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The spectral properties of an ensemble of spin-polaron quasiparticles have been studied within the spin–fer-
mion model of cuprate superconductors using the method combining the Feynman diagram technique and
the diagram technique for spin operators. It has been shown that strong spin–charge coupling results in the
formation of the lower spin-polaron band separated by a wide energy gap from the band of bare holes. It has
been shown that the spin-polaron band has a local minimum near the (π/2, π/2) point of the Brillouin zone.
A class of diagrams for the self-energy part that have a fundamental significance for the description of the
main features of the spin-polaron spectrum has been determined.
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1. INTRODUCTION
The concept of spin polaron [1–4] is based on the

strong spin–charge coupling [5–9], which exists in
cuprate superconductors owing to strong electron cor-
relations [10–13] and strong hybridization between d
states of copper ions and p states of oxygen ions.
Within this concept, the spin–charge coupling is taken
into account exactly and this leads to the appearance
of a fermion quasiparticle called spin polaron, whose
motion strongly correlates with the dynamics of spins
localized on the nearest copper ions.

The concept of spin polaron was developed within
the Kondo lattice model [1–3, 14–16] and the spin–
fermion model [17–22], which is an effective low-
energy variant of the three-band Emery model [23,
24]. In particular, the spin–fermion model with real
energy parameters made it possible to describe fine
features of the electronic structure and spectral char-
acteristics of spin-polaron quasiparticles [18, 19]. The
main tool used in the cited studies is the Zwanzig–
Mori projection technique [25–27], which in combi-
nation with the formalism of two-time retarded
Green’s functions allows the calculation of thermody-
namic averages necessary for the description of both
normal and superconducting properties of the ensem-
ble of spin-polaron quasiparticles [20, 22, 28]. The
specificity of this technique within the spin-polaron
approach is the derivation of a closed system of equa-
tions for Green’s functions on an extended set of basis
operators, which correctly describe the strong spin–
fermion coupling of quasiparticles on the CuO2 plane.
The main disadvantage of this approach is its mean-

field character, which excludes the appropriate inclu-
sion of the dynamic processes of spin–fluctuation
scattering, which play an important role, e.g., in the
description of the pseudogap phase of cuprate super-
conductors.

An attempt to develop the spin-polaron approach
with the diagram technique referred to as the “bundle”
technique was recently made in [29]. The specificity of
this approach is the exact inclusion of the algebra of
spin operators on one site, which makes it possible to
correctly describe one-site processes of spin–charge
scattering. However, the dependence of spin operators
on the imaginary time is neglected in this approach,
which prevents going beyond the static approximation.

The implementation of the concept of spin polaron
proposed in this work is based on the combination of
the well-developed diagram techniques for the fer-
mion [30] and spin [31, 32] operators and is thereby
free of disadvantages of previous approaches.

2. SPIN–FERMION MODEL

The Hamiltonian of the spin–fermion model [17,
33–37], which includes the main features of the elec-
tronic structure of the CuO2 plane of high-tempera-
ture superconductors, has the form

(1)
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Here,

(2)

The terms in the first sum in Eq. (1) describe the sub-
system of holes on oxygen ions in the quasimomentum
representation, where  and  are the
operators of creation (annihilation) of a hole in the
state with the quasimomentum k and spin projection

 in the subsystem of oxygen ions with the 
and  orbitals, respectively. According to their defini-
tions above, the functions  and  are expressed in
terms of the binding energy of the hole on the oxygen
ion , chemical potential μ, the direct hopping inte-
gral between the nearest oxygen ions t, and the param-
eter  characterizing the intensity of hoppings of holes
on oxygen owing to the second-order processes in the
hybridization parameter . In the expression for ,

 is the gap with charge transfer, where 
is the one-site energy of the hole on the copper ion.
The second sum in the Hamiltonian (1) describes the
exchange interaction with the strength J between the
subsystem of holes on oxygen and spins localized on
copper ions. In this sum,  is the scalar product of the
spin operator  on the fth site and the vector

 whose components are the Pauli
matrices, and N is the number of unit cells equal to the
number of copper ions. The last sum in the Hamilto-
nian (1) describes the superexchange interaction with
the strength I between the nearest spins on copper ions
appearing in the fourth order of perturbation theory.
In this sum, δ is the vector connecting a copper ion
with the four nearest oxygen ions.

For the further consideration, it is convenient to
represent the Hamiltonian of the spin–fermion model
given by Eq. (1) in the representation of new fermion
operators  and , which can be defined through
the following unitary transformation [38, 39]:
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where . As a result, the Hamiltonian of
the spin–fermion model is represented in the form

(4)
convenient for the diagram technique. Here,

(5)

is the operator that describes noninteracting oxygen
holes and spins localized on copper ions, where

(6)

The last term in Eq. (5) describes the Zeeman energy
of spins in an infinitesimal field ( ) directed
along the z axis and is added for the correct construc-
tion of the diagram technique for spin operators. In
Eq. (4),

(7)

is the interaction operator, where

The representation of the Hamiltonian in the form of
Eq. (4) is convenient because only one type of bare
quasiparticles (described by the operators ) is cou-
pled to the localized spin subsystem.

Below, we use an important feature of the interac-
tion function  related to the split character of this
function.

3. GREEN’S FUNCTION OF HOLES 
AND THE SELF-ENERGY PART

To study the spectral properties of the system
described by the Hamiltonian (4), we use the formal-
ism of Matsubara Green’s functions, which can be
defined as

(8)

Here,  is the ordering operator in the Matsubara
time variables τ and  varying from 0 to ,
where T is the temperature, and
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is the operator ϕ in the Heisenberg representation; the
expression for the operator ψ in the Heisenberg repre-
sentation is similar. The angle brackets in Eq. (8) mean
thermodynamic averaging with the density matrix
determined by the Hamiltonian . It is important
that the localized spin subsystem is in the quantum
spin liquid state; i.e., the long-range magnetic order is
absent ( ) and the spin correlation functions

 are SU(2)-
invariant.

The Fourier transforms of Green’s functions (8)
have the form

(10)

where ,  are the
Matsubara frequencies and . The function

 satisfies the Dyson equation

(11)

Here,  is the irreducible part of the self-energy
part and the function

(12)

describes quasiparticles of type ϕ, which do not inter-
act with the spin subsystem, taking into account their
hybridization with quasiparticles of type ψ.

Further, we are interested in the regime of a low
density of charge carriers, which is the case in cuprate
superconductors. In this context, we indicate two
important differences of the Hamiltonian of the spin–
fermion model given by Eq. (4) from a formally similar
Hamiltonian of the “extended” Kondo lattice model
[4]. The first difference is the inequality J ≫ W, where
W is the hole bandwidh. It is a large value of J that
responsible for the formation of spin-polaron quasi-
particles in cuprates. In the Kondo lattice model, the
opposite limit J ≪ W is usually considered. The sec-
ond difference is a low hole density in cuprates

. On the contrary, when describing the Kondo
effect, it is important that the number of charge carri-
ers is large because it ensures the efficient screening.

The low-density approximation in the diagram
description makes it possible to omit all the diagrams
containing fermion loops. It can be shown that the
expression for the self-energy part describing the cou-
pling of holes to the localized spin subsystem can be
written in the form
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Here,

(14)

(15)

is the scattering matrix including interactions only
between localized spins;

(16)

are the matrix and vector spin operators in the interac-
tion representation, respectively; the subscript 0 by the
right angle bracket indicates that the thermodynamic
average is taken with the density matrix describing the
system without interaction; the next subscript c means
that only coupled diagrams are taken into account to
calculate the average of the product of spin operators
according to the Wick theorem [31]; and the super-
script irr indicates that only irreducible diagrams, i.e.,
diagrams that cannot be cut into two uncoupled parts
over one fermion line, are taken into account. In view
of the SU(2) invariance of the state of the spin subsys-
tem, any diagonal element can be taken in the product
of n matrix operators . For definiteness, we take
the  element.

4. SPIN GREEN’S FUNCTIONS

The -ordered thermodynamic average of each
product of spin operators in Eq. (13) is calculated
according to the general rules of the spin diagram
technique [31]. A method for the calculation of the
spin Green’s functions in the one-loop approximation
for systems in the quantum spin liquid state that are
described within the spin–fermion model was devel-
oped in [40]. In particular, for the spin Green’s func-
tion

(17)
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Fig. 1. One-loop diagrams for the mass operator.

(a) (b)
was obtained, where

(19)

Here,

(20)

where  is the lattice invariant,
are the Fourier transforms of the exchange integral 
and correlation function , respectively, and

 is the polarization operator including the
effect of charge carriers on the spin subsystem.

The expression for the spin Green’s function can
be written in a simpler form taking into account that
the exchange interaction only between the nearest
neighbor spins is included and using the static approx-
imation for the polarization operator :

(21)

Here,  is the dispersion relation for spin-wave exci-
tations:

(22)

where

(23)

is the function describing the gap in the spectrum of
spin excitations near the (π, π) point of the Brillouin
zone and  is the spin correlator of the jth coordina-
tion sphere, which should be determined self-consis-
tently in terms of the spin Green’s function as

(24)

where  is the vector connecting sites from the
jth coordination sphere.

To calculate the doping dependence of the spin
correlation function, we replace the polarization oper-
ator  in the spectrum  by its average value over
the Brillouin zone Π. Further, we take into account
that the gap  given by Eq. (23) at 
is linearly related to the inverse magnetic correlation
length . According to the experimental data on
neutron scattering and nuclear magnetic resonance
(see, e.g., [41, 42]), the inverse magnetic correlation
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length  depends on the doping x and this parameter
for lanthanum superconductors increases by several
times with increasing x in the range of 0.03–0.3.
According to these data, the value of the averaged
polarization operator  for each doping x is chosen
such that the spin gap increases by a factor of 2.5 with
increasing x from 0.03 to 0.3.

5. SINGLE-LOOP APPROXIMATION 
FOR THE SELF-ENERGY PART

The first-order contributions in the exchange
interaction J to the mass operator given by Eq. (13)
vanish because the spin system is in the quantum spin
liquid phase. The first nonzero contributions appear
in the second order and are described by one-loop dia-
grams shown in Fig. 1. According to the general rules
[13, 31], the solid line with arrow in these diagrams
corresponds to the Green’s function of noninteracting
holes . Each wavy line corresponds to the
interaction strength J; the wavy line with the empty
circle corresponds to the longitudinal spin–fermion
interaction and the wavy line without circle corre-
sponds to the transverse interaction. The double
dashed line with the black semicircle means the spin
Green’s function ,
where the dashed line corresponds to the propagator

 and the semicircle stands for the terminal
factor . The shaded oval in Fig. 1b corre-
sponds to the Fourier transform of Green’s function

(25)

Two  factors corresponding to the input, ,
and output fermion Green’s functions are attributed to
each vertex. The law of energy and momentum con-
servation is satisfied at all the vertices.

Since

(26)

according to the SU(2) invariance of the ground state
of the spin subsystem, the one-loop diagrams shown
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Fig. 2. (Black lines) Energy spectrum of spin polarons cal-
culated in the one-loop approximation and (blue and
green lines) the spectrum of holes of the oxygen subsystem.
in Figs. 1a and 1b can be represented in the form of the
analytical expressions

(27)

(28)

where

The energy spectrum of spin-polaron quasiparticles is
determined by the poles of the retarded Green’s func-
tion obtained by the analytic continuation of the Mat-
subara Green’s function given by Eq. (11), which is
performed in this case on the basis of Padé approxi-
mants [43]. The spectrum calculated in the one-loop
approximation for the self-energy part specified by
Eq. (13) is shown by black lines in Fig. 2 in compari-
son with the bare spectrum of “bare” holes of the sub-
system of oxygen ions shown by the blue and green
lines.

We emphasize two important features of the spin-
polaron spectrum in Fig. 2, which were noted previ-
ously in [18, 19], where the energy structure of spin-
polaron quasiparticles was analyzed within the spin–
fermion model using the Zwanzig–Mori projection

Σ , ω = − ω ,( )( ) ( )a
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Fig. 3. Series of ladder diagrams representing the proc
technique [25, 26]. The first feature is a significant
decrease (by almost 2 eV) in the energy of spin-
polaron states owing to the strong coupling of oxygen
holes with the spin subsystem. For low doping levels
characteristic of cuprate superconductors, states cor-
responding to the bottom of the lower band in Fig. 2
are filled. The second feature of the presented spec-
trum is the formation of a local minimum near the
(π/2, π/2) point of the Brillouin zone. This feature
leads to the characteristic shape of the Fermi surface in
weakly doped cuprates in the form of a hole pocket.

6. LADDER DIAGRAM APPROXIMATION
FOR THE SELF-ENERGY PART

A disadvantage of the spin-polaron spectrum in
Fig. 2 is the absence of the third important feature—
the splitting of the lower spin-polaron band from the
band of bare hole states by a gap of about 1–2 eV—
mentioned in [18, 19].

Using the bundle diagram technique, we recently
showed [29] that the processes of multiple scattering of
holes on the same localized copper spin subsystem is
responsible for the appearance of the gap between the
lower spin-polaron band and the upper bare band.
Within our approach based on the diagram technique
for spin operators, such processes are involved, in par-
ticular, in the infinite series of ladder diagrams shown
in Fig. 3. This series begins with the diagram shown in
Fig. 1a, which is supplemented by diagrams appearing
from this diagram by adding longitudinal interaction
lines. In view of the split character of the spin–fer-
mion interaction function  mentioned in Section 2,
it is easy to sum the analytical contributions from the
terms of the series shown in Fig. 3 and to obtain the
following expression for the corresponding self-energy
part:

(29)

where

The energy spectrum of spin polarons calculated in
the ladder approximation, where the mass operator is
approximated by the sum of the self-energy parts 

kqJ
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− ω
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Fig. 4. Energy spectrum of spin polarons calculated in the
ladder approximation.
(29) and  (28), is shown in Fig. 4. The comparison
of the spectrum in Fig. 2, which is obtained in the one-
loop approximation, with the spectrum in Fig. 4 indi-
cates a qualitative difference that is the splitting of the
band of spin-polaron quasiparticles from the band of
“bare” holes by 1 eV. Furthermore, the third band with
weak dispersion, which is absent in Fig. 2, appears
near zero in Fig. 4.

7. CONCLUSIONS

To summarize, the concept of the spin polaron in
cuprate superconductors has been implemented for
the first time within the diagram technique for fer-
mion and spin operators. Considering the hole and
spin subsystems on the CuO2 plane within the spin–
fermion model, we have chosen the minimum set of
one-loop and ladder diagrams for the self-energy part
of the fermion Green’s function that are necessary to
reproduce the most important features of the spec-
trum of spin-polaron quasiparticles. It has been shown
that, for a significant decrease in the energy of spin-
polaron quasiparticles and the formation of a local
minimum of the energy spectrum near the (π/2, π/2)
point of the Brillouin zone, it is sufficient to take into
account only one-loop diagrams. However, to obtain
an energy gap between the lower branch of spin-
polaron states and the upper branches of oxygen holes,
it is necessary to take into account the ladder diagrams
for the self-energy part of the fermion Green’s func-
tion. These diagrams ensure good qualitative agree-
ment of the spin-polaron spectrum obtained using the
diagram approach with the results of previous works,
where the energy structure of spin-polaron quasiparti-
cles was studied using the Zwanzig–Mori projection
technique. We believe that the approach developed in
this work will be an efficient tool for the description of

Σ( )b
the pseudogap phase of cuprate superconductors,
where spin-polaron quasiparticles serve as charge car-
riers.
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