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Resonant transmission of fermionic carriers:
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We revisit the phenomenon of the resonant transmission of fermionic carriers through a quantum device
connected to two contacts with different chemical potentials. We show that, besides the traditional Landauer-
Büttiker approach in solid-state physics, this phenomenon can also be described by the non-Markovian master
equation for the reduced density matrix of the fermions in the quantum device. We identify validity regions for
both approaches in the system parameter space and argue that for large relaxation rates the accuracy of the latter
approach greatly exceeds the accuracy of the former.
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I. INTRODUCTION

The problem of electron transport in a metallic wire con-
necting two contacts is older than quantum mechanics [1]. In
the past few centuries this problem was readdressed several
times, reflecting the progress in experimental physics, where
the main milestones are the appearance of clean semicon-
ductors and lithography technology and the emergence of the
physics of ultracold atoms. The former technology substituted
the wire with an engineered device, a quantum dot [2,3],
while with cold atoms in an optical lattice one can mimic
the behavior of crystalline electrons in the pure form, i.e.,
without complications caused by the presence of the long-
range Coulomb interaction and electron-phonon interaction
[4,5]. These two systems, quantum dots and cold atoms, allow
experimentalists to study the coherent transport of carriers
(electrons and neutral atoms, respectively) where deviations
from the classical Ohm law become especially pronounced.

Concerning the theory, presently, we have a vast array
of methods which, however, can be sorted into two large
groups. The methods belonging to the first group, which we
shall refer to as the solid-state physics approach, are traced
back to Landauer’s conjecture [6] that the wire conductance
is related to the transmission probability, and as a rule, they
extensively use the Green’s function formalism. The famous
result of the solid-state physics approach is the theoretical
description of the phenomenon of resonant transmission in
quantum dots [7,8]. The methods belonging to the second
group, which we shall refer to as the quantum optics approach,
operate with very different notions like the quantum master
equation for open (generally, many-body) quantum systems
and the Born and Markov approximations [9–12]. One can
also assign to this group the stochastic methods which ex-
plore the correspondence between the master equations and
the stochastic Schrödinger equations [13–15]. Remarkably,
in spite of the completely different technique the quantum
optics approach is also capable of capturing the phenomenon

of resonant transmission [16]. The question arises of how
the results of the above two approaches are related to each
other and which of them is more accurate. In the present
work we answer this question by studying the simple model
for quantum transport of fermionic carriers introduced in
Refs. [17,18]. This model can be viewed as a modification of
the open Hubbard models [19–21], which are representatives
of a wider class of the boundary-driven system [22], for which
many numerical and analytical results are known [22–25]. The
mentioned modification involves the semimicroscopic model
for the particle reservoirs [26] that allows one to address the
effects which cannot be addressed within the frameworks of
the standard open Hubbard models. Alternatively, this model
can be viewed as a generalization of the Landauer approach
for the electron transport [7,8] in which the relaxation pro-
cesses in the contacts are explicitly taken into account. Thus,
the model can be equally analyzed by using both solid-state
physics and quantum optics approaches.

The structure of this paper is as follows. In Sec. II we recall
the ingredients of the model and preliminarily discuss the
system dynamical regimes depending on the control param-
eter. Analytical results are collected in Sec. III. This section
consists of three subsections in which we employ three dif-
ferent methods to study the system, namely, the Markovian
master equation, the non-Markovian master equation, and the
Landauer-like approach. In Sec. IV we analyze the coherent
properties of the carriers that help us to quantify the degree of
validity of these approaches. The main results of the work are
summarized in Sec. V.

II. THE MODEL

We consider a setup consisting of a linear tight-binding
chain of length L coupled at both ends to two tight-binding
rings of M sites each (see Fig. 1 in Ref. [18]). Throughout
the text the rings are termed the contacts since they serve as
the particle reservoirs. Noninteracting spinless fermions can
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hop between the sites of the chain and the sites of the rings
with rates Js and Jr , where Js ∼ Jr , while the hopping between
the chain and the contacts is quantified by the coupling con-
stant ε � Js, Jr [27]. The dynamics is governed by the master
equation for the total density matrix

∂R̂
∂t

= −i[Ĥ, R̂] + γ
∑
�=1,L

(
L̂(g)

� + L̂(d )

�

)
. (1)

In Eq. (1) the Hamiltonian has the form

Ĥ = Ĥs +
∑
�=1,L

(Ĥr,� + Ĥc,�), (2)

where

Ĥs = −Js

2

L−1∑
�=1

ĉ†
�+1ĉ� + H.c. (3)

is the chain Hamiltonian, with ĉ†
� and ĉ� being Fermionic

creation and annihilation operators at the �th site. The contact
Hamiltonians Ĥr,� and the coupling Hamiltonians Ĥc,� are
indexed with the subscript � = 1, L specifying the connec-
tion site. The contact Hamiltonians are written in terms of
Fermionic operators acting in the Fock space of the Bloch
eigenstates of the ring,

Ĥr = −Jr

M∑
k=1

cos

(
2πk

M

)
b̂†

kb̂k (4)

(here we dropped the subscript � assuming that the rings are
identical). The coupling Hamiltonian is given by

Ĥc,� = − ε

2
√

M

M∑
k=1

ĉ†
� b̂k + H.c. (5)

To prescribe thermodynamic quantities to each contact we
introduced the particle drain,

L̂(d )

� =
M∑

k=1

n̄k,� − 1

2
(b̂†

kb̂kR̂ − 2b̂kR̂b̂†
k + R̂b̂†

kb̂k ), (6)

and the particle gain,

L̂(g)

� = −
M∑

k=1

n̄k,�

2
(b̂k b̂†

kR̂ − 2b̂†
kR̂b̂k + R̂b̂k b̂†

k ), (7)

where

n̄k,� = 1

e−β�[Jr cos(2πk/M )+μ�] + 1
. (8)

This ensures that the Bloch states of isolated contacts are pop-
ulated according to the Fermi-Dirac distribution with a given
chemical potential μ� and inverse temperature β�. Finally, the
constant γ in Eq. (1) is the relaxation rate which determines
how fast the isolated contacts relax to their thermodynamic
equilibrium. It was shown in Ref. [18] that the considered
model validates the main assumption of the Landauer ap-
proach about the reflectionless contacts, thus allowing for the
straightforward application of this theory.

Unlike Ref. [18], in the present work we shall consider a
short chain with which one can observe the phenomenon of
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FIG. 1. The current across the tight-binding chain of length L =
5 as a function of κF and the relaxation constant γ . The hopping
matrix elements are Js = Jr = 1, the coupling constant ε = 0.4, the
temperature 1/β = 0, the size of the rings M = 100, and the differ-
ence in the contact chemical potentials 	μ = Jr sin(κF )(2π/M ).

resonant transmission. Also we focus on the linear response
regime where the current across the chain is proportional
to the contact chemical potential difference. As an example,
Figs. 1 and 2 show the results of the numerical analysis
of the model for β = ∞, L = 5, and M = 100, which is
large enough to speak about the quasicontinuous spectrum of
the contacts [28]. In these numerical simulations we evolve
the system in time until the density matrix R(t ) reaches its
stationary value from which we determine the stationary cur-
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FIG. 2. The current as a function of the relaxation constant γ

for κF = π/2 (μ = 0; blue asterisks) and κF ≈ 0.58π (red circles).
Vertical dashed lines demark different dynamical regimes of the
system with respect to the Born and Markov approximations. The
additional dashed and dash-dotted lines are results of the algebraic
approaches (see the text).

115115-2



RESONANT TRANSMISSION OF FERMIONIC CARRIERS: … PHYSICAL REVIEW B 104, 115115 (2021)

rent j. In Fig. 1 we depict the stationary current as a color
map where the phenomenon of the resonant transmission is
seen as local peaks at the values of the chemical potential
μ = −Jr cos(κF ) coinciding with eigenenergies of the iso-
lated tight-binding chain. Notice that the peaks are present
only in a certain interval of γ . Figure 2 shows the current
as a function of γ for μ = 0 (the central peak in Fig. 1) and
μ = 0.25 (the nearby deep). Figure 2 is aimed at illustrating
the Esaki-Tsu-like dependence [29–32] of the current on the
relaxation rate γ , with the universal asymptotic j ∼ γ for
γ → 0 and j ∼ 1/γ for γ → ∞. In Fig. 2 we also demark
by the vertical dashed lines the different dynamical regimes
of the system which we briefly discuss in the next paragraph.

In parameter region III the large value of the relaxation
constant γ validates the Born and Markov approximations for
the carriers in the chain that allow us to derive the Markovian
master equation for the reduced density matrix of the carriers
in the chain (see Sec. III C). In region II the Markov approxi-
mation fails; however, the Born approximation is still valid. In
the other words, the ergodic properties of the contacts, when
they are viewed as particle reservoirs, are not affected by the
presence of the chain. The direct consequence of this fact is
that the reduced density matrices of the contacts remain close
to their thermodynamic equilibrium [33]. The failure of the
Markov approximation leads to the non-Markovian (integro-
differential) master equation for the reduced density matrix of
the carriers in the chain (see Sec. III B). Finally, if we move to
region I we break both the Markov and Born approximations.
To analyze the system in this region we employ the solid-state
physics approach. Section III A shows that this approach gives
quantitatively correct results in region I and qualitatively cor-
rect results in region II. However, it fails to reproduce the case
of large γ for which it gives the wrong asymptotic j ∼ 1/γ 2.

III. QUANTUM TRANSPORT ACROSS THE
TIGHT-BINDING CHAIN

Equation (1) contains only pairwise combinations of the
creation and annihilation operators. This allows us to rewrite
it in terms of the single-particle density matrix (SPDM) ρ̂.
Let us assume for a moment that only one (the left) contact is
attached to the chain. Then the total SPDM takes the following
block form:

ρ̂ =
(

ρ̂r ρ̂c

ρ̂†
c ρ̂s

)
, (9)

where ρ̂r is the SPDM of the contact with the elements ρk,k′ =
Tr(b̂†

kb̂k′R̂), ρ̂s is the SPDM of the chain with the elements
ρ�,�′ = Tr(ĉ†

� ĉ�′R̂), and ρ̂c has the elements ρk,� = Tr(b̂†
k ĉ�R̂).

It can be shown from Eq. (1) that the introduced SPDMs obey
the following system of three coupled equations:

∂ρ̂s

∂t
= −i[Ĥs, ρ̂s] − iε(V̂ †

1 ρ̂c − ρ̂†
c V̂1), (10)

∂ρ̂c

∂t
= −iĤrρ̂c + iρ̂cĤs − γ

2
ρ̂c − iε(V̂1ρ̂s − ρ̂rV̂1), (11)

∂ρ̂r

∂t
= −i[Ĥr, ρ̂r] − iε(V̂1ρ̂

†
c − ρ̂cV̂

†
1 ) + γ

(
ρ̂ (0)

r − ρ̂r
)
, (12)

where Ĥs is the single-particle Hamiltonian of the chain,

Ĥs = −Js

2

L−1∑
�=1

(|1+�〉〈�| + H.c.), (13)

Ĥr is the single-particle Hamiltonian of the contact,

Ĥr = −Jr

M∑
k=1

cos

(
2πk

M

)
|k〉〈k|, (14)

V̂1 is the coupling operator,

V̂1 = 1

2
√

M

M∑
k=1

|k〉〈� = 1|, (15)

and ρ̂ (0)
r is the thermal SPDM of the carriers in the contact,

ρ̂ (0)
r =

M∑
k=1

|k〉〈k|
e−β[Jr cos(2πk/M ))+μ] + 1

. (16)

This set of equations can be easily generalized to the case of
two contacts in which the second contact is attached to last
site of the chain. When treating the latter case, we shall change
notation for the contact SPDM from ρ̂r to ρ̂�, where � takes the
value � = 1 for the left contact and � = L for the right contact.

A. The limit of small γ

Let us approximate Eqs. (10)–(12) by a single equation of
the form

∂ρ̂

∂t
= −i[Ĥ, ρ̂] − γ (ρ̂ − ρ̂0), (17)

where ρ̂0 = ρ̂ (0)
r ⊕ 0̂s (0̂s is the zero matrix of size L × L) and

Ĥ is the total Hamiltonian,

Ĥ =
(

Ĥr εV̂1

εV̂ †
1 Ĥs

)
. (18)

This approximation is valid in the limit γ → 0 for the asymp-
totically large time where the matrix ρ̂ is close to its stationary
value. Notice that the limit γ → 0 implies that the system (18)
relaxes to its stationary value as a whole, and hence, there is
no way to obtain the equation for ρ̂s in the closed form.

The introduced Eq. (17) can be solved analytically by using
the eigenstates |�n〉,

Ĥ |�n〉 = En|�n〉, (19)

of the total Hamiltonian (18). In particular, the stationary total
density matrix is given by the equation [32]

ρ̂ =
∑
n,m

γ 〈�n|ρ̂0|�m〉
γ + i(Em − En)

|�n〉〈�m|. (20)

In the case of two contacts this equation determines the sta-
tionary current across the chain through the relation

j =
∑
p>0

∑
n

γ 〈�n|ρ̂0|�n+p〉
γ + i(En+p − En)

〈ψn+p| ĵ|ψn〉, (21)
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FIG. 3. Comparison of the stationary current calculated on the
basis of Eq. (21), (dashed red lines) and on the basis of Eq. (37),
(dash-dotted magenta lines), with the result obtained on the basis of
the original model (blue symbols).

where |ψn〉 is the part of the total wave function |�n〉 which
resides in the chain and ĵ is the current operator,

ĵ = − Js

2i

1

L − 1

L−1∑
�=1

(|� + 1〉〈�| − H.c.). (22)

In Fig. 3 we compare the stationary current calculated on the
basis of the original master equation with that obtained on
the basis of Eq. (21). Good agreement for small γ � 0.02 is
noticed.

Equation (21) also provides a simple explanation for the
observed resonant structure of the current. In fact, this struc-
ture is already reproduced if we keep in Eq. (21) only one
term with p = 1. (The term with p = 0 vanishes due to the
wave function symmetry.) Thus, the transmission peaks are
due to the property of the current matrix elements which
we shall characterize by the function

j(E ) =
∑

n

δ(E − En)〈ψn| ĵ|ψn+1〉. (23)

By definition, function (23) is close to the local density of
states (LDS),

LDS =
∑

n

δ(E − En)〈ψn|ψn〉, (24)

which lies behind the concept of the level broadening in the
solid-state physics approach and which is directly related to
the transmission probability |t (E )|2. For the parameters in
Fig. 3 the function j(E ) and the local density of states are
plotted in Fig. 4. In principle, by using the Green’s function
one can extend the analysis of Eq. (21) further [7]; however,
this goes beyond our aim, which is to identify the validity
regions of the different approaches. It is seen in Fig. 3 (see
also the dashed lines in Fig. 2) that the approach based on the
scattering theory underestimates the current for large γ .

-1 0 1
0

0.2

-1 0 1
0

0.01

FIG. 4. The chain local density of states (left panel) and function
(23) (right panel).

B. Non-Markovian master equation

In this section we discuss the quantum optics approach
based on the non-Markovian master equation for the carriers
in the chain. We briefly come back to Eqs. (10)–(12), which
refer to the case of the single contact. From Eq. (11) we find
the formal solution with the initial condition ρ̂c(0) = 0,

ρ̂c = iε
∫ t

0
dτe

γ

2 (τ−t )Û †
r (t −τ )[ρ̂r (τ )V̂1−V̂1ρ̂s(τ )]Ûs(t − τ ),

(25)
where Ûs,r (t ) = êxp(−iĤs,rt ) are the evolution operators. Em-
ploying the Born approximation, i.e., substituting ρ̂r (τ ) by
ρ̂ (0)

r in Eq. (25) and then substituting this equation into
Eq. (10), one obtains the non-Markovian master equation for
the carriers in the chain,

∂ρ̂s

∂t
= −i[Ĥs, ρ̂s] + ε2(L̂1 + L̂†

1 ), (26)

where

L̂1 =
∫ 0

−t
dτe

γ

2 τV̂ †
1 Û †

r (τ )
[
ρ̂ (0)

r V̂1 − V̂1ρ̂s(τ + t )
]
Ûs(τ ) (27)

and, to stress the memory effect, we change the integration
limits. Next, by taking the limit M → ∞ we obtain

L̂1 = |1〉〈1|
4

∫ 0

−t
dτe

γ

2 τ [JF(Jrτ )̂Is − J0(Jrτ )ρ̂s(τ + t )]Ûs(τ ),

(28)
where J0 is the zeroth-order Bessel function of the first kind,
Îs is the identity matrix of size L × L, and

JF(Jrt ) = 1

2π

∫ π

−π

dκ
e−iJr cos(κ )t

e−β[Jr cos(κ )+μ] + 1
. (29)

In the case of two contacts the above procedure results in
the equation

∂ρ̂s

∂t
= −i[Ĥs, ρ̂s] + ε2

∑
�=1,L

(L̂� + L̂†
� ), (30)

where the operator L̂L has a form similar to Eq. (28) with
the projection operator |1〉〈1| substituted by |L〉〈L| and a gen-
erally different value of the chemical potential in Eq. (29).
Equation (30) together with Eq. (28) constitutes the non-
Markovian master equation for the fermionic transport [34].
Notice the key role of γ in Eq. (28)—since the Bessel function
at large t decays as 1/

√
t , the integral in Eq. (28) is convergent

only with nonzero γ .
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To check the obtained non-Markovian master equation we
solve it numerically and compare the result with that obtained
on the basis of the original master equation where we do
not take the limit M → ∞ and do not a priori assume the
validity of the Born approximation. It is seen in Fig. 3 that
the non-Markovian master equation well reproduces the reso-
nant structure for the stationary current with nice quantitative
agreement in regions II and III.

The obtained master equation can be elaborated further if
	μ � μ and one considers the low-temperature limit β →
∞. The former condition justifies the ansatz

ρ̂s = ρ̂ (0)
s + 	μρ̂ (1)

s , (31)

where ρ̂ (0)
s is the equilibrium density matrix for 	μ = 0,

which does not support the directed current. The latter con-
dition justifies the relation

lim
β→∞

n(E , μ + 	μ) = θ (μ − E ) + 	μδ(E − μ), (32)

where θ is the Heaviside function. Using these approxima-
tions, one finds from Eq. (30)

∂ρ̂ (1)
s

∂t
= −i[Ĥs, ρ̂

(1)
s ] + ε2

∑
�=1,L

(	̂� + 	̂
†
� ), (33)

where

	̂� = |�〉〈�|
4

∫ 0

−t
dτe

γ τ

2
[
d (μ)δ�

1eiμτ Îs

− J0(Jrτ )ρ̂ (1)
s (τ + t )

]
Ûs(τ ), (34)

with d (μ) being the contact density of states,

d (μ) =
{

Jr

π
√

J2
r −μ2

if |Jr| > |μ|,
0 if |Jr| < |μ|. (35)

Finally, from Eq. (33) we obtain the algebraic equation for the
stationary ρ̂ (1)

s . In the chain eigenbasis |�n〉,
Ĥs|�n〉 = En|�n〉, (36)

it reads

i
[
Hs, ρ̂

(1)
s

] + ε2

4

[
(C1 + CL )ρ̂ (1)

s B + H.c.
] = ε2

4
(C1A + H.c.),

(37)
where Hs is the diagonal matrix of the eigenvalues En, B is the
diagonal matrix with the elements

Bn,n = 1√
J2

r − (En + iγ /2)2
, (38)

A is the diagonal matrix with the elements

An,n = d (μ)

γ /2 + i(μ − En)
, (39)

and C1 and CL are determined by the eigenmodes of the
isolated chain,

Cn,m = 〈�n|�〉〈�|�m〉, � = 1, L. (40)

It follows from Eq. (37) that the matrix ρ̂ (1)
s (which is propor-

tional to the right-hand side of the equation) crucially depends
on the value of the chemical potential due to the resonancelike
dependence of the matrix A on the chemical potential μ.

The advantage of the discussed algebraic approach (as well
as the algebraic approach in Sec. III A) is that it allows us to
predict the stationary current without simulating the system
dynamics, which reduces the computational time by orders
of magnitude. For large γ the predictions based on Eq. (37)
are plotted in Fig. 2 by the dash-dotted lines. Taking into
account that Eq. (37) involves even more approximations than
the non-Markovian master equation (30), the agreement with
the results of the straightforward numerical simulation of the
system dynamics is quite satisfactory.

C. Markovian master equation

The Markov approximation assumes that one can neglect
the memory effects. It is justified if ρ̂s(t ) is a slowly varying
matrix in the timescale 1/γ . Then, by using the general rela-
tion for the slowly varying function,∫ t

0
dτe

γ

2 τA(τ + t ) = 2

γ
A(t ), (41)

Eq. (28) simplifies to

L̂� = |�〉〈�|
2γ

[n̄�̂Is − ρ̂s(t )], (42)

where we take into account that J (0) = 1 while JF(0) equals
the mean occupation number n̄� of the ring sites according to
Eq. (29). Substituting Eq. (42) into Eq. (30), we obtain

∂ρ̂s

∂t
= −i[Ĥs, ρ̂s] − γ̃

∑
�=1,L

(
1

2
{|�〉〈�|, ρ̂s} − n̄�|�〉〈�|

)
,

(43)
where

γ̃ = ε2

γ
. (44)

It follows from Eq. (43) that the characteristic timescale for
ρ̂s(t ) is determined by the inverse effective relaxation constant
1/γ̃ . Thus, the Markov approximation requires γ � ε.

The obtained Markovian master equation (43) coincides
with the equation for SPDM of the open Fermi-Hubbard
model, which in the case of spinless Fermions reads

∂R̂s

∂t
= −i[Ĥs, R̂s] + γ̃

∑
�=1,L

(
L̂(g)

� + L̂(d )
�

)
, (45)

where Ĥs is given in Eq. (3) and the drain and gain Lindblad
operators acting on the edge sites of the chain have the form

L̂(d )

� = n̄� − 1

2
(ĉ�ĉ†

�R̂ − 2ĉ†
�R̂ĉ� + R̂ĉ�ĉ†

� ) (46)

and

L̂(g)

� = − n̄�

2
(ĉ�ĉ†

�R̂ − 2ĉ†
�R̂ĉ� + R̂ĉ�ĉ†

� ). (47)

The open Fermi-Hubbard model was analyzed earlier in
Ref. [35] with the following result for the mean current:

j = J2
s γ̃

J2
s + γ̃ 2

n̄1 − n̄L

2
. (48)

Since Eq. (48) involves only the mean density of carriers
in the contacts, it approximates the exact results only in the
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FIG. 5. Eigenvalues of stationary matrix ρ̂ (1)
s as a function of κF .

The system parameters are the same as in Fig. 3.

limit γ → ∞ where the stationary current does not show any
resonant structure.

IV. COHERENCE OF THE TRANSPORTING STATES

At the end of Sec. III A we introduced the density ma-
trix ρ̂ (1)

s which characterizes the stationary current across the
chain in the linear response regime (i.e., determines the con-
ductance). In what follows we shall term this matrix the
transporting state. It is interesting to address the question of
how close the transporting state is to a pure state. In Fig. 5
we plot eigenvalues of ρ̂ (1)

s for four different values of the
relaxation constant γ which we used in Fig. 3. By comparing
Figs. 5 and 3 we conclude that the transporting state is close
to a pure state (which has to have a single nonzero eigen-
value) only in the interval of γ where the stationary current
shows the resonant structure. Moreover, even for these γ the
coherence of the transporting state depends on the value of
the chemical potential μ. Namely, the state is more coherent
for μ corresponding to the transmission peaks and essentially
less coherent for μ corresponding to the transmission deeps.
This result stresses the main difference of the discussed master
equation approach from the Landauer-like approaches which

implicitly assume that the transport state of the fermionic
carriers in the chain is the pure state given by the Bloch wave
with the Fermi quasimomentum.

V. CONCLUSION

We revisited the problem of the quantum transport of
fermionic particles across a tight-binding chain connected to
two contacts. The analysis was performed by using the sim-
ple model introduced in our earlier work [18] in which the
contacts are modeled by tight-binding rings of arbitrary size.
The coupling between the chain and contacts is controlled by
the parameter ε, and the contacts are characterized by their
chemical potentials μ and the temperature 1/β. The mathe-
matical framework of the model is the master equation for
the total density matrix of the composed system chain plus
contacts which involves the important physical parameter γ ,
the rate at which the isolated contacts relax to thermodynamic
equilibrium. Although in reality the rate γ correlates with the
contact temperature (indeed, it looks unfeasible to have low
rates at high temperatures and vice versa), in this work we
considered γ and β independent parameters.

We calculated the current in the chain by using three dif-
ferent approaches: the Markovian and non-Markovian master
equations for the reduced density matrix of the carriers in
the chain and the Landauer-like approach for the quantum
transport. We discussed in detail each of the listed approaches
and identified the regions of their validity. In particular, it
was found that the non-Markovian master equation approach
(which is representative of quantum optics approaches) and
the Landauer approach (which is representative of the solid-
state physics approaches) do reproduce the resonant structure
of the stationary current. However, the former approach over-
estimates it in the region of small γ , while the latter approach
underestimates the current in the region of large γ . For mod-
erate γ , where oscillations of the stationary current j = j(μ)
have maximal amplitude, both the solid-state physics and
quantum optics approaches give essentially the same result.
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