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Abstract
One of the features of the unconventional s± state in iron-based superconductors is possibility
to transform to the s++ state with the increase of the nonmagnetic disorder. Detection of such a
transition would prove the existence of the s± state. Here we study the temperature dependence
of the London magnetic penetration depth within the two-band model for the s± and s++

superconductors. By solving Eliashberg equations accounting for the spin-fluctuation mediated
pairing and nonmagnetic impurities in the T-matrix approximation, we have derived a set of
specific signatures of the s± → s++ transition: (1) sharp change in the behavior of the
penetration depth λL as a function of the impurity scattering rate at low temperatures; (2) before
the transition, the slope of ∆λL(T) = λL(T)−λL(0) increases as a function of temperature, and
after the transition this value decreases; (3) the sharp jump in the inverse square of the
penetration depth as a function of the impurity scattering rate, λ−2

L (Γa), at the transition; (4)
change from the single-gap behavior in the vicinity of the transition to the two-gap behavior
upon increase of the impurity scattering rate in the superfluid density ρs(T).

Keywords: unconventional superconductors, iron pnictides, iron chalcogenides, impurity
scattering, penetration depth

(Some figures may appear in colour only in the online journal)

1. Introduction

Unconventional superconductivity is full of surprises even
in the thought to be simple cases. For example, Tc in con-
ventional superconductors with the s-wave gap is insensit-
ive to the nonmagnetic disorder and decreases rapidly with
the increasing number of magnetic impurities [1, 2]. On the
contrary, the unconventional sign-changing d-wave gap in the

∗
Author to whom any correspondence should be addressed.

high-Tc cuprates and s± gap in the iron-based superconduct-
ors leads to the suppression or in some cases to the satur-
ation for the s± gap) of the critical temperature by scatter-
ing on the nonmagnetic impurities [3–9]. Even more fascinat-
ing is the possibility to change the gap structure of multiband
superconductors by the disorder. That is, the nodal angular-
dependent extended s-wave gap may become nodeless due
to the impurity averaging [10]. And the s± gap may trans-
form to the sign-preserving s++ gap with the increase of dis-
order [11–13]. Even the reverse transition, from the s++ to
the s± state, is possible when the effect of temperature is
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considered [14]. Existence of such an interesting s± ↔ s++

transition, however, have to be proved. Observation of it may
be tricky because the both states are fully gapped and both
order parameters belong to the same symmetry class. Thus
the specific heat and thermal conductivity measurements as
well as angle-resolved photoemission spectroscopy (ARPES)
are not the decisive tools of the first choice because they do
not provide a direct probe of the changes happening at the
transition. Intriguing possibility comes from the temperature
dependence of the optical response and the London penetra-
tion depth λL(T). In particular, the s± ↔ s++ transition goes
through the gapless state that should reveal itself as the qual-
itative change of the form of λL(T) [11, 12].

There is been at least two reports claiming the
observation of the discussed transition. Namely, in
Ba(Fe0.9Co0.1)2As2 [15] and in Ba(Fe1− xRhx)2As2 [16] with
the nonmagnetic disorder in both systems introduced via a
proton irradiation. Latter study is supplied with the theoretical
calculations, which are questionable in some points. Firstly,
plasma frequency ωp changes with disorder by an order of
magnitude, from 1.21 to 0.0821 eV and then grows back to
0.139 eV5. Sinceωp is the property of the conduction electrons
and there is no evidences that the proton irradiation severely
affects the Fermi surface, there is no grounds to expect such
a huge change in ωp. The same is true for the analysis in
the subsequent studies by the same group [17, 18]. Secondly,
generalized cross-section parameter σ also changes very much
with the irradiation, from 0 to 0.278. The parameter itself con-
trols the considered scattering limit, i.e. it equals zero in the
weak (Born) limit and becomes unity in the strong (unitary)
limit. Again, there is no solid grounds to expect that σ would
change with the addition of disorder created by the protons.
As for the experimental observations in [16], the sudden jump
in the λL(T) dependence after the first dose of protons and
the appearance of the long tails near Tc signifying a non-
mean-field behavior emphasize the complexity of the studied
system.

All thementioned issues call for the formulation of the strict
signs of the s± → s++ transition, which would allow to unam-
biguously assert its presence. Here we theoretically analyze
the low-temperature behavior of the London penetration depth
within the two-band model for the ‘dirty’ superconductor. We
derive the unmistakable signs of the transition from s± to s++

state, detection of which would point towards existence of the
transition.

2. Model and approach

Except for the extreme hole and electron dopings, the Fermi
surface of most of iron-based materials consists of two or three
hole sheets around the Γ= (0, 0) point and two electron sheets

5 References [17, 18] and supplementary materials of reference [16] contains
claim that ωp is of the order of a few meV’s, which is a typo since the typical
value for metals should be around few eV’s.

around the M= (π,π) point of the two-iron Brillouin zone.
Scattering between them with the large wave vector results
in the enhanced antiferromagnetic fluctuations, which lead to
the pairing with the order parameter that change sign between
electron and hole pockets—the so-called s± state [19–21].
Alternatively, the orbital fluctuations may lead to the sign-
preserving s++ state [22–26]. Since most experimental data
including observation of a spin-resonance peak in the inelastic
neutron scattering and the quasiparticle interference in tunnel-
ing experiments are in favor of the s± scenario [20, 27], later
we consider the pairing due to spin fluctuations.

Impurity scattering in the multiband system is much more
complicated than in the single band case [11, 28–34]. One of
the conclusions was that the system having the s± state in the
clean case may preserve a finite Tc in the presence of non-
magnetic disorder due to the transition to the s++ state. It
was obtained both in the strong-coupling T -matrix approxim-
ation [11] and via a numerical solution of the Bogoliubov-de
Gennes equations [35, 36].

Topology of the Fermi surface in iron-based materials
makes it sensible to use a two-band model as a comprom-
ise between simplicity and possibility to capture the essential
physics. Previously, we have studied the s± → s++ transition
in such a model and shown that the transition can take place
only in systems with the effective intraband pairing interaction
present [11]. Physical reason for the transition is quite trans-
parent, namely, if one of the two competing superconducting
interactions leads to the state robust against impurity scatter-
ing, then although it was subdominating in the clean limit, it
should become dominating while the other state is destroyed
by the impurity scattering [12].

Here we use the two-band model [11, 12, 14] with the fol-
lowing Hamiltonian,

H=
∑
k,α,σ

ξk,αc
†
kασckασ +

∑
Ri,σ,α,β

Uαβ
Ri
c†Riασ

cRiβσ +HSC,

(1)

where the operator c†kασ(ckασ) creates (annihilates) a quasi-
particle with the band index α= (a, b), momentum k, and spin
σ; ξk,α = vFα(k−kFα) is the dispersion of quasiparticles lin-
earized near the Fermi level, with vFα and kFα being the Fermi
velocity and Fermi momentum of the band α, respectively.
The second term in the Hamiltonian contains the impurity
potential URi at a site Ri, while the last term, whose exact
form is not important for the current discussion, is respons-
ible for the superconductivity. We assume that the supercon-
ducting pairing is provided by the exchange of spin fluctu-
ations (repulsive interaction) and may include some attract-
ive interaction (for example, electron–phonon coupling). All
thsese interactions enter our theory through the normal and
anomalous self-energy parts, which depend on the matrix of
coupling constants Λ̂, see Ref. [21] for details.

The presence of nonmagnetic disorder is considered
within the Eliashberg approach for multiband superconduct-
ors [37]. To simplify the calculations, we use the quasiclassical
ξ-integrated Green’s functions,
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ĝ(ωn) =
(

ĝan 0
0 ĝbn

)
, (2)

where ωn= (2n+ 1)πT is the Matsubara frequency, and

ĝαn = g0αnτ̂0 ⊗ σ̂0 + g2αnτ̂2 ⊗ σ̂2, (3)

Here, τ̂i and σ̂i are the Pauli matrices corresponding to Nambu
and spin spaces, respectively; g0αn and g2αn are the normal
and anomalous (Gor’kov) ξ-integrated Green’s functions in
the Nambu representation,

g0 αn =− iπNαω̃αn√
ω̃2
αn+ ϕ̃2

αn

,g2 αn =− πNαϕ̃αn√
ω̃2
αn+ ϕ̃2

αn

, (4)

which depend on the density of states per spin at the Fermi
level of the corresponding band (Na,b), and on the order para-
meter ϕ̃αn and frequency ω̃αn renormalized by the self-energy.
The order parameter ϕ̃αn is connected to the gap function∆αn

via the renormalization factor Zαn = ω̃αn/ωn, i.e.

∆αn = ϕ̃αn/Zαn. (5)

The impurity part of self-energy Σ̂imp is calculated in the non-
crossing diagrammatic approximation described by the T -
matrix approximation with the following equation,

Σ̂imp(ωn) = nimpÛ+ Ûĝ(ωn)Σ̂imp(ωn), (6)

where nimp is the concentration of impurities, Û= U⊗ τ̂3, is
the matrix of the impurity potential (U)αβ = Uαβ

Ri
, consist-

ing of intra- and interband parts (U)αβ = (v− u)δαβ + u. The
relation between the intra- and interband impurity scattering
is set by a parameter η= v/u. Without loss of generality we set
Ri = 0.

It is convenient to introduce the generalized cross-section
parameter:

σ =
π2 NaNbu2

1+π2 NaNbu2
→

{
0,Born limit,
1,unitary limit

(7)

and the impurity scattering rate:

Γa(b) = 2 nimpπNb(a)u
2 (1−σ)

=
2 nimpσ

πNa(b)
→

{
2nimpπNb(a)u2,Born limit,
2nimp

πNa(b)
,unitary limit , (8)

For σ and Γα, there are two limiting cases: (1) Born limit cor-
responding to the weak impurity potential (πuNa(b) ≪ 1), and
(2) unitary limit corresponding to strong impurity scattering
(πuNa(b) ≫ 1).

In the local limit, the London magnetic field penetration
depth is related to the imaginary part of the optical conductiv-
ity σxx

′
(ω,q= 0) at zero momentum q (in the local, i.e. Lon-

don, limit),

1
λ2
L,xx ′

= lim
ω→0

4 πω

c2
Im σxx

′
(ω,q= 0), (9)

where x and x ′ are axes directions of the Cartesian coordin-
ates and c is the velocity of light. If we neglect the effects
of strong coupling and, in general, Fermi-liquid effects,
then for the clean uniform superconductor at zero temperat-
ure we have 1/λL =

∑
αωpα/c≡

∑
αω

xx
pα/c, where ωxx

′

pα =√
8 πe2 Nα(0)⟨vxFαvx

′
Fα⟩ is the electron plasma frequency for

the band α, Nα(0) is the density of states at the Fermi level,
and vxFα is the x-component of the Fermi velocity. For impurity
scattering, vertex corrections from noncrossing diagrams van-
ish due to the q= 0 condition. Thus, penetration depth for the
multiband system can be calculated via the following expres-
sion [12]:

1
λ2
L

=
∑
α

(ωpα
c

)2
T
∑
n

g22αn

πN2
α

√
ω̃2
αn+ ϕ̃2

αn

. (10)

In the experiments, along with λL the following quantities are
measured: the temperature variation of the penetration depth:

∆λL(T) = λL(T)−λL(0), (11)

and the so-called ‘superfluid density’:

ρs(T) =
λ2
L(0)

λ2
L(T)

. (12)

3. Results

The calculations are done in the intermediate impurity scat-
tering limit, σ= 0.5. For simplicity, we exclude the intra-
band impurity scattering assuming η= 0 and set u= 0.7 and
v= 0. Plasma frequencies for two bands are taken from dens-
ity functional theory calculations [38, 39] and are equal to
ωpa= 2.34 eV and ωpb= 1.25 eV. The values are typical for
iron pnictides, see [40].

The behavior of the s± state heavily depends on the sign
of a coupling constant averaged over the bands ⟨Λ⟩. Latter is
calculated using the following equation:

⟨Λ⟩= (Λaa+Λab)
Na
N

+(Λba+Λbb)
Nb
N
, (13)

where N= Na+Nb is the total density of states. The ratio
Na/Nb = 1/2 and the spin fluctuation spectrum are the same as
considered in the earlier studies [11, 12, 34]. The same is true

for the matrix of the coupling constants: Λ̂ =

(
Λaa Λab

Λba Λbb

)
with the following elements: Λ̂ =

(
3 −0.2

−0.1 0.5

)
for the

s± order parameter with ⟨Λ⟩> 0 and the critical temperature

Tc0 = 41.4 K, Λ̂ =

(
2 −2

−1 1

)
for the s± order parameter

with ⟨Λ⟩< 0 and Tc0 = 39 K, and Λ̂ =

(
3 0.2

0.1 0.5

)
for s++

superconductor with Tc0 = 41.4 K.
It was shown before [14], that the scattering rate Γcrita at

which the transition between s± and s++ states takes place
is temperature-dependent. In the intermediate scattering limit,
σ= 0.5, for T = 0.01Tc0 we have Γcrita = 1.15Tc0.

3
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Figure 1. Inverse square of the penetration depth, λ−2
L (Γa), at

temperatures 0.01Tc0 < T< Tc0 for the s± state with ⟨Λ⟩> 0
(a) and ⟨Λ⟩< 0 (b), and for the s++ state (c). Here, σ= 0.5, v= 0.
Γa and T are normalized by Tc0. For T = 0.01Tc0 and T = 0.02Tc0,
the graphs almost overlap.

3.1. Penetration depth λL and λ−2
L in a wide temperature

range

Since the optical conductivity, and thus the inverse square of
the penetration depth is the response function, see equation (9),
it is λ−2

L that can be directly observed and measured, not λL
itself. Therefore, from the point of view of experimental detec-
tion of the transition, it turns out to be more convenient to con-
sider λ−2

L instead of λL. In figure 1(a), the s± → s++ transition

 10

 100

 0  0.5  1  1.5  2  2.5  3  3.5

s±, 〈Λ〉 > 0

Tc0 = 41.4 K

(a)

Γa
p.b.

ln
(λ

L)
, a

rb
. u

ni
ts

Γa/Tc0

T = 0.01Tc0
T = 0.17Tc0
T = 0.35Tc0
T = 0.52Tc0
T = 0.69Tc0
T = 0.87Tc0

 10

 100

 0  2  4  6  8  10  12  14

s±, 〈Λ〉 < 0
(b)

Γa
p.b.

ln
(λ

L)
, a

rb
. u

ni
ts

Γa/Tc0

T = 0.01Tc0
T = 0.19Tc0
T = 0.38Tc0
T = 0.57Tc0
T = 0.76Tc0
T = 0.95Tc0

Tc0 = 39.0 K

 10

 100

 0  0.5  1  1.5  2  2.5  3  3.5

s++

Tc0 = 41.4 K

(c)

ln
(λ

L)
, a

rb
. u

ni
ts

Γa/Tc0

T = 0.01Tc0
T = 0.17Tc0
T = 0.35Tc0
T = 0.52Tc0
T = 0.69Tc0
T = 0.87Tc0

Figure 2. Log plot of the penetration depth λL(Γa) at various
temperatures 0.01Tc0 < T< Tc0 for the s± state with ⟨Λ⟩> 0 (a)
and with ⟨Λ⟩< 0 (b), and for the s++ state (c). Here, σ= 0.5, v= 0.
Γa and T are normalized by Tc0. For T = 0.01Tc0 and T = 0.02Tc0
the graphs almost overlap.

at T = 0.01− 0.02Tc0 manifests itself as a jump in λ−2
L (Γa).

There is a well pronounced minimum at the transition point.
Note that the minimum can not be eliminated by changing the
scale of the graph. For the s++ gap, figure 1(c), λ−2

L slightly
decreases as a function of Γa retaining a finite value below Tc,
while for the s± gap with ⟨Λ⟩< 0, figure 1(b), inverse square
of the penetration depth vanishes rapidly at any temperature.
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Figure 3. Penetration depth λL(Γa) at temperature T = 0.01Tc0 for
the s± state with ⟨Λ⟩> 0 and with ⟨Λ⟩< 0, and for the s++

superconductor. Here, σ= 0.5, v= 0. Γa and T are normalized by
Tc0. Data points from [16] are shown in the inset to demonstrate the
nonmonotonic experimental dependence of λL(T→ 0) and
qualitative similarity with our result for the s± state with ⟨Λ⟩> 0.

At any temperature above approximately 0.02Tc0, the
s± → s++ transition is not very pronounced, see figure 2(a).
Moreover, the behavior of λL for the s± state with ⟨Λ⟩> 0 and
the s++ state are similar up to T ≈ 0.8Tc0, compare figures 2(a)
and (c). At higher temperatures, however, λL increases faster
as a function of Γa in the former case. It happens because
Tc in the s++ state emerging after the s± → s++ transition
appears to be suppressed more intensively than the ‘genuine’
s++ state shown in figure 2(c). And at T> 0.8Tc0, there is
a range of impurity scattering rates starting from Γp.b.

a (‘pair
breaking’) for which the superconductivity is fully suppressed.
In figure 2(a), it is shown for T = 0.87Tc0. In the case of
the s± state with ⟨Λ⟩< 0, nonmagnetic disorder destroys the
superconducting state at any temperature within the range of
0.01Tc0 < T< Tc0, which is indicated by the presence of Γ

p.b.
a

at each temperature, see figure 2(b).

3.2. Penetration depth at a minimal temperature T→0

Because we use Matsubara technique in our calculations, we
can not consider exact zero temperature case. Apparently,
this is in line with the experimental situation where one can
not make measurements at T = 0. Therefore, we set λL(0)≈
λL(T= Tmin) with Tmin = 0.01Tc0.

As is seen in figure 3 (blue curve), the transition between
the s± and s++ superconducting states is manifested in the
penetration depth at T→ 0 as a sharp change in the depend-
ence of λL on the impurity scattering rate. Before the trans-
ition, λL(Γa) rapidly increases indicating the suppression of
the s± gap. The similar behavior is obtained for the s± state
with ⟨Λ⟩< 0, see the green curve in figure 3. After the trans-
ition, which can be seen as an abrupt jump in λL(Γa), the pen-
etration depth increases less intensively that corresponds to
the s++ state shown by the red curve in figure 3. Note that
the slope of the curve before the transition is different from
that after the transition, which is an additional indication of
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Figure 4. Temperature variation of the penetration depth
∆λL(T) = λL(T)−λL(Tmin) for the s± state with ⟨Λ⟩> 0 (a) and
with ⟨Λ⟩< 0 (b), and for the s++ state (c). Calculations were done
in the intermediate scattering limit, σ= 0.5, with the interband-only
impurity potential, v= 0.0u. Γa and T are normalized by Tc0.

the transfer from s± to s++ state. By and large, the blue curve
in figure 3 reproduces qualitatively the experimental results
obtained by Ghigo et al [16], however, there are some quant-
itative difference.

3.3. Temperature variation of the penetration depth ∆λL(T)

To calculate the variation of the penetration depth ∆λL(T)
using equation (11) we again set λL(0)≈ λL(Tmin). Depend-
ence of ∆λL(T) on the impurity scattering rate Γa in the
s++ and s± states are shown in figure 4. For the s++ gap,
figure 4(c), the slope of∆λL(T) decreases with the increasing
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Figure 5. Superfluid density ρs for the s± state with ⟨Λ⟩> 0
(a) and ⟨Λ⟩< 0 (b), and for the s++ superconductor (c). Here,
σ= 0.5, v= 0. Γa and T are normalized by Tc0.

Γa, while the slope for the s± gap with ⟨Λ⟩< 0, figure 4(b),
becomes steeper. In the case of the s± gap with ⟨Λ⟩> 0,
figure 4(a), both of these features are present: before the s± →
s++ transition the slope increases, and after the transition it
decreases.

Two gaps for the s++ state, initially (at Γa= 0) having dif-
ferent values, start to change with disorder so their magnitudes
become closer. Thus the initial two-gap behavior switches to
the single-gap-like dependence of∆λL(T) at higherΓa. Such a
change is the reason for the crossing of different curves around
0.6Tc0 in figure 4(c).
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Figure 6. Temperature dependence of λ−2
L for the s± state with

⟨Λ⟩< 0. Γa and T are normalized by Tc0.

3.4. Temperature dependence of the superfluid density ρs(T)

For the pure s± superconductor with ⟨Λ⟩> 0, the temper-
ature dependence of the superfluid density ρs(T) defined by
equation (12) demonstrates an exemplary behavior for a two-
band superconductor having two unequal gaps, see figure 5(a),
Γa= 0 case. Increasing the impurity scattering rate changes
the two-gap behavior of ρs in the vicinity of the s± → s++

transition into the one that is specific for a single-gap s-wave
superconductor. This happens because the smaller gap goes
through zero while changing its sign. Further increase of the
concentration of impurities restores the two-gap behavior of
ρs(T) that tends to a single-gap one at the highest values of
Γa in the s++ state. Such a situation is quite different from
the case of the s± state with ⟨Λ⟩< 0, which exhibits in our
calculations the single-gap behavior of ρs(T) despite the pres-
ence of two unequal gaps, see figure 5(b). The reason for
this is the qualitatively similar temperature dependence of
λ−2
L for both gaps, see partial contributions from both bands

into λ−2
L (T) in figure 6. The behavior shown in figure 5(a)

also differs from that for the s++ superconductor, figure 5(c),
which changes directly from the typical two-gap dependence
for low scattering rates to the single-gap ρs(T) for high values
of Γa.

Based on figures 4 and 5, we admit that in the clean limit
there is no difference between s++ state and s± state with
⟨Λ⟩> 0 in such quantities as ∆λL and ρs.

4. Conclusions

Herewe derived specific features of the s± → s++ transition in
the temperature and impurity scattering rate dependencies of
the penetration depth. Observation of those features can serve
as criteria for detection of the transition. First one is the sharp
change in the dependence of the penetration depth λL on the
impurity scattering rate at T→ 0. Moreover, the slope of the
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curve before the transition is different from that after the trans-
ition, which is an additional indication of the transfer between
the s± and s++ states.

Second feature is connected to the slope of the relative
change in the penetration depth, ∆λL(T) = λL(T)−λL(0), as
a function of temperature—before the s± → s++ transition the
slope increases, and after the transition it decreases.

Third feature is the sharp jump in the inverse square of the
penetration depth as a function of the impurity scattering rate,
λ−2
L (Γa), at the s± → s++ transition.
And the last one is the temperature dependence of the super-

fluid density ρs(T) that exhibits almost the single-gap behavior
in the vicinity of the s± → s++ transition and upon increase
of the impurity scattering rate restores the two-gap behavior.

Results here are obtained in the intermediate scattering
limit, σ= 0.5. Changing σ would change the exact position of
the transition in the T–Γa phase diagram, see [14]. The trans-
ition itself, however, remains in a wide range of σ’s except for
the unitary limit (σ= 1) with nonuniform impurity potential
η ̸= 1. Therefore, the discussed specific features of the pen-
etration depth can be observed for a system exhibiting the
s± → s++ transition in a wide range of parameters.
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