;01 =

WR
±111;01 e∓iΔφ. Therefore for the output waves interfering con-

structively we have to take Δφ = ±π, while fully destruc-
tive interference takes place at Δφ = 0. This simple con-
sideration is in excellent agreement with numerics presented
in figure 24(a). Along the same line for channels 012 and
±211 in the vicinity of L = 3 we have from equation (98)
WL

012;01 = −WR
012;01, WL

±211;01 = WR
±111;01 e∓2iΔφ to open wave

flux through the resonator at Δφ = π/2, 3π/2. That conclu-
sion fully agrees with the transmittance shown in figure 24(b).
Thus, the rotation of the input waveguide strongly tunes the
Fano resonance [146]. In particular, there can be a collapse of
the Fano resonance when the transmission zero approaches to
the transmission maximum that is the signature of the BICs
(see the section 4) (figure 25).
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Figure 23. Patterns of BIC 3 shown from the left (a) and right (b)
sides of the resonator and BIC 4 shown from the left (c) and right (d)
sides of resonator on the surface of the waveguide at Δφ = π/4.
Reprinted from [141], Copyright (2018), with permission from
Elsevier.

Figure 24. Transmittance of a cylindrical resonator (a) vs frequency
and rotation angle Δφ at L = 4 and (b) vs length and rotation angle
at ω2 = 2. The positions of the BICs are shown by open circles.
Reprinted from [141], Copyright (2018), with permission from
Elsevier.

Figure 25. Transmittance vs the frequency and rotation angle in the
vicinity of crossing of the modes (a) 012 and ±111 at L = 5, (b) 012
and ±211 at L = 3, and (c) ±112 and ±211, L = 4. Reprinted from
[141], Copyright (2018), with permission from Elsevier.

Figure 26 evidences that the rotation angle Δφ = π/4 is
not a unique requirement for BICs to occur. In fact, we will
show below analytically that there is a whole line L = f(Δφ)
of BICs. Among them, we select four BICs shown in figure 27.
Let us consider the first BIC from table 6 whose azimuthal

Figure 26. Evolution of resonant widths under waveguide rotation
at L = 4. Reprinted from [141], Copyright (2018), with permission
from Elsevier.

Figure 27. Patterns of BICs marked by open circles in figure 12 and
listed in table 6 on the surface of the resonator at L = 4: 1–4. Open
circles show where the left and right waveguides are attached to the
resonator. Reprinted from [141], Copyright (2018), with permission
from Elsevier.

dependence is given by cos[3(φ−Δφ/2)]. In order to decou-
ple this BIC from the right waveguide at Δφ = 0 the nodal
line of the BIC mode has to be positioned at φ = 0, which
gives us the equation 3

2Δφ = π
2 , i.e. Δφ = π

3 . Therefore the
BIC mode is cos[3(φ− π/6)], which equals zero at φ = 0.
The left waveguide is rotated by the angle π/3 for which the
BIC mode is decoupled from the left waveguide, too. Numeri-
cally according to table 6 we haveΔφ = 0.308π which is close
to π/3. The small difference is a contribution of the evanes-
cent modes. Similarly, for the 2nd BIC we obtain cos[4(φ−
Δφ/2)] that gives us Δφ = π/4, which is close to the numer-
ical result Δφ = 0.235π given in table 6. For the fourth BIC
we obtain Δφ = π/2, which also well agrees with table 6. The
most interesting is the third BIC, which is superposed of two
modes cos[2(φ−Δφ/2)] and cos[(φ+Δφ/2)]. As a result,
the BIC mode is twisted as shown in figures 23 and 27(b)
and (d).

8.3. CMT theory of twisted BICs

In the vicinity of the crossings of the eigenlevels of closed
cylindrical resonator framed in green in figure 21(a), it is rea-
sonable to truncate the effective Hamiltonian (99) by only
those modes which participate in the crossing, similar to the
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Table 6. BICs at L = 4.

BIC Δφ/π ω2 mnl amnl

1 0.308 1.9868
311 0.7056
−311 0.7056 e−3iΔφ

2 0.2351 3.173 04
411 0.705
−411 0.705 e4iΔφ

3 0.4171 1.056 88

211 0.6898
−211 −0.6898 e−2iΔφ

121 0.0933 + 0.1215i
−121 a121 eiΔφ

4 0.5055 1.688 72
211 0.7043
−211 0.7043 e−2iΔφ

two-level description in section 6. The only difference is that,
at least, three modes participate in degeneracy in the present
case. For example, let consider the case when the eigen-
level ω2

012 = π2/L2 crosses with the double degenerate eigen-
level ω2

111 = μ2
11/R2, shown in figure 28(a) by dashed lines.

The coupling matrix elements of the eigenmodes with the
first propagating mode p = 0, q = 1 (see table 4) of the right
waveguide according to equations (91), (94) and (96) equal

WL
mnl;01 = (w0 w1 w1), w0 = WL

012;01 =
1
3

√
2
L

,

w1 = WL
±111;01 = 0.269

√
1
L

(103)

for the given radius of the resonator. We also take into account
the coupling with the first evanescent modes p = ±1, q = 1 of
the waveguide (see table 4):

WL
mnl;11 = (0 v1 v2), WL

mnl;−11 = (0 v2 v1),

v1 = WL
012;11 = 0.1141

√
1
L

, v2 = WL
±111;11 = −0.0141

√
1
L
.

(104)
Because of the phase difference between the coupling matrix
elements for left and right waveguides we immediately obtain

WR
mnl;01 = (−w0 w1 eiΔφ w1 e−iΔφ),

WR
mnl;11 = (0 v2 eiΔφ v1 e−iΔφ),

WR
mnl;−11 = (0 v1 eiΔφ v2 e−iΔφ).

(105)

The contribution of the higher evanescent modes shown in
table 4 is negligible. For the open channel p = 0, q = 1 the
wave number q01 = ω while for the next closed channel p =

±1, q = 1, the wave number k11 = iq11, q11 =
√
μ2

11 − ω2 is
imaginary. Then the truncated effective Hamiltonian (2) can
be rewritten as follows:

Ĥeff = ĤR + q11

∑
C=L,R

∑
p=±1

ŴC
p=±1,1{ŴC

p=±1,1}† − iω

×
∑

C=L,R

ŴC
01{ŴC

01}† =
̂̃HR − iωΓ̂, (106)

Figure 28. The eigenvalues ω2
012 and ω2

111 of the closed resonator
are shown by dashed lines while the eigenlevels (109) shifted by the
evanescent modes are shown by solid lines. (a) The eigenvalues
(109) vs the resonator length at φ = π/3 and (b) vs rotation angle at
L = 5.0512. Reprinted from [141], Copyright (2018), with
permission from Elsevier.

where the Hermitian term

̂̃HR =

⎛⎝ω2
012 0 0
0 ω2

111 + 2q11(v2
1 + v2

2) 2q11v1v2(1 + e−2iΔφ)
0 2q11v1v2(1 + e2iΔφ) ω2

111 + 2q11(v2
1 + v2

2)

⎞⎠
(107)

is the Hamiltonian of the resonator coupled to the evanescent
modes. The anti-Hermitian part takes the following form:

Γ̂ =

⎛⎝ 2w2
0 w0w1(1 − eiΔφ) w0w1(1 − e−iΔφ)

w0w1(1 − e−iΔφ) 2w2
1 w2

1(1 + e−2iΔφ)
w0w1(1 − eiΔφ) w2

1(1 + e2iΔφ) 2w2
1

⎞⎠ .

(108)
The eigenvalues of the Hermitian part of the Hamiltonian (107)
can be easily found as

E1 = ω2
012, E2,3 = ω2

111 + 2q11[v2
1 + v2

2 ± 2v1v2 cos Δφ].
(109)

Thus the evanescent modes of the waveguides non-coaxially
attached to the cylindrical resonator lift the degeneracy of
eigenmodes ±111 as shown in figure 28 by solid lines. The
degeneracy is restored for Δφ = π/2, 3π/2. The correspond-
ing eigenmodes of the Hamiltonian (107) are the following:

X1 =

⎛⎝1
0
0

⎞⎠ , X2 =
1√
2

⎛⎝ 0
−e−iΔφ

1

⎞⎠ , X3 =
1√
2

⎛⎝ 0
e−iΔφ

1

⎞⎠ .

(110)
Next, let us consider the BIC in the truncated version (106).

The point of the BIC can be easily diagnosed by a zero res-
onant width as shown in figure 29. For Δφ = π/4, the BIC
occurs at L = Lc = 5.0512 marked by closed green circle in
figure 29(a). Respectively at L = Lc, the BIC occurs at Δφ =
π/4 and Δφ = 2π − π/4. These points are seen in the insert
in figure 29(b).

For Δφ = 0 both the continua of the left and right waveg-
uides coincide to result in the SP BIC superposed of degenerate
eigenmodes of the closed resonatorψ111 and ψ−111 to be in the
following form:

ψBSC(r,φ, z) = AJ1(μ11r) sin(πz/L) sin φ, (111)

which always has zero coupling with the propagation mode
ψ01(ρ,α, z) shown in table 4. As seen from equation (111) this
conclusion also holds true for Δφ = π. These BICs are trivial
SP ones for arbitrary resonator length.
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Figure 29. The resonant width vs (a) the resonator length at
Δφ = π/4 and (b) rotation angle at L = 5.0512. Open circles show
the SP BICs, closed circles the FW BICs. Reprinted from [141],
Copyright (2018), with permission from Elsevier.

As soon as Δφ �= 0 the continua become different to
destroy the SP BICs. It could be expected that in the case of two
waveguides, the point of threefold degeneracy where the ω012

crosses the double degenerate ω111 as shown in figure 28(a)
is a BIC point in accordance with the above consideration.
However the BIC point where the resonant width turns to
zero (see figure 29) does not coincide with this point. The
computation on the basis of a full basis effective Hamilto-
nian gives the same result. In fact, the evanescent modes
split the eigenvalues (109). Respectively the point of threefold
degeneracy ω2

111 = ω2
012(L) splits into two double degenerate

points E1(L) = E2(L,Δφ) and E1(L) = E3(L,Δφ). As shown
in figure 28(a) the first case exactly corresponds to the BIC
point but not the second case.

In the first case we can superpose the eigenmodes (110) as
aX1 + bX2 and require zero coupling of this superposed mode
with the left waveguide

aw0 +
b√
2
w1(1 − e−iΔφ) = 0 (112)

according to equations (103) and (110). It is easy to show
that the coupling with the phase-shifted continuum of the left
waveguide takes the same form as equation (112). Thus, the
BIC has the following form:

ψBSC = w1(1 − e−iΔφ)ψ012 + w0(e−iΔφψ111 − ψ−111).
(113)

Substituting eigenmodes (94) into equation (113) we obtain

ψBSC = 2i e−iΔφ/2
[
w1 sin(Δφ/2)ψ01(r)ψ2(z)

+ w0 sin(φ−Δφ/2)ψ11(r)ψ1(z)
]
. (114)

The BIC point is given by the equation E1(L) = E2(L,Δφ)
which gives rise to a line of the BSC in the parametric space L
and Δφ shown in figure 30.

Thus, we have shown the occurrence of the BICs embedded
into two continua which differ by their phase in the point of a
twofold degeneracy. It is important to stress that this degener-
acy refers to the eigenlevels of the Hamiltonian (107) of the
cylindrical resonator modified by the evanescent modes of the
attached waveguides. This is a necessary condition for exis-
tence of BIC, but not sufficient. Indeed let us consider the
another point of degeneracy, E1 = E3 (see figure 28(a)). At

Figure 30. Line of the BICs in the parametric space of the resonator
length and rotation angle Δφ. Reprinted from [141], Copyright
(2018), with permission from Elsevier.

Figure 31. (a) Transmittance vs frequency and resonator length at
four fixed rotation angles. Solid green lines show the resonances
defined by real part of the complex eigenvalues of the effective
Hamiltonian (106). Closed circles mark the BSCs which exactly
correspond to points of degeneracy of the eigenlevels (109).
Reprinted from [141], Copyright (2018), with permission from
Elsevier.

this point we adjust the superposition aX1 + bX3 for cancel-
lation of the coupling with both continua. The analogue of
equation (112) takes the following form:

± aw0 +
b√
2
w1(1 + eiΔφ)w1 = 0. (115)

These equations cannot be fulfilled simultaneously to for-
bid this degeneracy point as the BIC point. By the use of
equation (100) and truncated effective Hamiltonian (106) we
calculated the transmittance with the results presented in
figure 31. Comparison to figures 21(b) and (c) shows that all
features of the transmittance can be well reproduced in the
vicinity of the BICs by the use of a truncated basis.

One can also see from figures 31 and 32 that the resonant
features follow the real parts of the complex eigenvalues of
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Figure 32. (a) Transmittance vs the resonator length and rotation
angle for the frequency tuned to the frequency ofBIC ω2

c = 0.388.
(b) Transmittance vs the frequency and rotation angle for the length
tuned to the BIC length Lc = 5.048. Closed green circles mark BIC
1 resulted by crossing of eigenlevels (109) ω2

012 and ω2
pm112, open red

circles mark the SP BICs (111). Reprinted from [141], Copyright
(2018), with permission from Elsevier.

the effective non-Hermitian Hamiltonian (106) when Δφ �= 0.
Figure 32 shows the fine features of the transmittance vs two
parameters for the third parameter exactly tuned to the BIC.
Figure 32(a) demonstrates a Fano resonance collapse in the
parametric space of length and rotation angle at the BIC point
Lc = 5.048 and Δφc = π/4, with the frequency exactly tuned
to the BIC ωc = 0.3873. Figure 32(b) shows the transmittance
vs the frequency and the rotation angle for the length of the res-
onator tuned to the BIC length Lc = 5.0584. Figures 32(a) and
(b) show that the resonator is blocked when Δφ = 0 and open
when Δφ = π. We skip here the case when the mode ±112
crosses the mode ±211 and refer the reader to the chapter in
the book by [147]. Despite the truncated effective Hamiltonian
including four states, this case still allows for the analytical
treatment of BICs.

9. Spherical cavity

In this section we consider the FW BICs which exist only
due to the contribution of the evanescent modes of waveg-
uides. Such an example is an open spherical cavity, as shown
in figure 33, which presents a system consisting of two subsys-
tems with incompatible symmetries. The continua obey cylin-
drical symmetry while the resonator follows spherical symme-
try. The integrable spherical cavity has the only scale to vary
the sphere radius R, which only scales the eigenvalues by the
factor 1

R2 . The eigenmodes are spherical functions which are
2l + 1-fold degenerated, where l is the orbital index. Let us
attach two cylindrical waveguides, as shown in figure 33(a),
that fully remove this degeneracy. Therefore, it seems that
the FW mechanism for the BICs cannot be applied here due
to an avoided crossing. The continua of the waveguides in
the form of propagating Bessel modes transform the discrete
eigenfrequencies of the closed cavity into the complex reso-
nant frequencies whose positions depend on the overlapping
of the spherical functions with the Bessel modes. In turn, if
the waveguides are angled by θ �= π, the variation over that
angle can give rise to avoided crossings of resonant modes with
different l, resulting in the FW BICs.

In order to demonstrate this effect, we use the CMT with
the Neumann boundary conditions applicable for the transmis-
sion of acoustic or EM waves with TM polarization [112]. It is

Figure 33. Spherical cavity of radius R with (a) two and (b) three
attached cylindrical waveguides of the same radii r.

easy to find a solution of the Helmholtz equation in spherical
coordinates, so the eigenfunctions of a spherical cavity are the
following:

Ψlmn = Ψln(r)Ylm(θ,φ), (116)

Ψn(r) =
1

R3/2
s

√
2

κ2
l+1/2,n − n(n + 1)

× κl+1/2,n

Jl+1/2(κl+1/2,n)
Jl+1/2

(κl+1/2,nr
R

)
, (117)

Ylm(θ,φ) =

√
(2l + 1)(l − m)!

4π(l + m)!
Plm(cos θ) exp(mφ), (118)

where r, θ,φ are the spherical coordinates, R is the spheri-
cal cavity radius, Ylm are the spherical harmonics, Plm( cos θ)
are the associated Legendre polynomials, Jl+1/2 are the
Bessel functions, and κl+1/2,n are the roots of the equation
dJl+1/2,n(

κl+1/2 nr

Rs
)

dr |r=Rs
. Respective eigenfrequencies of the

closed spherical resonator are given as

ω2
nl = κ2

l+1/2,n/R2, (119)

which are 2l + 1-fold degenerates over the azimuthal
index −l < m < l. All the quantities are dimensionless and
expressed in terms of the cylindrical waveguides radius a.
The dimensionless frequency ω is expressed through the
dimensional one ω̃ as follows: ω = ω̃a/s in acoustics or
ω = cka, where s/c is the sound/light velocity.

The eigenfunctions of the cylindrical waveguides are

ψ(C)
pq (ρ,α, z) = ψ(C)

pq (ρ)
1√

2πk(C)
pq

exp(ipα+ ik(C)
pq z),

ψ(C)
pq (ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2
aJ0(μ0q)

J0

(μ0qρ

a

)
, p = 0,√

2
μ2

pq − p2

μpq

aJp(μpq)
Jp

(μpqρ

a

)
, p = 1, 2, 3, . . . ,

(120)
where ρ,α are the polar coordinates in the x0y-plane in the
waveguides reference system, Jp(x) are the cylindrical Bessel
functions of the first kind, μpq is the qth root of equation
dJp(μpqρ)

dρ

∣∣∣
ρ=a

= 0 imposed by the Neumann boundary condition

on the walls of sound hard cylindrical waveguide, C enumer-
ates input and output waveguides, and k(C)

pq is the wave number:

k(C)
pq =
√
ω2 − μ2

pq/a2. (121)
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Figure 34. Transmittance of the spherical resonator vs the
frequency of the injected wave and displacement angle of the second
waveguide. Small open white circles show the real part of
eigenfrequencies of open cavity vs the second waveguide
displacement angle. The large open green circle indicates the BIC
point with the collapse of the Fano resonance.

In order to write the non-Hermitian effective Hamiltonian,
it is necessary to calculate the coupling coefficients between
the modes propagating in the waveguides and the eigenmodes
of the spherical cavity. For the waveguide connected to the
pole of the resonator, the coupling matrix elements can be
calculated as follows [112, 141]:

Wlmn,pq = Ψln(r = R)
∫ 2π

0
dφ

×
∫ 1

0
ρ dρψpq(ρ,φ)Ylm(θ(ρ,φ),φ), (122)

where ρ is the radius in the cylindrical reference frame, φ = α
is the azimuthal angle, and θ is the polar angle in the spher-
ical reference frame. To perform this integration, one has to
express the spherical coordinates in terms of the cylindrical
ones, which can be done by a simple mathematical transfor-
mation. We assume here that the integration is carried out over
the circular interface between the waveguides and that the cav-
ity in the limit R � 1. Then the integration interface can be
approximated by a flat circle.

The calculation of the coupling matrix elements for asym-
metrically connected waveguides is somewhat difficult. We
assume that these waveguides are also connected to the
pole of the spherical resonator and then rotate the cav-
ity eigenfunctions, which are physically equivalent to rota-
tion of the waveguides. For that procedure we use the
Wigner D-matrix:

Dl
mk(α, β, γ) = exp(−ikα)dl

mk(β) exp(−imγ), (123)

where α, β, γ are the Euler’s angles and dl
mk(β) is the small

Wigner matrix:

dl
mk =

√
(l − m)!(l + m)!
(l − k)!(l + k)!

min(l−m,l+k)∑
s=max(0,k−m)

(−1)m−k+s, (124)

(
l + k

s

)(
l − k

m − k + s

)
cos2l−m+k−2s

×
(
β

2

)
sinm−k+2s

(
β

2

)
. (125)

Then the rotated spherical harmonic can be expressed through
the non-rotated one as follows:

Ỹ l
m(θ,φ) = exp(−imγ)

l∑
k=−l

exp(−ikα)dl
mk(β)Yl

k(θ′,α′),

(126)
and the coupling matrix elements of the asymmetrically con-
nected waveguides are the following:

W̃lmn,pq = exp(−imγ)
l∑

k=−l

exp(−ikα)dl
mkWlkn,pq. (127)

Next, we write the effective non-Hermitian Hamiltonian
of the system, which is the result of projection of the entire
Hilbert space of the system ‘waveguides + cavity’ onto the
spherical cavity subspace

Heff = HB − i
∑

C

∑
pq

k(C)
pq W (C)

pq W (C)†
pq , (128)

where the last term is given by the coupling matrix elements
(122). Then the transmission coefficients from the channel pq
of the waveguide (C) to the channel p′q′ of the waveguide (C′)
are given by the following equation [112, 141]:

t(CC′ )
pq;p′q′ = 2i

√
k(C)

pq k(C′)
p′q′

∑
lmn

∑
l′m′n′

W (C)
lmn;pq

× 1
ω2 − Heff

W (C′)∗
l′m′n′;p′q′ . (129)

9.1. Two waveguides

An attachment of waveguides lifts the 2l + 1-fold degeneracy
of the eigenvalues of the closed spherical cavity as demon-
strated in figure 34, where the real parts of the effective
Hamiltonian (128) complex eigenvalues are plotted by small
open circles versus the rotation angle Δθ. One can see from
figure 34 that the rotation of the second waveguide relative to
the first waveguide splits the resonances. It is more important,
however, that such a rotation gives rise to the avoided cross-
ing of resonances with different orbital indices l and respec-
tively to the FW BIC, which is marked by large open circle.
Figure 34 also shows the transmittance versus the injected
wave frequency and the second waveguide displacement angle
Δθ. One can see that the narrow resonant peaks follow the res-
onant frequencies marked by open circles. The small resonant
widths are the result of normalization coefficients of the eigen-
modes of the spherical cavity (120) proportional to 1

R3/2 . As a
result, the coupling matrix elements (122) have the same factor
and the resonant widths which are given by squared coupling
matrix elements turn out to be proportional to 1

R3 , while the
distance between the eigenfrequencies of HB are proportional
to 1

R2 . Therefore for R  1, we have the case of weak coupling
of the sphere with the waveguide continuum.
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Figure 35. (a) The pressure field of the FW BIC at ω = 1.3937 and Δθ = 0.727π. (b) The modal decomposition of the BIC.

Figure 36. Transmittance between ‘input’ and ‘output 1’ (a) and ‘input’ and ‘output 2’ vs frequency and the displacement angle Δθ2 of the
third waveguide for Δθ1 = π/4. The displacement angle of the second waveguide is Δθ1 = 3π/4. Circles mark the FW BICs.

The collapse of the Fano resonance, i.e. the coincidence of
the unit and zero transmittance, is the signature of the BIC [17,
34]. Figure 34 shows one of these events at which the imag-
inary part of the complex eigenvalues of the non-Hermitian
effective Hamiltonian vanishes. A major part of the BICs in
the case of two waveguides are SP. These SP BICs can be
obtained by simple rotation of the eigenfunctions of the closed
spherical resonator in order to achieve the orthogonality of the
eigenfunction to the mode of waveguide. We do not show here
the SP BICs which coincide with the rotated eigenmode of the
closed cavity by use of the Wigner D-matrix.

However, figure 34 marks the FW BIC at point Δθ = 0.7π,
ω = 1.378 by an open green circle. Figure 35(a) shows the
FW BIC wave function (the pressure field/magnetic field)
on the resonator surface. One can see from the nodal lines
on the surface of the sphere that the BIC mode is decou-
pled from the first continuum of the waveguide with indices
p = 0, q = 1. The modal expansion of this FW BIC over the
eigenmodes of the closed spherical cavity Ψnl(r)Ylm(θ,φ) is
shown in figure 35(b). The eigenmodes with quantum numbers
l = 4, m = ±1, n = 1 and l = 1, m = ±1, n = 2 contribute to
the FW BIC. Thus, the FW BIC is the result of the fully

destructive interference of resonant modes with different
orbital indices, despite that the eigenmodes of the closed spher-
ical cavity with different orbital momentums l have different
frequencies (121).

9.2. Three waveguides

Although the position of the second waveguide relative to the
first one at the pole of the sphere is given by two angles in
general, only the polar angle Δθ1 is physically relevant for
resonances and, in particular, for the BICs. The introduction
of the third waveguide as shown in figure 33(b) substantially
changes the effects of the continua on the resonances because
of three relevant angles, two polar anglesΔθ1 andΔθ2 and one
azimuthal angleΔφ. Figures 36 and 37 show the transmittance
versus the frequency of the injected wave and rotation angles
Δθ2 and Δφ of the third waveguide, which evident the impor-
tance of the mutual orientations of all three waveguides. The
regions in which avoiding of the crossing phenomenon occurs,
as well as the collapse of the Fano resonance, are highlighted
by the frames in figure 37. One can see that these phenomena
take place irrespective of which waveguide goes wave.
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Figure 37. Transmittance between ‘input’ and ‘output 1’ (a) and ‘input’ and ‘output 2’ vs frequency and the displacement angle Δθ2 of the
third waveguide for Δθ1 =

√
5.

Figure 38. (a) The BIC pattern (pressure field) on the surface of the spherical cavity at the BIC point with ω = 1.385 75, Δθ1 =
√

5,
Δθ2 =

√
2 and Δφ = 0.1222π. (b) The modal decomposition of the BIC.

Figure 39. (a) 1D wire with two off-channel cavities. (b) 2D wire with two inserted identical resonators.

The circles in figures 36 and 37 mark the position of the FW
BIC whose pattern in the form of surface pressure/a magnetic
field on surface of the resonator is shown in figure 38(a). The
amplitudes anlm of the superposition of the spherical harmonics

are chosen in so way that the nodal lines shown in white pass
through the overlapping areas of waveguides with the spherical
cavity. As a result, the coupling constants of the FW BIC with
the first propagating channel or continuum vanish.
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Figure 40. (a) The transmittance in log scale through the double resonator vs the frequency εw of wire and incident frequency E = ω2. (b)
The resonant widths as dependent on εw at E = 0.5 at the following parameters of the system: ε1,2 = ±1/2, v = 0.5, u = 1/4.

10. The Fabry–Perot mechanism of BICs in the
system of two coupled resonators

If the double-barrier resonant structure had infinitely high bar-
riers, the eigenmodes were localized between the barriers. For
a finite height of barriers, these eigenmodes transform into
the resonant modes with finite resonant widths defined by the
probability of tunneling. Such a one-dimensional QM structure
has one-to-one equivalency with the Fabry–Perot resonator
(FPR) [148] and has no BICs as was discussed in section 4.
Let us substitute the two-dimensional resonators instead of the
barriers or mirrors in the FPR as presented in figure 39.

We start with the simplest case of a 1D wire to which two
off-side or off-channel cavities are attached, as illustrated in
figure 39(a). The case of a single off-channel defect realizes
the simplest way for Fano resonance due to interference of
two wave paths, a direct path over the wire and a second path
through the off-channel defect. As a result, this gives rise to N
transmission zeros at ω = ωn, n = 1, 2, . . . , N, where N is the
number of eigenfrequencies of the defect [111, 149]. Thus, the
off-channel defects can serve as ideal Fano mirrors and support
BICs provided that an integer of half-waves is placed between
mirrors, i.e.

πcn = ωnL, (130)

where c is the light velocity. Therefore, the underlying mecha-
nism of the bound states in the one-dimensional wire with two
off-channel defects are (i) transmission zeroes of each defect
at definite frequency, or perfect reflections, i.e. mirrors, and
(ii) the integer number of the half waves between the mirrors.
This mechanism, exclusively transparent, for the bound states
which we call as the FP BIC, was applied to a photonic crys-
tal structure with a waveguide coupled with two cavities [40,
47, 150, 151]. The same mechanism of BICs was exploited
in photonic crystal systems in which one-dimensional arrows
of dielectric rods [40, 46, 48] and two-dimensional periodi-
cal PhC structures in the form of perforated slabs or dielectric
particles [49, 66] served as perfectly reflecting mirrors.

A different way is to implement two-dimensional cavities
into waveguide as shown in figure 39(b) [43–45]. Each res-
onator has transmission zeroes [152] at some frequencies to
serve as FP mirrors. Therefore the total system consists of
two cavities and a wire between them. In the simplest form,
the Hamiltonian of a closed system has the following matrix
structure:

HB =

⎛⎜⎜⎜⎜⎝
ε1 0 u 0 0
0 ε2 u 0 0
u u εw u u
0 0 u ε2 0
0 0 u 0 ε1

⎞⎟⎟⎟⎟⎠ . (131)

We can consider the eigenlevel of the wire εw to be the
parameter by which the system can be controlled.

The minimal rank of matrix (131) is five, so that we can let
En and |n〉 with n = 1, . . . , 5 denote the five eigenlevels and
eigenstates of (131). The amplitudes 〈 j = 1, 2|n〉 describe the
left resonator, 〈 j = 3|n〉 the waveguide, and 〈 j = 4, 5|n〉 the
right resonator. Two semi-infinite waveguides attached to the
resonators provide continua and therefore transform the states
of the closed system into resonances which are described by
the effective non-Hermitian Hamiltonian [111]:

〈m|Heff|n〉 = Emδmn − 2πi(VL(m)VL(n) + VR(m)VR(n))
(132)

with the coupling matrix elements

VL(m) = v(k)
∑
j=1,2

〈 j|m〉,

VR(m) = v(k)
∑
j=4,5

〈 j|m〉,
(133)

where the factors
√

k
2π originated from the normalization of

propagating states of 1D waveguides are absorbed by v(k).
The transmittance through the system given by

equation (129) is shown in figure 40(a) at the log scale
in order to follow transmission zeros and resonances. Because
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Figure 41. The transmittance in log scale of the double resonator
shown in figure 39(b) versus the frequency and length of the
waveguide between the resonators. The bold red open circles mark
the two points of the BICs shown in figure 42.

Figure 42. BICs at the points marked by the red open circles in
figure 41: (a) at ω2 = 11.92 and L = 2.8 and (b) ω2 = 15.83 and
L = 2.83.

of the small coupling constant v(k) = 0.5
√

k
2π , the trans-

mittance demonstrates resonant behavior which follows the
eigenlevels of the Hamiltonian (131) of the closed system:

E1,5 = ±η, E2 = ε1, E3 = 0, E4 = ε2.
(134)

The eigenvalues 2 and 4 of the effective Hamiltonian are inde-
pendent of the wire’s eigenvalue εw, while those of the other
states depend on it. The eigenvalue 3, lying in the middle of
the spectrum, crosses the transmission zero at

εw = εb =
ε1 + ε2

2
= 0. (135)

At this eigenvalue we observe the collapse of the Fano reso-
nance that witnesses the BIC fully agreeing with the turning to
zero of the resonant width as seen from figure 40(b).

However, the question still remains as to where the BIC
is localized: in the wire between the resonators or entirely in
whole structure including resonators. It might seem that the
latter is correct taking into account that the resonator provides
large room for localization. Below, by use of exact analytic
equations, we show that the first answer is correct, at least
in the present model case of 1D wire. The eigenstates of the
Hamiltonian (131) are the following:

〈1| =
√

2u
η

(
u

η −Δε
,

u
η +Δε

, −1,
u

η +Δε
,

u
η −Δε

)
〈2| = 1√

2
(1, 0, 0, 0, −1)

〈3| = u
η

(
1, −1,

Δε

u
, −1, 1

)
〈4| = 1√

2
(0, 1, 0, −1, 0)

〈5| =
√

2u
η

(
u

η +Δε
,

u
η −Δε

, 1,
u

η −Δε
,

u
η +Δε

)

,

(136)
where η2 = Δε2 + 4u2,Δε = (ε2 − ε1)/2. Substituting (136)
into (133) we obtain

〈m|V|E, C = L, R〉 = v

√
k

8π

(
1 ± 1

Δε

u
± 1 1

)
(137)

for the elements of the coupling matrix. One can see that under
the conditions (135), the wire decouples from the rest of the
system with zero imaginary parts of the third eigenvalue of
Heff , i.e. the width of the third eigenstate vanishes at εw = εb.

In conclusion, we present numerically computed transmit-
tance through a planar metallic double resonator connected
by planar two-dimensional waveguide in figure 41. The total
view of the double resonator connected to the semi-infinite
waveguide through the diaphragms is shown in figure 39(b).
This figure also shows the scattering wave function. Figure 42
presents two patterns of the BICs which correspond to the FP
resonances n = 1 (a) and n = 2 (b) in equation (130).

11. Summary and conclusions

Based on the model two-level (9) or three-level (107) or five-
level (132) effective Hamiltonians, we presented an analytical
description of how the BICs occur in open systems with fur-
ther applications for real physical microwave, optical, electron
and acoustic systems. Irrespective of the choice of system, the
BICs can be classified as SP, Friedrich–Wintgen (FW), FP
and accidental. The most obvious case of trapping of reso-
nant modes is related to the symmetry incompatibility of the
eigenmodes of the resonator with the propagating mode, i.e.
the continuum of the waveguide attached to the resonator. That
provides zero coupling of the eigenmode with the continuum.
In other words, the SP BICs can be defined as dark modes in
view that a probing wave propagating in the continuum can-
not ‘see’ it. Accidental BICs are close to the SP BICs in the
meaning that the coupling can vanish, owing to the variation
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of parameters of the resonator. We demonstrated these BICs
on an example of the Sinai resonator when the motion of the
hole inside the symmetric resonator deforms the eigenmodes
to result in a zero overlapping integral (see figure 16). It is
worth noting that the accidental BICs occur in photonic sys-
tems in the form of one- or two-dimensional infinite arrays
of dielectric resonators [32, 153], owing to the variation of
shape in the resonators or wave vector of the BIC. Also the
FP mechanism of BICs is fully transparent, in which a wave is
trapped between two mirrors. Off-channel defects [40], vol-
ume resonators [16] and one- or two-dimensional periodic
structures [46] provide transmission zeros, i.e. mirrors. How-
ever the present review addressed first of all the most inter-
esting FW mechanism of localization of waves in the open
microwave, optical and acoustic cavities. The mechanism is
based on the fullly destructive interference of two resonant
modes outgoing from the cavity. Irrespective of the type of the
BIC, the complex eigenvalue of the non-Hermitian effective
Hamiltonian shows that the BIC point imaginary part of the
eigenvalue turns to zero. This phenomenon is a result of the
BIC decoupling from the continuum [67].

However, we presented three-dimensional symmetrical
cavities, cylindrical and spherical, in which BICs are the result
of destructive interference of more resonances. The cavities
are opened by attachment of directional waveguides which
provide well-separated continua of propagating modes. There-
fore, such waveguide systems have the advantage of control-
ling the number of continua by crossing the cutoff frequencies.
Throughout the review we used two almost entirely identical
waveguides to obtain identical continua of waveguides. Impor-
tantly, the open resonators are one of the best systems where
the effective non-Hermitian Hamiltonian can be derived ana-
lytically with exact expressions for the coupling matrix. More-
over, the identical waveguides can be attached to the resonant
cavities of cylindrical or spherical shapes in such a way that the
coupling matrices for the two waveguides differ by phase. This
simple way to distinguish the continua gives us an additional
parameter to control the wave transmission (wave faucet) and
realize twisted BICs.

The evanescent modes with cutoffs above the BIC frequen-
cies also have principal importance for the BICs: first due to the
boundary conditions between localized BIC mode and evanes-
cent modes, the BICs exist and slightly stand out from the
cavity. Because of the absence of evanescent modes in one-
dimensional wires, there are no BICs in the cavity opened by
the attachment of half-infinite wires. This is only true for the
one-dimensional quantum wires or layered structures where
TE and TM polarizations are separated. For the case of spinor
fields transmission like one-dimensional electron transmis-
sion, through the quantum dot we show that the FW BICs
can occur due to the fully destructive interference of reso-
nances with opposite spins. The same idea can be applied to
the defect anisotropic layer where EM waves with TE and TM
polarization can destructively interfere [136].

Second, the evanescent modes contribute to the Hamilto-
nian of the closed cavity similarly to the Lamb shift in atomic
physics. The coupling to evanescent modes shifts the BIC point
from the point of degeneracy of the closed cavity. However, the

most striking effect is that the FW BICs exist only owing to the
evanescent modes as it was demonstrated in the open spherical
cavity.

There are no BICs in the one-dimensional system except
specially chosen long-range oscillating potentials by von Neu-
mann and Wigner [1]. However that is true only for scalar
waves. For vectorial waves, again the FW mechanism of BICs
can be applied, however as a result of fully destructive inter-
ference of resonances corresponding to different components
of the vectorial field [136].

The spherical resonator demonstrates the unique case of
BICs which occur due to coupling of the resonator with direc-
tional waveguides as shown in figure 36. The coupling pro-
vides the avoided crossing of resonances with different orbital
momenta for the variation of the angular position of the one
waveguide relative to the other. Previously, the avoided cross-
ing of resonances is achieved owing to the variation of the
parameters of the resonator, rectangular cylindrical etc. It is
worth noting that the process of the avoided crossing of reso-
nances with the variation of the aspect ratio of isolated dielec-
tric disk gives rise to the resonant modes with extremely high
Q factor [154], which is close to the BIC although the bound
state in the radiation continuum cannot exist in single dielectric
cavity in air [58].

One of the most noteworthy results for the BICs is their
existence in photonic crystal systems embedded into the radi-
ation continuum, which has an infinite number of continua
because of the dispersion equation ω = ck. It may seem that it
is not possible for BICs to be embedded into the radiation con-
tinuum. Indeed, rigorous theorem forbids BICs in finite dielec-
tric structures [58]. However, if we take the infinite periodic
PhC structures like a 2D PhC surface or a one-dimensional
array of dielectric particles, we obtain an analogue of diffrac-
tion lattices which are coupled with only discretized continua
defined as the diffraction orders. That is a physical explanation
for BICs in such infinite PhC structures [31, 60].

Here we skipped the majority of the results on BICs in
photonics for two reasons. First, this research direction is
developing so rapidly and is so broad that it can hardly be
put into a single review. We only included one example of
BICs in a one-dimensional photonic crystal holding the defect
anisotropic layer in which the BICs are realized because of the
fully destructive interference of the resonance with TE and TM
polarizations. The second reason is that recent reviews have
filled this gap [62–66].
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