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Abstract
Magneto-optical ellipsometry combines ellipsometry and magneto-optical Kerr
effect measurements which are two powerful techniques. The main difficulty is
usually in data processing as a number of parameters should be extracted from
measured ellipsometric (ψ,Δ) and magneto-ellipsometric (δψ, δΔ) parameters.
Standard procedure of solving magneto-ellipsometry equations involves numer-
ical calculations. In this paper we show that it is possible to find out all ele-
ments of dielectric permittivity tensor without numerical calculation methods.
It means that the inverse problem of magneto-optical ellipsometry can be solved
analytically in the case of expansion of magneto-ellipsometric parameters δψ
and δΔ with respect to two small parameters. We present a full set of math-
ematical expressions that enable us to calculate complex refraction index and
complex magneto-optical parameter of a sample from magneto-optical ellip-
sometry measurements, thereby obtaining diagonal and off-diagonal complex
elements of dielectric permittivity tensor. This analytical approach can be used
in case of the contribution from magnetism into reflection coefficients being
small.
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1. Introduction

When creating new materials with specified functional properties, both the technology of their
synthesis and the methods of non-destructive high-precision and high-speed control of their
physical properties play an important role. In particular, when creating modern microwave,
nanoelectronics, and spintronics devices, magnetic nanoparticles for biomedical applications,
there are technological problems in setting and controlling the imperfection of the crystal struc-
ture of ferromagnetic materials (FM) [1]. The imperfection of a nanostructured FM actually
determines its electronic structure, affects the electronic conductivity and the spin polariza-
tion of conduction electrons, plays role in the formation of the domain structure, determines
the diffusion and thermodynamic properties of the material. For example, the appearance of
magnetocrystalline anisotropy in a nanostructured FM can lead to a significant increase in the
specific magnetization [2, 3].

One of important characteristics of a magnetized isotropic FM metal is the dielectric
permittivity tensor which looks as follows [4–6]:

[ε] =

⎡
⎣ε11 ε12 0
ε21 ε22 0
0 0 ε33

⎤
⎦

=

⎡
⎣ ε′11 − iε′′11 −i(ε′11 − iε′′11)(Q1 − iQ2) 0

i(ε′11 − iε′′11)(Q1 − iQ2) ε′11 − iε′′11 0
0 0 ε′11 − iε′′11

⎤
⎦ , (1)

where ε′11 = n1
2 − k1

2 and ε′′11 = 2n1k1 are the real and imaginary parts of the dielectric
permittivity of the medium, respectively, Q = Q1 − iQ2 is the magneto-optical parameter pro-
portional to magnetization, Q1 is the real part of the magneto-optical parameter, Q2 is the
imaginary part of the magneto-optical parameter, N1 = n1 − ik1 is the complex refractive
index of the sample, n1 is the refractive index, k1 is the extinction coefficient. The magnetic
permeability μ is supposed to trend towards 1 in the visible spectral range [4]. Without loss
of generality, we can assume that the magnetization vector is directed along the Z axis, so
that YZ is a boundary plane and YX is a plane of incidence. All planes passing through this
distinguished Z direction are equivalent to each other.

It is known that the elements of the dielectric tensor can be found by means of magneto-
optical measurements, e.g. by spectroscopic generalized magneto-optical ellipsometry. Numer-
ical algorithms of data processing are proposed in a number of works, e.g. [6–13]. In the general
case of anisotropic systems, the problem can be solved using 4 × 4 Mueller matrices [7–15].
Some of these authors [9–12] decided to combine magneto-ellipsometry measurements with
additional ex situ experiments, e.g. they used SQUID magnetometry to find out sample mag-
netisation, that is why they used another definition of dielectric tensor elements as well as
of magneto-optical parameter. They defined off-diagonal components of the tensor as εxy =
−iQzMz where Q is called a thickness-independent complex magneto-optical coupling con-
stant [9–12] which is assumed to be also magnetisation-independent. It is important not to
confuse their definitions of the physical quantities with the conventional definition (1) which
is used in this paper.

However, it is obvious that analytical calculations are also of interest, and in the limit of
isotropic systems the problem is simplified and can be solved analytically as shown below.
Thus, this paper is devoted to the analytical way of magneto-optical ellipsometry data analysis
in order to obtain all elements of the dielectric tensor (1).

2



J. Phys. A: Math. Theor. 54 (2021) 295201 O Maximova et al

2. Magneto-optical ellipsometry measurements

Conventional ellipsometry measurements [16, 17] involve measurements of so called ellip-
sometric parameters or in other words ellipsometric angles ψ and Δ. The researcher has to
solve an inverse problem to find out some physical parameters from the experimental data. For
example, the basic ellipsometry equation [17] helps find complex reflection coefficients Rp

and Rs

tan ψ eiΔ =
Rp

Rs
, (2)

where subindex p-corresponds to p-polarisation of the incident light and s-to s-polarisation.
Using optical models diagonal elements of the dielectric tensor can be found from these reflec-
tion coefficients. In case of the interest in off-diagonal elements one needs to add investigations
with magnetic field present.

To do magneto-optical ellipsometry research we use a setup [18] which allows to perform
both spectral ellipsometry and spectral magneto-optical ellipsometry measurements inside the
ultra-high vacuum chamber. Magneto-optical measurements in the setup are held in geometry
of the transverse magneto-optical Kerr effect in the visible spectral range.

Since there is a problem of residual magnetization during measurements, the magnetization
reversal of the sample in the field from −H to +H is carried out as follows: (a) by applying a
current to the electromagnet on the sample, an external magnetic field is set sufficient for the
ferromagnetic film saturation; (b) spectral ellipsometry measurements of the angles ψ and Δ
are performed over four optical zones [19] with averaging; (c) magnetization reversal of the
sample is carried out with saturation, by setting the magnetic field of the same amplitude as
at step a, but the opposite in direction; (d) spectral ellipsometry measurements are repeated
over four optical zones with averaging. Finally, the magnetic contribution to the measured
ellipsometric angles is calculated as the differences δψ = ψ(+H) − ψ(−H), δΔ = Δ(+H)
− Δ(−H). The arithmetical means of the measured angles ψ and Δ are also calculated. This
algorithm is repeated more than 50 times to average the measurements data and calculate the
root mean square.

3. Calculation of the dielectric permittivity tensor

In this section we present the algorithm of analytical calculation of dielectric permittivity tensor
from magneto-ellipsometry data, which is in general valid for any magnitude of the magnetic
field. However, it makes sense to provide saturation for ferromagnetic samples in order to
reliably interpret the nature of the ferromagnetism from absorption spectra.

To process magneto-optical ellipsometry data from the setup [18] we suggest considering
magneto-optical response in the basic ellipsometry equation (2) and presenting field-free and
field-dependent components in it:

tan(ψ0 + δψ)ei(Δ0+δΔ) =
Rp

Rs
=

Rp0 + Rp1

Rs0
, (3)

where ‘0’ is a subindex for measurements without external magnetic field, subindex ‘1’ is used
when external magnetic field is applied. In the following expressions the real parts are indicated
by ′ (R′

p and R′
s), the imaginary parts by ′′ (R′′

p and R′′
s). In case of applying magnetic field

reflection coefficient Rp can be written as

Rp = Rp0 + Rp1 = R′
p0 − iR′′

p0 + R′
p1 − iR′′

p1, (4)
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while Rs does not change in comparison to field-free measurements because of the transverse
geometry [4].

We use the introduced notations in four steps of data analysis (3.1–3.4) which yields all
components of dielectric permittivity tensor (1).

3.1. Dealing with field-free ellipsometric angles

We rewrite the right side of the basic ellipsometry equation (3) for a nonmagnetic state:

tanψ0 eiΔ0 =
Rp0

Rs0
=

R′
p0 − iR′′

p0

R′
s0 − iR′′

s0

=
(R′

p0R′
s0 + R′′

p0R′′
s0) − i(R′′

p0R′
s0 − R′′

s0R′
p0)

(R′
s0)2 + (R′′

s0)2
(5)

Then we use the definition of a complex number z

x + iy = z

|z| =
√

x2 + y2

tan arg z = y/x = tan θ

z = |z| eiθ

(6)

to write that

tan ψ0 eiΔ0 =
Rp0

Rs0
=

√
(R′

p0R′
s0 + R′′

p0R′′
s0)2 + (R′′

s0R′
p0 − R′′

p0R′
s0)2

(R′
s0)2 + (R′′

s0)2
eiθ, (7)

where

tan θ =
R′′

s0R′
p0 − R′

s0R′′
p0

R′
p0R′

s0 + R′′
p0R′′

s0
, (8)

tan ψ0 =

√
(R′

p0R′
s0 + R′′

p0R′′
s0)2 + (R′′

s0R′
p0 − R′′

p0R′
s0)2

(R′
s0)2 + (R′′

s0)2
, (9)

eiΔ0 = eiθ, (10)

Δ0 = θ = arctan
R′′

s0R′
p0 − R′

s0R′′
p0

R′
p0R′

s0 + R′′
p0R′′

s0
. (11)

3.2. Dealing with field-dependent ellipsometric angles

Similar to step 3.1, we rewrite the basic ellipsometry equation in the case of applying magnetic
field to the sample:

tan(ψ0 + δψ)ei(Δ0+δΔ) =
R′

p0 + R′
p1 − i(R′′

p0 + R′′
p1)

R′
s0 − iR′′

s0

=
(R′

p0 + R′
p1)R′

s0 + (R′′
p0 + R′′

p1)R′′
s0

(R′
s0)2 + (R′′

s0)2

+ i
(R′′

s0(R′
p0 + R′

p1) − R′
s0(R′′

p0 + R′′
p1))

(R′
s0)2 + (R′′

s0)2
. (12)
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Thus, according to (6)

tan(ψ0 + δψ) =
(
(R′

s0)2 + (R′′
s0)2

)−1

∗
(

((R′
p0 + R′

p1)R′
s0 + (R′′

p0 + R′′
p1)R′′

s0)2+

+(R′′
s0(R′

p0 + R′
p1) − R′

s0(R′′
p0 + R′′

p1))2

)1/2

, (13)

Δ0 + δΔ = arctan
R′′

s0(R′
p0 + R′

p1) − R′
s0(R′′

p0 + R′′
p1)

R′
s0(R′

p0 + R′
p1) + R′′

s0(R′′
p0 + R′′

p1)
. (14)

Taking into account expression (11) for Δ0 for the non-magnetic case, we have

δΔ = arctan
R′′

s0(R′
p0 + R′

p1) − R′
s0(R′′

p0 + R′′
p1)

R′
s0(R′

p0 + R′
p1) + R′′

s0(R′′
p0 + R′′

p1)

− arctan
R′′

s0R′
p0 − R′

s0R′′
p0

R′
p0R′

s0 + R′′
p0R′′

s0
. (15)

Similarly, it is necessary to get an expression for δψ. For this purpose we compare (9) and
(13). The denominators are equal, which means that we compare the numerators, namely, the
radicands. When expanding all brackets, one can notice the following:

tan(ψ0) =
√
γ

(R′
s0)2 + (R′′

s0)2
, (16)

tan(ψ0 + δψ) =
√
γ + χ

(R′
s0)2 + (R′′

s0)2

=

√
γ

(R′
s0)2 + (R′′

s0)2

√
1 +

χ

γ
= tan(ψ0)

√
1 +

χ

γ
, (17)

where

χ

γ
=

(R′
s0

2 + R′′
s0

2)(R′
p1

2 + R′′
p1

2 + 2(R′
p0R′

p1 + R′′
p0R′′

p1))
(R′

p0R′
s0 + R′′

p0R′′
s0)2 + (R′′

s0R′
p0 − R′

s0R′′
p0)2

. (18)

Thus,

δψ = arctan

(
tan(ψ0)

√
1 +

χ

γ

)
− ψ0. (19)

3.3. Expanding δψ and δΔ into the Maclaurin series

We expand the obtained expressions for δψ and δΔ into the Maclaurin series by introducing
small parameters α and β which are the ratios of magnetic to non-magnetic parts of reflection
coefficient Rp:

α =
R′

p1

R′
p0

, (20)

β =
R′′

p1

R′′
p0

, (21)

f (α, β) ≈ f (0, 0) + α
∂ f (0, 0)

∂α
+ β

∂ f (0, 0)
∂β

. (22)
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We do not take into account higher order power terms to the Maclaurin series as they
describe effects which are not linearly proportional to the magnetization. For example,
quadratic terms describe the Voight effect [20] which is proportional to the square of the
magnetization. We neglect it because the Voight effect is usually 1000 times smaller than the
magneto-optical Kerr effects [6]. That is why we leave only the terms proportional to the first
power α and β on the grounds that there is a proportionality of the magneto-optical Kerr effect
to the first power of the magneto-optical parameter [19]. Accordingly, we have

δψ ≈ tan ψ0

1 + tan2 ψ0

α(R′
p0)2 + β(R′′

p0)2

(R′
p0)2 + (R′′

p0)2
, (23)

δΔ ≈ (α− β)R′
p0R′′

p0

(R′
p0)2 + (R′′

p0)2
. (24)

See supplementary 1 (http://stacks.iop.org/JPA/54/295201/mmedia) for details in deducing
equations (23) and (24).

As indicated above, the contribution made by the magnetic field to the reflection coefficients
is denoted by R′

p1 and R′′
p1, and in expressions (23) and (24) the small parameters α and β are

responsible for magnetism. Therefore, it is necessary to express α and β from (23) and (24),
then to obtain the expressions for R′′

p1 and R′
p1 from α and β, and finally find out the desired

Q1 and Q2 from R′′
p1 and R′

p1. We express small parameters α and β in terms of δψ and δΔ
which are measured in the experiment:

α ≈ δψ(1 + tan2 ψ0)
tan ψ0

+
R′′

p0

R′
p0
δΔ, (25)

β ≈ δψ(1 + tan2 ψ0)
tan ψ0

− R′
p0

R′′
p0
δΔ. (26)

3.4. Getting the complex refractive index and the magneto-optical parameter

To get information about optical properties of a sample one needs well-known expressions [17]

ρ0 = tan ψ0 exp(iΔ0), (27)

N1 = n1 − ik1 = N0 sin ϕ0

√
1 + tan2 ϕ0

(
1 − ρ0

1 + ρ0

)2

, (28)

cos ϕ1 =

√
1 − N0

2 sin2 ϕ0

N2
1

, (29)

where N0 is the complex refractive index of the external medium, ϕ0 is the angle of light inci-
dence, ϕ1 is the angle of light refraction. Expression (28) is sufficient to calculate the complex
refractive index of an FM sample from the spectral ellipsometry data (ψ0 and Δ0) [17] and
is valid for bulk samples only. It means that the following algorithm of solving the inverse
problem of magneto-optical ellipsometry corresponds to the optical model of a homogenous
semi-infinite medium. That is why it can be used either when it can be assumed that there is
material’s isotropy in the plane, sharp interfaces between media, the uniformity in depth, or
such approximations are enough for particular material’s study [16, 17].

As soon as the refractive index (28) is calculated, one has to perform some mathematical
operations with reflection coefficients which lead to the desired expressions for the magneto-
optical parameter Q.

6
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The formulae of the reflection coefficients which contain Q are obtained from solving
Maxwell’s equations with the fulfillment of the condition of equality of the tangential com-
ponents of the electric and magnetic fields at the interface between the non-magnetic dielec-
tric and the ferromagnetic media in the visible spectral range where magnetic permeability
μ ≈ μ0 ≈ 1 [4]. It is well-known from experiments that Q � 1 [4, 21], which is also taken
into account while deriving the formulae of the reflection coefficients for the geometry of the
transverse magneto-optical Kerr effect [4, 21]. Unlike the reflection at the interface of two
non-magnetic media which is described by Fresnel coefficients [17], in the case of the light
reflection at the interface between a non-magnetic medium and bulk ferromagnetic medium the
symmetry of the reflection coefficient for p-polarization is broken due to the appearance of the
second term, proportional to Q, appearing due to magneto-optical measurements in geometry
of the transverse magneto-optical Kerr effect [4, 21]:

Rp =
N1 cos ϕ0 − N0 cos ϕ1

N1 cos ϕ0 + N0 cos ϕ1
− i

2QN0
2 sin ϕ0 cos ϕ0

(N1 cos ϕ0 + N0 cos ϕ1)2
, (30)

where ϕ0 and ϕ1 are considered as complex numbers due to the complex refractive index
[16]. However, the transverse magneto-optical Kerr effect does not contribute to the complex
reflection coefficient Rs [4, 21]:

Rs =
N0 cos ϕ0 − N1 cos ϕ1

N0 cos ϕ0 + N1 cos ϕ1
. (31)

To find out Q, it is necessary to compare the reflection coefficient Rp in the form (30) with
(4). It is obvious that

N1 cos ϕ0 − N0 cos ϕ1

N1 cos ϕ0 + N0 cos ϕ1
= R′

p0 − iR′′
p0, (32)

−i
2QN0

2 sin ϕ0 cos ϕ0

(N1 cos ϕ0 + N0 cos ϕ1)2
= R′

p1 − iR′′
p1. (33)

Then small parametersα, β (25) and (26) and the values of the complex reflection coefficient
for the non-magnetic case are used to calculate real and imaginary components of the complex
reflection coefficient for the magnetic case:

R′
p1 = αR′

p0, (34)

R′′
p1 = βR′′

p0. (35)

At this step one should check whether both α and β are small, i.e. α � 1 and β � 1.
From (33) one gets the following expression for the complex magneto-optical parameter:

Q =
i
(
R′

p1 − iR′′
p1
)

(N1 cos ϕ0 + N0 cos ϕ1)2

N0
2 sin(2ϕ0)

. (36)

Taking into account (34) and (35), expression (36) turns into the expression for the desired
complex magneto-optical parameter Q = Q1 − iQ2:

Q =

(
βR′′

p0 + iαR′
p0

)
sin(2ϕ0)

(
N1

N0
cos ϕ0 + cos ϕ1

)2

. (37)

7
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After substituting (25) and (26) into (37) and, grouping the multipliers we have

Q =
Rp0

sin(2ϕ0)

(
N1

N0
cos ϕ0 + cos ϕ1

)2 (
δψ(1 + tan2 ψ0)

tan ψ0
i − δΔ

)
. (38)

Let us take into account expression (32), so that all physical quantities in the final expression
for the magneto-optical parameters are measured parameters.

Q =
cos2 ϕ1 −

(
N1
N0

cos ϕ0

)2

sin(2ϕ0)

(
δΔ− i

δψ(1 + tan2 ψ0)
tan ψ0

)
. (39)

Now, we have everything for analytical calculation of the desired complex magneto-optical
parameter Q. Finally, the dielectric permittivity tensor (1) is calculated. Its diagonal compo-
nents are a square complex refractive index (28). Off-diagonal components of dielectric tensor
are a product of the imaginary unit i, diagonal component of the dielectric tensor and the
complex magneto-optical parameter given by expression (39).

From (39) one can see that if the angle of incidence goes to zero or is equal to π/2,
Q → ∞. When complex refraction indices of the ambient and the studied medium are close
in meaning, i.e. (N1/N0) ≈ 1, the angle of light incidence becomes almost equal to the angle
of light refraction because of expression (29) which turns into cos(ϕ1) ≈ cos(ϕ0). It leads
to Rp0 vanishing which means that the necessary condition α, β � 1 breaks and the proposed
algorithm cannot be used for calculating Q. Also parameters alpha and beta are not small when
the media are transparent and the incidence angle is close to the Brewster’s angle which leads to
the value of Rp0 approaching to zero. That is why it should be checked that the incidence angle
is not close to the Brewster’s angle which is easy as one of the advantages of the transverse
configuration is that the researcher can use different angles of incidence of light with almost
no restrictions. For non-zero absorption media it should be checked that the incidence angle is
not close to pseudo-Brewster’s one. Despite the fact that at this angle Rp0 does not vanish, Rp0

can be too small for fulfilling the condition of the smallness of α and β. Thus, the proposed
algorithm is recommended to be used to analyse data from absorbing materials (when the value
of k, the extinction coefficient, is close to n, the refractive index) with significant difference in
complex refractive indices at the interface.

In fact, the condition α, β � 1 is very often fulfilled due to Q being often much less than 1
[4, 21]. Thus it means that all components of dielectric permittivity tensor can be analytically
obtained from the complex refractive index of the external medium N0, the angle of incidence
of light on the ferromagnetic sample ϕ0, the data of spectral ellipsometry (ψ0 and Δ0) and
magneto-ellipsometry (δψ and δΔ).

As for the error of the components of dielectric permittivity tensor (1), it is primarily caused
by the hardware error of the magneto-ellipsometry setup. The hardware error affects the values
of ψ0, Δ0, δψ and δΔ. Also there is an error of settling angle of light incidence ϕ0 but it is no
more than 20’, so this contribution to the error of dielectric components is negligible.

For instance, let us consider the hardware error of the magneto-ellipsometry setup which
is reported in [18]. It is important to note that the random hardware error in measuring the
ellipsometric angles has some spectral dependence. This error is proportional to the ratio of
the route-mean-square noise of the analog-to-digital converter (ADC) electronic circuit to the
desired signal taken from the photodetectors. The desired signal is the product of the emis-
sion spectra of the light source, the optical transmission of all elements of the optical circuit,
at a constant power of the incident light. The resulting spectral dependence of the photocur-
rent at the photodetectors for the spectral ellipsometer with a xenon lamp usually has a wide

8
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maximum in the region of 470 nm and several narrow peaks in the near infrared region. The
noise of the ADC electronic circuit, in turn, does not depend on the state of the monochro-
mator and is constant over the entire spectral range. Thus, when the integrated power of the
radiation incident on the photodetectors is about several mW, the spectral dependence of the
random hardware error takes the form of a flat plateau of minimum values in the range from
400 to 800 nm.

An example of calculating Q for a real sample is presented in supplementary 2.

4. Summary

In conclusion, using the presented expressions one can analytically calculate the values of the
refractive index (n1) and extinction coefficient (k1) of the ferromagnetic sample, as well as
the real (Q1) and imaginary (Q2) parts of its magneto-optical parameter Q from the data of
ellipsometry (ψ0 and Δ0) and magneto-ellipsometry (δψ and δΔ) measurements. The pre-
sented approach may be applied for processing both in situ and ex situ experimental spectral
magneto-optical ellipsometry data. In general this analytical calculation is valid for both satu-
rated and unsaturated cases. For example, it is possible to understand the ionic mechanism of
ferromagnetism from the absorption spectra of the sample based on saturation measurements.

As shown in the text of the article, the restrictions for the proposed analytical solution of
magneto-ellipsometry inverse problem comprise, firstly, all limits which arise from the use of
the model of a homogenious semi-infinite medium, secondly, the transverse magneto-optical
Kerr effect geometry, thirdly, magnetic contribution into reflection coefficient Rp should be
small enough to introduce small parameters α, β and expand magneto-ellipsometry angles δψ
and δΔ into series.

If the conditionα, β � 1 is fulfilled, certainly, the values of the complex refractive index N1

of the ferromagnetic sample, as well as the complex magneto-optical parameter Q can be used
to calculate the dielectric permittivity tensor ε, completing by that the magneto-ellipsometry
inverse problem solving.

The proposed algorithm primarily can be applied for bulk FM samples characterisation.
However this approach may be valuable to get the initial values of fitting parameters such as
magneto-optical parameter Q and complex refractive index of an FM layer N1 for numerical
calculations which are necessary for thin and multilayered samples.
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