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Abstract
In this paper, we study diffraction of a vortex Gaussian probe beam on a two-dimensional (2D)
Raman-induced diffraction grating. Both near- and far-field diffraction of a vortex beam is
considered. In the near field, quasi-Talbot images occur at specific distances from the grating,
which corresponds to the classical Talbot length. Diffraction patterns in the Talbot planes are a
periodic 2D array of ring-like vortex beamlets with topological charges (TCs) equal to the
illuminating probe beam’s charge. The lateral (off-axis) beamlets consist of several overlapping
vortices with the TCs l= 1 and l=−1, and their centers (singular points) are offset relative to
each other. It is shown that in the near field the TC is conserved, and the total diffraction field
represents a single (global) vortex with an effective TC equal to the charge of the vortex probe
beam. In the far field, diffraction patterns are also a 2D array of ring-like local vortices with a
period depending on the z coordinate. Their TCs are equal to the charge of the probe field. It is
shown that in a far field, the diffracted field’s total TC is also equal to that of the probe field. We
demonstrate that by choosing the pump field parameters, one can effectively control the
intensity of diffraction orders.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The optical vortex (also referred to as vortex beams or phase
singularity beams) is an optical wave-field that carries a phase
singularity where both the real and imaginary values of the
optical field go to zero, and the phase is undefined [1]. Such
a beam of light carries an orbital angular momentum (OAM)
[2] and its transverse intensity profile looks like a ring of light
with a dark core at the center. Also, there are optical vortices
without circular symmetry [3, 4]. In addition to OAM, optical
vortices are characterized by a topological charge (TC) [1].
At present, optical vortices are of great interest and actively

∗
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studied in optics [1, 5, 6]. A number of methods have been
proposed to generate phase singularity beams [2, 7, 8]. Study-
ing the light with phase singularities is important from the
viewpoint of fundamental and applied physics [9]. In the past
three decades, there has been remarkable progress in under-
standing vortex beams’ nature, and in their production and
use [10]. Optical vortices have found many interesting applic-
ations in different areas. In particular, light beams with phase
singularities can be used in optical communications [11],
super-resolution microscopy [12], atom guiding and trapping
[13], particle manipulation (optical tweezers) [14], quantum
information technologies [15], etc.

Fresnel and Fraunhofer diffraction of singular beams
from different apertures and periodic structures are an active
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research area in optical physics [16–19]. Even at simple
apertures, diffraction of vortex beams exhibits unusual fea-
tures, which depart from the plane waves. Diffraction of vor-
tex beams by structured apertures is a promising method to
determine the magnitude and sign of TCs [20, 21]. Also, dif-
fraction of such beams from gratings [22–24], as well as the
Talbot effect [25] are used for the same measurements. Dif-
fraction by two-dimensional (2D) gratings makes it possible
to obtain 2D arrays of optical vortices both in the far [26], and
in the near field [27, 28]. It is shown that in the latter case,
no self-images of the grating are observed, however at certain
distances that correlate with the ‘Talbot distances’ for ordin-
ary light, there are observed periodic structures with unusual
amplitude and phase distributions.

Conventional diffraction gratings usually have non-tunable
parameters since they have fixed configurations. Over the
recent years, important progress has been made toward the
realization of optical tunable gratings based on electromag-
netically induced gratings in atomic media (EIG) [29], which
are based on the phenomenon of electromagnetically induced
transparency in the field of a standing control wave. Here a
periodic structure is created by externally controlled light, and
non-material gratings with optically tunable parameters are
obtained [30–32]. Diffraction of light via EIGs can also be
applied to create the electromagnetically induced Talbot effect
[33], which would be very useful for imaging 2D ultra-cold
atoms [34]. Clearly, tunable diffraction gratings have more
promising applications.

Another type of EIG is a Raman-induced grating (RIG)
[35, 36] with the probe field operating in a stimulated Raman
emission mode to eliminate the signal attenuation. Unlike the
EIG schemes, where absorption is spatially modulated, RIG
is based on the Raman gain’s spatial modulation by using
a standing-wave pump field. RIG can work as a diffraction
grating when the probe field propagates along the direction
normal to the standing wave [37]. In this case, RIG will be
called a Raman-induced diffraction grating (RIDG). The prin-
cipal advantage of RIDG is that under certain conditions, the
probe wave can diffract into many higher-order directions with
amplification. The intensity of diffracted beams can be higher
than that of the input beam. This paper presents a compre-
hensive analytical study of diffraction of a vortex Gaussian
probe beam with an arbitrary value of the TC l at a 2D RIDG.
The diffraction cases in both near-field (Fresnel) and far-field
(Fraunhofer) diffraction are considered.

2. Diffraction of vortex Gaussian beams from 2D
RIDG

RIG arises from Raman interaction of a weak probe wave with
the frequency ω2 with a standing pump wave with the fre-
quency ω1 in an atomicΛ-system (figure 1(a)) [35, 36]. This is
due to periodic spatial modulation of the Raman amplification
and the refractive index of the probe field. For a 2D grating,
the pump field is formed by two orthogonal standing waves of
the same frequency that are directed along the x and y axes,
and the probe field propagates normal to the x–y plane in the
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Figure 1. (a) A three-level Λ-type atomic system for a Raman
induced grating. Here Ω1 = ω1 −ω10, Ω2 = ω2 −ω12, and ω10,12 are
the frequencies of the transitions |1⟩− |0⟩ and |1⟩− |2⟩,
respectively. (b) Configuration of a standing-wave pump field.

region of the intersection of two orthogonal standing waves.
The pump standing fields consist of two fields propagating
at θ1,2 angles symmetrically to the z direction (figure 1(b))
The standing waves have the periods dx = λ1/2sin(θ1/2) and
dy = λ1/2sin(θ2/2) along the axes x and y, which can bemade
arbitrarily larger than the wavelength of the pump fields by
varying θ1 and θ2.

Here we will consider the probe field to be a Gaussian vor-
tex beam. In Cartesian coordinates, the complex amplitude of
a probe beam E2(x0,y0,0) in the input grating plane z0 = 0 can
be written as

E2(x0,y0,0) = E02

(
x0 + isy0

w

)|l|

exp

(
−x20 + y20

w2

)
, (1)

where l is the TC, w is the vortex beam radius parameter for
which the intensity maximum occurs at an effective radius of
weff = w

√
|l|/2. The parameter s=±1 for the positive or neg-

ative l, respectively. Further we will consider l> 0. Behind the
grating, at z0 =L, the wave will be transformed by the grating
to become

E2(x0,y0,L) = T(x0,y0,L)E2(x0,y0,0), (2)

where T(x0,y0,L) = exp(−ik2χ(ω2)L) is the grating trans-
mission function. Here χ(ω2) is the probe field suscept-
ibility (see appendix). For a 2D grating the transmission
function T(x0,y0,L) will be periodic in the x and y direc-
tions T(x0,y0,L) = T(x0 +Λx,y0,L) = T(x0,y0 +Λy,L) with
the period Λx,y = 2dx,y. The transmission function T(x0,y0,L)
of RIDG depends on the Rabi frequency of the pump field G1

and the detuning from the Raman resonance Ω20 =Ω1 −Ω2.
Figure 2 shows two typical profiles for the transmission func-
tion module |T| of a 2D grating. The parameter G1 is chosen
such that in the former case there is no spatial splitting in
|T(x0,y0,L)| (figure 2(a)), whereas in the latter case, the trans-
mission |T(x0,y0,L)| is split (figure 2(b)). In the latter case, the
intensity distribution has a glass-like structure. It can be seen
that for a 2D grating, the period in the x and y directions has
doubled compared to the standing pump wave.
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Figure 2. Typical profiles of the transmission function module |T|
(a) and phase ϕ (b) for a 2D RIDG. G1 = 0.865γ10, Ω20 = 30γ20.
d= dx = dy is the period of a standing wave.

2.1. Fresnel diffraction of the vortex beam from a 2D RIDG
(near-field approximation)

The amplitude of a diffracted probe light beam E2(x, y, z) hav-
ing propagated a distance of z= z0−L from the grating output
plane, can be calculated by using the Fresnel integral as fol-
lows [38].

E2(x,y,z) =
exp(ik2z)
iλ2z

∞̈

−∞

E2(x0,y0;L)

× exp

[
i
k2
2z

[(x− x0)
2 +(y− y0)

2]

]
dx0dy0. (3)

Equation (3) can be rewritten as

E2(x,y,z) = E02
exp[ik2z+ i(k2/2z)(x2 + y2)]

iλ2zwl

×
∞̈

−∞

T(x0,y0;L)(x0 + iy0)
l

× exp

[
−α(x20 + y20)− i

k2
z
(xx0 + yy0)

]
dx0dy0,

(4)

where α= (1− ik2w2/2z)/w2. Since the grating transmission
function is periodic in the x and y directionswith the periodsΛx

and Λy, T(x0,y0,L) can be expanded into a 2D Fourier series

T(x0,y0;L) =
∑
n,m

tnm exp[i2π(nGxx0 +mGyy0)], (5)

where Gx = 1/Λx and Gy = 1/Λy, tnm are the Fourier coeffi-
cients which can be calculated as follows:

tnm =
1

ΛxΛy

Λy/2ˆ

−Λy/2

Λx/2ˆ

−Λx/2

T(x0,y0;L)

× exp [−i2π(nGxx0 +mGyy0)]dx0dy0. (6)

The analysis shows that the Fourier coefficients tnm are
nonzero only if n and m have the same parity. In addition, the

relation tn,m = tm,n = t−n,−m =−t−n,m =−tn,−m is fulfilled.
These properties will be used later in the analysis of the results.

Using a binomial expansion, the function (x0 + iy0)l can be
rewritten as

(x0 + iy0)
l =

l∑
q=0

(
l
q

)
xq0(iy0)

l−q, (7)

where
( l
q

)
= l!

q!(l−q)! are the binomial coefficients. Now, using
equations (5) and (7) in equation (4) we get

E2(x,y,z) = E02
exp[ik2z+ i(k2/2z)(x2 + y2)]

iλ2zwl

×
∑
n,m

tnm

l∑
q=0

(
l
q

)
(i)l−q

∞̈

−∞

dx0dy0

× xq0 exp

[
−αx20 + i

(
2πnGx−

k2
z
x

)
x0

]
× yl−q

0 exp

[
−αy20 + i

(
2πnGy−

k2
z
y

)
y0

]
. (8)

The integrals of both x0 and y0 can be calculated using the
following reference integral [39]

∞̂

−∞

um exp(−au2 − bu)du= π1/2

(
i
2

)m

a−(m+1)/2

× exp

(
b2

4a

)
Hm

(
ib

2a1/2

)
, (9)

where Hm is the Hermite polynomial, and the result is

E2(x,y,z) =− i

(
−1
2

)l
πwl+2

λ2z(1− ia)l+1

×E02 exp[ik2z+ i(k2/2z)(x
2 + y2)]

×
∑
n,m

tnm(bxn+ ibym)
l exp

[
−
(b2xn+ b2ym)w

2

4(1− ia)

]
.

(10)
Here bxn = 2πnGx− k2x/z and bym = 2πmGy− k2y/z, a=
k2w2/2z= πw2/λ2z. Therefore, the total diffracted field is
represented as the sum of diffraction orders (zeroth, posit-
ive, and negative). Each spatial harmonic has a singular point,
which is determined by the condition: bxn = 2πnGx− k2x/z=
0 and bym = 2πmGy− k2y/z= 0. In particular, for the first Tal-
bot plane, the x− y coordinates of these points are defined as
x= 2mΛx and y= 2nΛy. But singular points in the diffracted
field are determined by interference of all harmonics and their
position may not match with the singularities of individual
spatial harmonics. The intensity and phase profiles of the dif-
fracted field can be calculated by equation (10). The TC l can
be found from the formula [1]

l=
1
2π

˛
C
∇ψ(x,y)dxdy, (11)

where ψ(x, y) is the phase of the diffracted field E2(x, y, z).
The integration contour C covers the region wherein singular
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points are contained. Note that if multiple vortices are enclosed
in the contour C, their TCs are additive.

2.2. Fraunhofer diffraction of a vortex beam from a 2D RIDG
(far-field approximation)

Now we consider the far-field approximation, that takes place
when z satisfies the condition

k2
2z

(x20 + y20)max =
π(x20 + y20)max

λ2z
≪ 1. (12)

In this case the term α(x20 + y20) can be eliminated in
equation (4), and the latter reduces to [38]

E2(x,y,z) = E02
exp[ik2z+ i(k2/2z)(x2 + y2)]

iλ2zwl

×
∞̈

−∞

T(x0,y0,L)(x0 + iy0)
l exp

(
−x20 + y20

w2

)

× exp

[
−i k2

z
(xx0 + yy0)

]
dx0dy0. (13)

Like in the near-field approximation, here again, we can
calculate the integrals in equation (13) and get

E2(x,y,z) =− i

(
−1
2

)l
πwl+2

λ2z

×E02 exp[ik2z+ i(k2/2z)(x
2 + y2)]

×
∑
n,m

tnm(bxn+ ibym)
l exp

[
−
(b2xn+ b2ym)w

2

4

]
.

(14)
The diffracted complex amplitude can be determined using

this equation. Formula (14) formally follows from (10) under
the condition a= k2w2/z≪ 1, which can be considered as a
criterion of the far-field approximation.

3. Results and discussion

We use sodium atoms as a medium where the grating
is induced. In our calculation, the parameters for the D1
line of sodium atoms are used. The levels |0⟩ and |2⟩
(figure 1(a)) correspond to the long-lived superfine sublevels
of the ground state 2S1/2. The following values for the atomic
parameters (half-widths of atomic transitions) were used:
γ10/2π= 10 MHz, γ21 = γ10, γ20 = 10−3γ10. The one-photon
detuning Ω1 and the Rabi frequency G1 are given in the γ10
units, Ω1 =−100, the Raman detuning Ω20 in the units γ20,
and the atomic media length L= 10 is given in the units z0 =
1/k2αr (here αr is defined by equation (A.2)), and the grating
period is Λ = Λx = Λy = 20λ1, w= 5Λ.

3.1. Near-field diffraction

Typical near-field diffraction patterns that arise under illumin-
ation of a 2D RIDG by a vortex Gaussian beam with l= 1÷ 6

are shown in figure 3 (the column number corresponds to the
TC l). Here the observation plane is z= ZT = 2(Λ2/λ2), where
ZT is the Talbot length corresponding to the classical Talbot
effect [27]. The diffraction patterns are arrays of ring-like vor-
tex beamlets (local vortices) with the period Λ that are formed
at the classical Talbot distances. Colored circles indicate the
positions of singular points. Red and green circles show posit-
ive and negative TC, respectively. Similar diffraction patterns
are also observed in the other planes, but unlike the conven-
tional gratings, the image in the Talbot planes is either not shif-
ted (z= 1/2ZT ) or shifted half the period (z= 3/4ZT ). This is
due to the properties of the Fourier coefficients of a 2D RIDG
(see details in [40]). Despite the qualitative similarity of the
diffraction patterns, there are significant differences for vari-
ous l values.When l= 1 each lateral (off-axis) beamlet has two
singular points (figure 3(a1)). One of them is inside the ring,
and the other one is located outside. The positions of singu-
lar points are determined from the condition ℜE2 = ℑE2 = 0
[1], and their TC are defined by equation (11). The singular
points inside the diffraction spots correspond to the TC of the
probe field l= 1 (figure 3(f1)). Those outside correspond to
l=−1 as can be seen from figure 4, where a fragment of the
diffraction pattern (marked by a square in figure 3(a1)) in the
region of the singular point corresponding to l=−1 is shown.
The existence of two singular points near lateral vortices phys-
ically means that there are two vortices rotating in opposite
directions. In the central diffraction spot, a singular point is
located in x= y= 0 (figure 3(c1)), and the TC of this vortex is
l= 1 (figure 3(d1)).

Thus, the total TC of the lateral vortices is zero, and the
total TC of the diffracted field is equal to that of the probe
field (figures 5(a) and (c)). That is, the TC is conserved under
diffraction on RIDG. We can say that the diffracted field is a
unified (global) vortex with a singularity at x= y= 0 with the
TC equal to the charge of the probe field.

When |l|> 1, the structure of diffraction patterns is com-
plicated. Figures 3(a2)–(f2) shows diffraction patterns when
the probe wave is a vortex with l= 2, other parameters being
the same as in the previous case. It is seen that, like in the
case of l= 1, a periodic array of ring-like beams arises with a
period equal to the grating period. This array consists of local
vortices with the total charge l= 2 figures 3(a2)–(f2).

The presence of two singular points in the lateral vortices
means that there arise two spatially overlapping vortices which
rotate in the same direction, but their singular points are dis-
placed relative to each other (figure 3(e2)). Therefore we see
them as a single unit with a characteristic intensity distribution
and the total charge l= 2, as shown in figure 3(a2). The central
vortex (in the vicinity of the point x= y= 0) has a TC equal
to the charge of the initial probe beam l= 2 (figure 3(c2)). In
addition, outside the lateral vortices, there are singular points
corresponding to the charge l=−1. Their number is such that
the total TC of the lateral vortices is zero. Thus, the diffracted
field represents a global vortex with the charge l= 2.

A completely unexpected diffraction pattern arises in the
case of a probe beam with l= 3 (figures 3(a3)–(f3)). There are
five singular points inside the central vortex (figure 3(c3)). The
singular point located in the center corresponds to the charge
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(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1) (c2) (c3) (c4) (c5) (c6)

(d1) (d2) (d3) (d4) (d5) (d6)

(e1) (e2) (e3) (e4) (e5) (e6)

(f1) (f2) (f3) (f4) (f5) (f6)

Figure 3. Intensity (a), (c), (e) and phase (b), (d), (f) profiles at the distance z=ZT for a 2D RIDG illuminated by a vortex beam with
w= 5Λ, and l= 1, 2, 3, 4, 5, 6. (a), (b) a fragment of the central part of the diffraction pattern, (c), (d) the central ring, (e), (f) the lateral ring.
The green and red circles correspond to the singular points with the negative and positive TC, respectively.

l=−1, and the other four points located symmetrically rel-
ative to the center have the charge l= 1. In contrast to the
central vortex, the lateral vortices have three singular points,
each with l= 1, as can be seen from figure 3(e3). Thus, the
central diffraction spot consists of five vortices with closely
spaced singular points, four of which rotate counterclockwise
and one clockwise. Lateral local vortices consist of three vor-
tices rotating counterclockwise. In addition, there are singu-
lar points, and, accordingly, vortices with the charges equal
to l=−1 (figure 3(a3)), which compensate the charges of the
local lateral vortices. As a result, the total diffraction field rep-
resents a single vortex with the TC l= 3 equal to the probe
field’s charge.

For l= 4, the diffraction pattern also represents an array
of ring-like local vortex beams, inside which there are four
singular points located as shown in figures 3(a4)–(f4). Thus,
all vortex beamlets are composed of four vortices rotating
counterclockwise. Besides, there are vortices with the charges
l=−1, which rotate clockwise around these singular points.
They compensate the charges of the off-axis vortices so that
the total TC of the diffraction field is l= 4, the same as for
the initial probe field. Note that a similar diffraction pat-
tern will be observed for |l|= 4n, i.e. when |l| is a multiple
of four. For example, in the case of l= 8, inside the vortex
beamlets, there will be eight singular points located symmet-
rically relative to the local vortex center and, accordingly,
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Figure 4. Intensity (a) and phase (b) profiles of the diffraction
pattern near the singular point corresponding to the TC l=−1. In
figure 3(a1) it is marked with a square.

Figure 5. Illustration of an enlarged fragment of the central part of
the diffraction pattern. Intensity (a), (b) and phase (c), (d) profiles of
the diffraction pattern at the distance z=ZT for a 2D RIGD
illuminated by a vortex beam with l= 1 (a), (c) and l= 6 (b), (d),
w= 5Λ.

all the vortices will consist of eight vortices rotating
counterclockwise.

For a probe beam with l= 5, the diffraction pattern is
shown in figures 3(a5)–(f5). Inside the central local vortex
(figure 3(c5)), there are five singular points, one of which is
located at the point x= y= 0. The other four singular points are
located symmetrically to the center. Their respective vortices
have the TC l= 1. The lateral vortices also have five singular
points inside the ring (figure 3(e5)) with the charge l= 1. As
before, in the diffracted field, there are singular points with the
charge l=−1. They compensate for the charge of the off-axis
vortices. Therefore, here the total TC of the diffracted beam is
also conserved, and it is equal to the charge of the probe beam.

The probe field’s diffraction patterns with the TC l= 6 are
shown in figures 3(a6)–(f6). The central vortex is similar to
that for l= 5, i.e. it contains five singular points, but the sin-
gular point in the center corresponds to the TC l= 2, and the
rest have the charge l= 1. The lateral vortices have six singular

Figure 6. Diffraction patterns in the z=ZT plane for various radii w
of the probe beam. (a) w= 5Λ, (b) w= 10Λ, (c) w= 15Λ. l= 1,
G10 = 0.865γ10, Ω20 = 30γ20.

points with the charge l= 1. As above, there are singular points
with the charge l=−1 which compensate the charge of the
positive off-axis vortices.

Summarize the results presented in figure 3. When a 2D
RIDG is irradiated by a vortex Gaussian beam, in the z = ZT
plane, there arises a periodic grating of vortex beamlets with
an annular intensity distribution. Note that although it has a
periodic structure with the same period as the original grating,
it is not the latter’s self-image. The diameter of the rings in
the corresponding Talbot planes depends on the probe beam’s
radius on the input plane of the grating, the grating period,
and the TC of the illuminating beam. Expansion of the illu-
minating beam reduces the diameter of the rings irrespective
of the charge (figure 6). The diameter grows with the number
of the Talbot plane as well as with the grating period. The dia-
meter of the rings increases with the charge l of the probe beam
(figures 3(a1)–(a6)). When the sign of the charge changes, the
diameter of the rings does not change.

For |l|⩾ 2, each of the vortex beamlets consists of sev-
eral spatially overlapping vortices so that their total TC repro-
duces the charge of the illuminating probe beam (figure 3). As
regards the off-axis vortices (|l|⩾ 2), we can say that the incid-
ent vortex beam splits into several overlapping vortices with
the charge |l|= 1, i.e. these are multi-center vortices. For the
central vortices with |l|= 1,2 such splitting does not occur,
and their TC is equal to the charge of the irradiating field.
Also, there are vortices having an opposite TC located outside
the above beamlets; their total charge compensates for that of
the off-axis vortices. Thus, we can say that under Fresnel dif-
fraction by RIDG, the TC is conserved and that the diffracted
field itself represents a single vortex (see figure 5). The results
obtained are entirely consistent with the sign principle [41].

Note that when the transmission function of the grating has
a glass-like shape (figure 2(b)), the diffraction patterns have a
similar form.

3.2. Far-field diffraction

The intensity profiles of the far-field diffraction patterns under
diffraction of vortex beamswith different values of l are shown
in figures 7(a1)–(a3). For an incident vortex probe beam with
the TC l, the generated diffraction patterns are a 2D array of
ring-like local vortices. These are diffraction orders of the grat-
ing, and they are formed by spatial Fourier harmonics. The
spatial position of local vortices corresponds to the singular
points of spatial harmonics: bxn = bym = 0 (see (14)), that is,
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Figure 7. The first row (a1)–(a3): intensity profiles of the far-field
diffraction patterns under illumination of a 2D RIDG by a Gaussian
vortex beam with l= 1 (a1), l= 2 (a2), l= 3 (a3). The second row
(b1)–(b3): phase profiles of the central diffraction spot for l= 1 (b1),
l= 2 (b2), l= 3 (b3). The third row (c1)–(c3): phase profiles of the
off-axis vortices marked by squares on a1,a2,a3. w= 5Λ, z= 5 m.
G10= 0.865γ10, Ω20 = 30γ20.

their coordinates are defined as x/z= nλ/Λ and y/z= mλ/Λ.
However, since the Fourier coefficients are nonzero provided
m+ n is even, only part of the spatial harmonics contribute to
the diffraction pattern and, as a result, the 2D array of local
vortices has the period d= (2λ2/Λ)z. Each local vortex is a
self-image of the diffracting probe beam and has a TC equal
to that of the probe vortex field (figures 7(b1)–(b3) and (c1)–
(c3)). Note that even though the central (figures 7(b1)–(b3))
and off-axis (figures 7(c1)–(c3)) orders have different phase
profiles, their TCs are the same. Physically, this can be inter-
preted as follows: at these points, all other harmonics interfere
destructively and do not contribute to the field. Calculations
confirm this statement (figures 7(a1)–(a3)).

Surprisingly, calculation of singular points shows that in
addition to the singular points given in figure 7, there is a whole
group of singular points for which the TC has an opposite
sign with respect to the lateral vortices. Their number is such
that they compensate the charge of the lateral vortices. The
charge of the central vortex remains uncompensated. Thus,
the total TC of the diffracted field in the far zone is equal to
the probe field’s charge at the input of the grating. Figure 8
shows an example for the case of l= 2. Additional singular
points are indicated by green crosses (figure 8(a)). Moreover,
in these places, two closely spaced singular points correspond
to the TCwith l=−1, as can be seen from figure 8(b), showing
the square marked fragment from figure 8(a). Using formula
equation (11), it is easy to verify that the total TC of the dif-
fraction field is equal to the charge of the vortex probe field,
i.e. the TC is conserved under diffraction of a Gaussian vortex
beam on RIDG.

Figure 8. Far-field diffraction patterns of the vortex probe beams
with l= 2. Crosses indicate the positions of singular points, which
correspond to the vortices with a negative TC.

Figure 9. Far-field diffraction patterns of vortex probe beams with
different values of G1 and Ω20: (a) G1 = 0.865γ10, Ω20 = 30γ20, (b)
G1 = γ10, Ω20 = 40γ20, (c) G1 = 1.1γ10, Ω20 = 40γ20, (d)
G1 = 1.2γ10, Ω20 = 46γ20. l= 1, w= 5Λ, z= 5 m.

Figure 9 displays far-field diffraction patterns of a vortex
beam with l= 1 for different Rabi frequencies G1 and Raman
detunings Ω20. It shows that by choosing the parameters G1

and Ω20, diffraction orders’ intensities can be effectively con-
trolled. By changing the distance z, one can control the period
of the diffraction patterns. These results show that RIDG can
be used as a controllable splitting element of the incident vor-
tex beam.

4. Conclusions

In the paper, we theoretically investigate both near- and far-
field diffraction of vortex Gaussian beams on a 2D RIDG. It
is shown that in the near field, diffraction patterns behind the
grating are more manifold in comparison with the classical
Talbot effect observed under illumination by a planewave. The
diffraction patterns (periodical structures) occur at certain dis-
tances, which correlate with the classical Talbot length. Dif-
fraction patterns in the Talbot planes represent a 2D periodic
array of ring-like vortex beamlets. Each local vortex beam has

7
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a TC equal to that of the probe beam. Thus, upon diffraction
of a vortex beam from a 2D RIDG, many vortex beams like
an incident beam are produced. Although the diffraction pat-
tern is not a self-image of the grating, it has the same nature
as in the classical Talbot effect. Therefore, it can be called a
quasi-Talbot image. In contrast to conventional gratings, the
intensity of local vortices can be greater than the probe beam’s
intensity at the input of the grating due to Raman amplification
in the grating. We also show that the total TC of the diffracted
field is equal to the charge of the probe beam, that is, the TC
is preserved under diffraction on RIDG.

It is also shown that under far-field diffraction of a vortex
Gaussian beam on RIDG, a 2D periodical array of ring-like
local vortices with a period depending on the z coordinate is
formed. Their TCs are equal to the charge of the probe field.
We found that in addition to the said singularities, there are
singular points located outside the beamlets, the total charge
of which is opposite to that of the lateral beamlets. As a result,
the total TC of the diffracted field is equal to the probe field’s
charge. We also demonstrate that by choosing the pump field
parameters, one can effectively control the intensity of diffrac-
tion orders.

Appendix

The induced polarization at the probe field frequency ω2 is
defined as P(ω2) = χ(ω2)E2, where χ(ω2) is the probe field
susceptibility, and E2 is the probe field amplitude. The sus-
ceptibility χ(ω2) of a three-level Λ-type atomic system for the
probe field (figure 1(a)) can be derived by solving the dens-
ity matrix equations, exactly for the pump field and in the first
order for the probe field (weak probe field limit). In the steady-
state approximation, we have [37]

χ(ω2) = αr
γ12
Ω2

1

|Gp|2

(Ω20 + iγ20 + |Gp|2/Ω1)
, (A.1)

where

αr = |d12|2N/2ℏγ12. (A.2)

Here Ω1 = ω1 −ω10 is the one-photon detuning, Ω20 =
ω1 −ω2 −ω20 is the Raman detuning,ωmn, γmn and dmn are the
frequency, half width, and matrix dipole moment of the trans-
ition, respectively, N is the atomic density, and ℏ is the Plank
constant. Gp(x,y) = G1[cos(πx/dx)+ cos(πy/dy)] is the Rabi
frequency of the pump field, G1 = d10E1/2ℏ. The formula
(A.1) is written in the approximation ofΩ1 =Ω2. The suscept-
ibility A.1 is spatially periodically modulated with the period
Λx = 2dx andΛy = 2dy. This leads to spatial modulation of the
Raman gain and the refractive index. Thus, a 2D grating of the
gain and the refractive index is induced in the atomic medium
when a probe wave interacts with a standing pump wave.

Equation (A.1) shows that by changing the pump field
intensity and frequency, one can effectively control the sus-
ceptibility χ(ω2). When |Gp|2/|Ω1|> γ20 the pump field
induces an ac-Stark shift of the state |1⟩, which leads to a shift

of the Raman resonance by ΩS = |Gp|2/Ω1 depending on the
transverse coordinates.

In the approximation of a thin grating, [29], when diffrac-
tion within the bulk of the medium can be ignored, the probe
field E2(x, y,L) at the output surface z=L is

E2(x,y,L) = E2(z= 0)exp(−ik2χ(ω2)L)

= E2(z= 0)exp(−k2χ ′ ′(ω2)L)exp(ik2χ
′(ω2)L).

(A.3)

Here E2(z= 0) is the amplitude of the probe wave at the
input surface, L is the medium length, k2 = ω2/c, χ ′(ω2) =
ℜχ(ω2), χ ′ ′(ω2) = ℑχ(ω2).
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