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Dispersion relation of nutation surface spin waves in ferromagnets
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Inertia effects in magnetization dynamics are theoretically shown to result in a different type of spin waves, i.e.,
nutation surface spin waves, which propagate at terahertz frequencies in in-plane magnetized ferromagnetic thin
films. Considering the magnetostatic limit, i.e., neglecting exchange coupling, we calculate dispersion relation
and group velocity, which we find to be slower than the velocity of conventional (precession) spin waves. In
addition, we find that the nutation surface spin waves are backward spin waves. Furthermore, we show that
inertia causes a decrease of the frequency of the precession spin waves, namely magnetostatic surface spin
waves and backward volume magnetostatic spin waves. The magnitude of the decrease depends on the magnetic
properties of the film and its geometry.
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I. INTRODUCTION

From the classical point of view, spin waves are collective
excitations of magnetically ordered materials, that is, waves
of precession of the magnetization [1,2], for example in thin
magnetic films [3–5], layered magnetic structures [6,7], peri-
odic magnetic crystals [8,9], and nanometer-sized structures
[10]. These waves exhibit typical linear [1,2] and nonlinear
wave effects [11–13], such as excitation [14,15], propagation
[16–18], reflection [19,20], and interference [21,22] in the
first case, and self-focusing [23–26], formation of envelope
solitons [27,28], chaotic behavior [29], as well as parametric
three- and four-wave processes [30,31] in the nonlinear case.

Recently, it has been theoretically and experimentally
demonstrated that the effects of inertia of magnetization
should be considered in the full description of spin dynamics
at pico- and femtosecond time scales [32–40]. The nutation
motion of magnetization is a manifestation of inertia of the
magnetic moments. A rigorous derivation including inertia
in the Landau-Lifshitz-Gilbert equation was carried out by
Mondal et al. in the Dirac-Kohn-Sham framework [33,34]. A
relation between the Gilbert damping and the inertial charac-
teristic time was investigated in Ref. [32]. In another approach
M.-C. Ciornei et al. confirmed that inertia is responsible for
nutation, and that this motion is superimposed on the preces-
sion of magnetization [38]. The influence of nutation on the
dynamic susceptibility was analytically [41] and numerically
[42] studied.
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Despite these theoretical advances, the experimental study
of inertial spin dynamics has only begun. Following the
indirect observation of inertial magnetization dynamics in
Ni79Fe21 and Co films [43], direct experimental confirmation
of nutation resonance was reported by Neeraj et al. [37].

In this paper, we predict an additional effect, that is,
the emergence of propagating nutation surface spin waves
(NSSWs) in the dipole-dipole coupling limit, and the trans-
formation of conventional precession waves to precession-
nutation spin waves. We derive a dispersion relation of
NSSWs and calculate the spectral shift of precession-nutation
spin waves with respect to precession spin waves. The emer-
gence of nutation waves due to exchange coupling rather then
dipolar interaction has been proposed by Makhfudz et al. [44]
recently.

In general, the following interactions must be taken into
account to describe the dynamics of spin waves: Zeeman,
spin-orbit, exchange, and dipole-dipole interactions. The
phase shift between precessing magnetic moments propagates
as a spin wave through the ferromagnet because of dipole-
dipole or exchange coupling [Fig. 1(a)]. Magnetic inertia
effects, which are expected to contribute to dynamics of spin
waves, originate from spin-orbit coupling (coupling of the
spins to the lattice via the orbital moment). In magnetization
dynamics, this relativistic effect is considered with different
orders of approximation. In the lowest order, one obtains the
Gilbert damping of magnetization precession and the gyro-
magnetic ratio, i.e., the relation between angular momentum
and spin. In higher order approximations, magnetic inertia
appears [33,34,45], and the gyromagnetic ratio must be gener-
alized, which leads to nutation motion of magnetic moments
superimposed on their precession. Taking inertia into account
one finds that the deviation of localized moments will propa-
gate through the spin system in the form of both precession
and nutation motions, i.e., in ferromagnetic materials one
needs to add to all “conventional” spin wave modes a high
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FIG. 1. (a) The precession spin wave without inertia (red curve). The blue arrow indicates the motion of the magnetization M in a film.
(b) The nutation surface spin wave (purple curve) with a frequency considerably higher than in (a) plotted with small blue circles on top of the
“frozen” precession motion. (c) Coordinate system of the ferromagnetic film with thickness L, magnetization M0, and applied magnetic field
H0.

frequency wavelike motion with small amplitude caused by
inertia. Additionally, waves having predominantly inertial na-
ture appear in ferromagnetic thin films, which we call here
nutation surface spin waves. Since these waves have terahertz
frequencies (compared to typically GHz frequencies of other
spin wave modes), they can be plotted as a small deviation on
top of a “frozen” precession motion [Fig. 1(b)].

In our calculation, we work in the dipole-dipole coupling
limit, which allows us to use a magnetostatic approach in
which Maxwell’s equations are transformed into the Walker
equation [4]. To obtain the dispersion relation including iner-
tia, we use the dynamic susceptibility derived from the inertial
Landau-Lifshitz-Gilbert (ILLG) equation [41] and substitute
the result into the Walker equation.

In this paper, we consider waves propagating in thin ferro-
magnetic films magnetized in plane by an external magnetic
field. We focus on two particular configurations: (A) waves
propagating perpendicular to the external magnetic field H0

[see Fig. 1(c), y axis], and (B) waves propagating along H0

[Fig. 1(c), z axis]. The latter case (B) corresponds to backward
volume magnetostatic spin waves (BVMSWs), when only
precession is taken into account, and denoted as n-BVMSW
when the precession-nutation case is considered. Similarly,
for the perpendicular configuration (A) we distinguish in
our nomenclature between magnetostatic surface spin waves
(MSSWs), i.e., in other words, the Damon-Eshbach mode,
when inertia is neglected, and these waves as n-MSSWs when
inertia is included. Finally, for the perpendicular configuration
our calculation predicts a different type of wave—nutation
surface spin waves. Note that the n-MSSWs are conventional
precession spin waves whose dispersion is modified by inertia
effects due to nutation [Figs. 2(b) (bottom) and 2(e)], while
nutation surface spin waves are solely due to nutation which
occurs on top of the background precession.

II. DISPERSION EQUATIONS AND WAVE
CHARACTERISTICS

The ferromagnetic film, magnetic field, and coordinate
system are shown in Fig. 1(c). The film with thickness L
is placed in an external magnetic field H0 strong enough to
saturate the magnetization of the film. We assume that the

exciting magnetic field is small |h| � |H0|, and the static
magnetization vector M0 and external magnetic field H0 are
aligned.

Maxwell’s equations in magnetostatics are written as

∇ × h = 0, (1)

∇ · (h + m) = 0, (2)

where m is the response of the magnetization to the small
driving magnetic field. Equation (1) allows to introduce the
magnetic potential using h = ∇ψ, substitute this potential
into Eq. (2), and obtain Walker’s equation

(1 + χ )

(
∂2ψ

∂x2
+ ∂2ψ

∂y2

)
+ ∂2ψ

∂z2
= 0, (3)

where χ is the diagonal component of the dynamic sus-
ceptibility tensor (see the Supplemental Material [46]). The
potential obeys Laplace’s equation outside of the film,

∇2ψ = 0. (4)

Following the ansatz and interface conditions from
Ref. [4], the characteristic equations from Walker’s and
Laplace’s equations are obtained,

(1 + χ )
((

ki
x

)2 + k2
y

) + k2
z = 0,

(
ke

x

)2 − k2
y − k2

z = 0,

(5)

where ki,e
x , ky, and kz denote wave numbers along the x, y,

z axes while superscripts indicate internal (i) and external (e)
wave numbers with respect to the film boundaries. The charac-
teristic Eqs. (5) determine the allowed limit of wave numbers
of propagating spin waves. To investigate propagating waves
one employs the real parts of the dynamic susceptibility in
Eq. (6),(
ke

x

)2+ 2ke
xki

x(1+ χ ′) cot
(
ki

xL
) − (

ki
x

)2
(1+ χ ′)2 − k2

y χ
′2
a = 0,

(6)

where χ ′ is the real dispersive part of χ, and χ ′
a is the real

dispersive part of the antidiagonal component of the dynamic
susceptibility tensor. The effect of inertia of the magnetization
is introduced by the dynamic susceptibility deduced from the
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FIG. 2. (a) The group velocity of nutation surface spin waves. (b) The dispersion branches of nutation surface spin waves (purple curves) in
terahertz range, MSSW (red curves) and n-MSSW (green curves) in microwave range. (c) The inherent losses of nutation surface spin waves.
(d) The group velocity of the n-MSSW. (e) The dispersion branches of MSSW (red curves) and n-MSSW (green curves) in magnified scale.
The parameters for the calculation of precession-nutation waves (n-MSSW) are μ0M0 = 1 T, μ0H0 = 100 mT, α = 0.0065, and τ = 10−11 s
and for MSSW are the same parameters except α = 0 and τ = 0.

ILLG equation. The detailed derivation for a Cartesian coor-
dinate system can be found in the Supplemental Material [46].
In the following sections, we focus on the dispersion relations
for spin waves propagating in perpendicular (A) and parallel
(B) direction to the magnetic field.

A. Perpendicular configuration

For spin waves propagating in the perpendicular direction
to the external magnetic field, Eq. (6) becomes

(1 + χ ′)[1 + coth (kyL)] − χ ′2
a − χ ′2

2
= 0, (7)

since kz should be equal to zero in this configuration. The
substitution of the susceptibility expressions [Eqs. (S7)–(S11)
from Ref. [46]] into (7) allows us to calculate the dispersion
relation between frequency and wave number ky. This substi-
tution leads to the biquartic equation

Asω
8 + Bsω

6 + Csω
4 + Dsω

2 + Es = 0, (8)

where

As = 2α4τ 4[1 + coth (kyL)], (9)

Bs = 2α2τ 2[−2 + 2α2 − ατ (4ωH + ωM )][1 + coth(kyL)],

(10)

Cs = 2 + 2α4 + 2ατ (4ωH + ωM )

− 2α3τ (4ωH + ωM )

+ 4α2 + α2τ 2
(
12ω2

H + 6ωHωM + ω2
M

)
+ 2[1 + ατ (4ωH + ωM )

− α3τ (4ωH + ωM )

+ 2α2 + 3α2τ 2ωH (2ωH + ωM ) + α4] coth (kyL),
(11)

Ds = −8ατω3
H − ω2

M + ω2
H (−4 + 4α2 − 6ατωM )

− 2ωHωM (1 − α2 + ατωM )

− 2ωH
[
4ατω2

H + ωM − α2ωM

+ωH (2 − 2α2 + 3ατωM )
]

coth (kyL), (12)

Es = ω2
H

[
2ω2

H + 2ωHωM + ω2
M

+2ωH (ωH + ωM ) coth (kyL)]. (13)

ωH = |γ |μ0H0,

ωM = |γ |μ0M0. (14)

Here, γ is the gyromagnetic ratio, M0 is the magnetiza-
tion at saturation, α is the dimensionless Gilbert damping
parameter, τ is the inertial relaxation time. Note that τ is
inversely proportional to α [45], therefore characteristic time
ατ was proposed to describe inertial behavior [40,42]. We
employ Ferrari’s method for finding the solutions of Eq. (8),
and introduce the notation

as = Cs

As
− 3B2

s

8A2
s

, bs = −BsCs

2A2
s

+ B3
s

8A3
s

+ Ds

As
,

cs = B2
sCs

16A3
s

− 3B4
s

256A4
s

− BsDs

4A2
s

+ Es

As
. (15)

In Ferrari’s method, one determines the root of the nested
depressed cubic equation written here as

ys = −5as

6
+ Us + Vs, (16)
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where

Us = 3

√
−

√
P3

s

27
+ Q2

s

4
− Qs

2
,

Vs = − Ps

3Us
,

(17)

Ps = − a2
s

12
− cs,

Qs = 1

3
ascs − a3

s

108
− b2

s

8
.

The biquartic Eq. (8) has four roots describing the relation-
ship of frequency and wave number, i.e., different dispersion
branches. One branch corresponds to zero wave number, i.e.,
uniform precession and ferromagnetic resonance (FMR). The
second dispersion branch resembles the MSSW [Figs. 2(b)
(bottom) and 2(e)] and merges with it at ατ = 0 when inertia
is neglected. We suggest to denote this branch n-MSSW.

The n-MSSW branch is given by the expression

ωn
MSSW

=
(

− Bs

4As
−

√
as + 2ys

2
+1

2

√
−3as−2ys+ 2bs√

as + 2ys

)1/2

.

(18)

The frequency in (18) is real, hence n-MSSWs propagate
as sinusoidal waves. There is a spectral redshift between the
n-MSSW and MSSW branches, and in the following we study
in detail the shift of the spectrum limits. The upper and lower
limits of the spectrum are shifted down differently. Without
nutation the dispersion branch of MSSWs exists in the fre-
quency range ω⊥ < ω < ωU , where ωU = ωH + ωM/2, and
ω⊥ = √

ωH (ωH + ωM ). The upper spectrum limit of the n-
MSSW ωn

U can be calculated with the expression (18) at ky →
∞ that yields coth(kyL) = 1. For instance, we calculate the
difference between upper limits for the following parameters:
μ0M0 = 1 T, μ0H0 = 100 mT, α = 0.0065, and τ = 10−11s.
The difference is 115 MHz or 0.7%, and it can be clearly
seen in Fig. 2(e). The decrease of frequencies of n-MSSWs
is caused by nutation, which is a rotation of magnetization in
the opposite direction compared to the precession [46].

Due to the fact that the lower spectrum limit of the MSSW
corresponds to upper spectrum limit of the BVMSW, we dis-
cuss the spectral redshift of the lower limit of n-MSSW in
Sec. II B.

The third and fourth dispersion branches following from
(8) are complex conjugates; their frequency at zero wave
number corresponds to nutation resonance frequency. In the
case of ατ = 0, these branches vanish. We assign these two
branches to a different type of spin waves, NSSWs, which
represent a wave of propagating nutation, and we plot the
real and imaginary parts of dispersion curves in Figs. 2(b) and
2(c).

The real part of the branch describing propagation of the
NSSW is determined by

ωNS ′ = w1 + w2

2
. (19)

The imaginary part corresponding to the inherent losses of
the NSSW is written as

ωNS ′′ = w1 − w2

2i
, (20)

where

w1 =
(

− Bs

4As
+

√
as+2ys

2

−1

2

√
−3as − 2ys − 2bs√

as + 2ys

)1/2

, (21)

w2 =
(

− Bs

4As
+

√
as+2ys

2

+1

2

√
−3as − 2ys − 2bs√

as + 2ys

)1/2

. (22)

The NSSWs have inherent losses, since these waves exist
only if ατ 	= 0. This fact is the direct consequence of their in-
ertial nature—these waves do not exist, if one neglects inertia
and damping.

The magnetostatic potential of spin waves is concentrated
close to the surface of the ferromagnetic film if the magnetic
field is applied perpendicular to the wave vector, hence in
this configuration conventional spin waves and nutation spin
waves are surface waves. However, NSSWs have lower group
velocity than the precession waves that can be seen from
Figs. 2(a) and 2(d). The group velocity is calculated using the
standard expression vg = ∂ω/∂ky. The negative value of the
group velocity means that NSSWs are backward waves.

The highest frequency of the NSSW is the nutation reso-
nance frequency 1/ατ , derived earlier in Ref. [41].

B. Parallel configuration

If one considers waves propagating parallel to the external
magnetic field direction, ky = 0, and Eq. (6) can be simplified
as

1 + χ ′

2
+

√
1 + χ ′ coth

(
kzL√
1 + χ ′

)
= 0. (23)

We substitute the susceptibility expressions (S7)–(S11)
from Ref. [46] and employ the numerical damped Newton
method for finding the roots of the algebraic Eq. (23) to
calculate the relations between frequency and wave number
in both precession and precession-nutation cases. These rela-
tions demonstrate a set of dispersion branches, and the first
three branches are plotted in Fig. 3.

It is clearly seen from Fig. 3 that the dispersion of n-
BVMSW is shifted relatively to the BVMSW. To investigate
this, we compare the spectral limits of the precession and
precession-nutation waves. Note that the volume waves exist
only in the frequency range where 1 + χ ′ � 0. This condition
is a consequence of Eq. (5), since propagating waves have
real wave number ki

x ∈ R. Therefore, the spectrum limits are
defined by

1 + χ ′ = 0, (24)

and in the nondamping and noninertia case this equation
determines the frequency range ωH < ω < ω⊥, where ω⊥ =
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FIG. 3. Dispersion branches for n-BVMSW (green curves) and
for BVMSW (red curves). The parameters of the calculation for
precession-nutation waves (n-BVMSW) are μ0M0 = 1 T, μ0H0 =
100 mT, α = 0.0065, and τ = 10−11 s. The parameters for BVMSW
are the same except α = 0 and τ = 0.

√
ωH (ωH + ωM ). If one takes nutation into account, the nu-

merator of Eq. (24) allows us to find the frequency range. This
numerator can be written as

Avω
8 + Bvω

6 + Cvω
4 + Dvω

2 + Ev = 0, (25)

where

Av = α4τ 4, Bv = α2τ 2[−2 + 2α2 − ατ (4ωH + ωM )],

Cv = 1 + ατ (4ωH + ωM ) + 2α2 + 3α2τ 2ωH (2ωH + ωM )

− α3τ (4ωH + ωM ) + α4,

Dv = −ωH
[
4ατω2

H + ωM−α2ωM+ωH
(
2 − 2α2 + 3ατωM

)]
,

Ev = ω3
H (ωH + ωM ). (26)

We repeat the procedure for finding the solutions using
Ferrari’s method. The spectrum limits of n-BVMSW must
be found in the same way as provided in (15)–(17) with
the corresponding replacement of variables, i.e., the sub-
script s is replaced by v, which denotes volume waves.
Thus, the upper limit of the spectrum is determined by the

expression
ωn

⊥

=
(

− Bv

4Av

−
√

av+2yv

2
+1

2

√
−3av−2yv + 2bv√

av + 2yv

)1/2

.

(27)

This upper spectrum limit of the n-BVMSW equals the
lower spectrum limit of n-MSSW. The lower limit of the
n-BVMSW is written as

ωn
H =

(
− Bv

4Av

−
√

av+2yv

2

−1

2

√
−3av − 2yv+ 2bv√

av+2yv

)1/2

. (28)

Expression (28) corresponds to the FMR frequency taking
damping and nutation into account. For material parameters
given in the previous section (Fig. 2) and in Fig. 3, the lower
limit is shifted down by 3.1 MHz compared to the case without
damping and nutation effects ωH = |γ |μ0H0, and the upper
limit decreases by 64 MHz. Thus, similarly to the perpendicu-
lar configuration of the wave vector and magnetization, the
main effect of magnetization nutation for BVMSWs is the
redshift of their dispersion branches.

III. CONCLUSION

We theoretically predict the emergence of nutation sur-
face spin waves due to magnetization inertia in the dipolar
coupling limit for in-plane magnetized ferromagnetic thin
films, propagating perpendicular to the direction of the ex-
ternal magnetic field. These waves are backward waves and
propagate at terahertz frequencies with a group velocity lower
than the velocity of conventional spin waves. Inertia leads to
a redshift of precession-nutation spin waves compared to pre-
cession spin waves. The upper spectral limit of the dispersion
branches of the precession-nutation waves undergoes a greater
shift than the lower spectral limit.
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