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It is shown that the intersite Coulomb interaction of electrons in a topological insulator leads to the splitting
of the initial energy structure and to the induction of two bands of f luctuation states. As a result, the total
spectrum of Fermi excitations of the topological insulator has a four-band structure. The dielectric gap is
determined by the energy interval between the bottom of the band of f luctuation states of conduction elec-
trons and the top of the valence band of f luctuation states. Since the band of f luctuation states is narrow, qua-
siparticles with different effective masses appear.
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1. INTRODUCTION
The properties of topological insulators (TIs) and

conditions for implementation of edge states were first
considered for systems described by quadratic Hamil-
tonians [1–3], for structures with anomalously strong
spin–orbit coupling [4], and within a model obtained
using the formalism of wavefunction envelopes and
boundary conditions [5]. The study of the properties
of two-sublattice TIs has recently been begun [6].

A regime where the interaction between fermions
cannot be considered as weak often occurs in real
materials. This initiates works where the intersite Cou-
lomb interaction (ISCI) is taken into account when
calculating the spectrum of excitations in TIs and per-
forming the topological classification [7–10].

In the presence of the ISCI, classical methods can-
not be used to calculate the spectrum of fermionic
excitations in TIs, and simple linearized schemes such
as the generalized Hartree–Fock approximation are
no longer correct when the Coulomb interaction
parameters become comparable with the parameters
determining the bare energy structure of TIs. Because
of these factors, it is relevant to apply modern quan-
tum statistical methods to develop the theory of men-
tioned materials.

The problem of correct description of the ISCI is
complicated if bare bands overlap. As known [11–13],
the Coulomb interaction in this case can significantly
affect the system and form an excitonic insulator
phase. The exchange part of the ISCI can induce edge
states in the an excitonic insulator [14].

It was shown previously that the ISCI can lead to
the splitting of the spectrum of fermionic excitations

and to the formation of the band of f luctuation states
in an ensemble of Hubbard fermions [15, 16]. This
band is referred to as the band of f luctuation states
(FSB) because the residues of the electron Green’s
function at the induced poles are proportional to the
rms f luctuation of the electron density.

This result was obtained both with an extended set
of basis operators [15] and within the diagrammatic
technique in the atomic representation [16]. In the lat-
ter case, the exact summation of a subsequence of dia-
grams describing contributions from single-site charge
fluctuations was significant to determine the mass
operator for the fermionic Green’s function.

Taking into account this result, one can expect that
the inclusion of the ISCI under the conditions of the
inverted band structure, which exists in TIs, can result
in a more noticeable qualitative change in the energy
structure. This occurs because the appearance of
additional subbands both for conduction electrons
and for electrons of the valence band, between which
the spectrum of edge states lies, can significantly affect
both the structure of the spectrum of the TIs and the
behavior of the fermion density of states.

In this work, the spectrum of fermionic excitations
is determined within the most popular model pro-
posed by Bernevig, Hughes, and Zhang [1] (BHZ
model), which describes the energy structure of the
HgTe quantum well (see also [2, 3]) with an extended
set of basis operators and the inclusion of the ISCI.

It is shown that charge f luctuations qualitatively
change the energy structure of TIs: the spectrum of
excitations includes not only the conduction and
valence bands but also two FSBs, and edge states are
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located between the upper and lower FSBs, for which
the effective masses increase.

2. HAMILTONIAN OF THE BHZ + V MODEL
We recall the main features determining the char-

acteristics of an ensemble of fermions with the spin–
orbit coupling, which is described by the BHZ model.

Because of effects of the crystal field, relativistic
corrections, and spin–orbit coupling, only two of six
5p spin orbitals play an important role in the formation
of the band structure. These orbitals are ,

 and , , where lz is the
projection of the orbital angular momentum and σ is
the spin projection [3]. These states form an actual
basis for the description of the valence band.

The conduction band is formed from 6s states of
Hg atoms, which hardly change for symmetry reasons.

In the quasimomentum representation, the Hamil-
tonian  can be written in the form

(1)

where  and  are the secondary quantization
operators used to describe the conduction and valence
bands, respectively. The bare spectra of fermionic
states are given by the expressions

(2)

where  and  include mean-field effects and specify
the centers of the conduction and valence bands,
respectively. The quasimomentum dependence of the
spectrum corresponds to the inclusion of hoppings
within the first coordination sphere,

(3)

where  and  are the hopping parameters for the con-
duction and valence bands, respectively.

The covalent mixing of states of Hg and Te ions is
determined by the function

(4)

where  is the parameter specifying the hybridization
intensity and the phases of atomic spin orbitals are
taken into account [3].

Effects of charge f luctuations are described by the
additional operator

(5)

Here, V is the parameter determining the interaction
energy of electrons on the nearest Hg and Te ions con-
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nected by the vector δ, the subscript f specifies the
sites of the F sublattice where Hg ions are located, the
subscript g specifies the sites of the G sublattice where
Te ions are located, and the operators of f luctuations
of the electron density at the site are determined by the
expressions

(6)

Here, the Wanier representation is used in the form

(7)

where N is the number of unit cells and  is the
equilibrium number of electrons at the site in the 
sublattice.

The Hamiltonian of the BHZ + V model under
consideration is the sum of the Hamiltonian  and
the operator  given by Eq. (5):

(8)

3. FLUCTUATION RENORMALIZATION
OF LOCALIZED LEVELS

AND SPLITTING OF BANDS

The first exact equations of motion including cor-
relation effects have the form

(9)

where

(10)

(11)

are operators reflecting the coupling of fermions to
charge f luctuations.

According to Eq. (9), V serves as a coupling con-
stant between fermions and fluctuations of electron
densities. If this parameter is not small, this coupling
should be correctly described.

This description can be performed with the follow-
ing expansion of the set of basis operators:
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V̂

+ +BHZ BHZ
ˆ ˆ ˆ= .VH H V

( )
( )

σ σ σ σ

σ σ σ σ

− ε − Γ +

− ε − Γ +

= ,

*= ,

a ak k k k k

b bk k k k k

di t a b VA
dt
di t b a VB
dt

−
σ σ +δ

∈ δ
Δ

( )

,

1 ˆ= ,if q k
k q f

f F q

A e a n
N

−
σ σ +δ

∈ δ
= Δ

( )

,

1 ˆig q k
k q g

g G q

B e b n
N

σ σ σ σ σ σ→{ , } { , , , }.k k k k k ka b a b A B
JETP LETTERS  Vol. 114  No. 12  2021



SPLITTING OF THE SPECTRUM OF FERMIONIC EXCITATIONS 753
Writing equations for  and  and using the
Zwanzig–Mori method [17, 18], we obtain

(13)

Here, only principal contributions are retained on the
right-hand sides and the coefficients being functions
of quasimomentum are given by the expressions

(14)

where

Furthermore, it is taken into account that the site con-
centration of electrons in the valence band is slightly
different from 2 and is described in terms of the con-
centration of holes h as

(15)

The equation for calculating the chemical potential
follows from the condition of the equality of concen-
trations of conduction electrons and holes

(16)

According to (13), charge f luctuations shift the centers
of bands associated with the composition operators

 and  because the equations contain renormal-
ized quantities  and  rather than bare ones  and

. It is substantial that f luctuation renormalization
occurs through different scenarios:

(17)

(18)
As a result, the FSB induced by the composition oper-
ator  is shifted by  toward the valence band.
It should be emphasized that this FSB, as seen in
Eq. (10), is due to the coherent superposition of states,
each combined from fermions of the conduction band
and fluctuations of the electron density in the valence
band that are coupled to these fermions. It is substan-
tial that the FSB is below the bare conduction band in
energy. Consequently, the FSB serves as the renor-
malized conduction band in the rearranged energy
structure of the TI.
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The valence FSB generated by the operator  is
shifted toward the conduction band by the same value

. In this case, the FSB is formed through the
coupling of fermions of the valence band to f luctua-
tions of the electron density from the conduction
band. It is important that this FSB is shifted toward
higher energies and, thereby, can serve as the valence
band in the renormalized spectrum of the TI. The dif-
ference in the behavior of these two FSBs is due to the
different values of the square of f luctuations of the
electron density for the valence and conduction bands.
In the former case, f luctuations occur against the
background of the almost complete filling of elec-
tronic levels; then,

(19)

Fluctuations of the electron density in the conduction
band occur at insignificant filling of levels. Therefore,
the square of the f luctuation operator of the electron
density is given by the expression

(20)

Opposite signs of the second terms in Eqs. (19) and
(20) lead to different shifts of f luctuation bands
because the ISCI couples a conduction electron to
fluctuations of the electron density in the valence
band, whereas the ISCI couples an electron of the
valence band to f luctuations of the electron density in
the conduction band.

4. SPECTRUM OF EXCITATIONS 
AND THE ELECTRON DENSITY OF STATES 

IN THE BHZ + V MODEL

It follows from Eqs. (9) and (13) that the spectrum
of excitations of the TI is determined by solutions of
the dispersion equation

(21)

where

(22)

The coefficients of the equation are functions of the
quasimomentum and self-consistently depend on the
thermodynamic averages , , and

. They can be calculated using the method of
two-time Green’s functions, matrix description, and
field operator
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Fig. 1. (Color online) Energy spectrum of fermion states of
the topological insulator including Coulomb correlations
obtained with the parameters V = 1, , ,

, and .
−= 0.45at = 0.45bt

= 0.2spt = 0.25h

Fig. 2. (Color online) Fermion spectrum of the topological
insulator for  obtained with the parameters V =
0.5, h = 0.2, and the other parameters the same as in Fig. 1.

=x yk k
The 16-component matrix Green’s function 
can be defined in terms of this field operator as

(23)

where  is the Heaviside step function and {…}+
means the anticommutator.

The equation for the Green’s function has the form

(24)
where ω is the frequency, Î is the identity matrix, the
elements of the matrix  are determined by compar-
ing Eqs. (9) and (13) with Eq. (24), and

(25)
The self-consistent equations for thermodynamic

averages can be easily obtained from the solution of
Eq. (24). They were analyzed using the symmetry clas-
sification of allowed phases [14, 19–21].

Omitting intermediate calculations, we present the
results on the effect of charge f luctuations.

Figure 1 shows the spectrum of fermionic exci-
tations. It is seen that, at a fixed value of one of the
projections of the quasimomentum (in this case, ),
four energy bands appear; the energy of the fermion
state depends on the second projection of the quasi-
momentum ( ). In this case, relatively narrow FSBs
are adjacent to the dielectric gap.

The presented results show that charge f luctuations
initiate the appearance of heavy fermions. Corre-
spondingly, the authors of [22] used the possibility of
existence of light and heavy holes in the HgTe quan-
tum well to interpret experimental data on the mag-
netic properties of two-dimensional fermions.
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Taking into account this result, we demonstrate
that charge f luctuations can initiate the appearance of
heavy holes. Figure 2 shows the energy spectrum for
the  direction. It is seen that states with heavy
holes will be filled at low carrier densities in the quan-
tum well. As the carrier density increases, the filling of
states with light holes will begin because the spectral
intensity for heavy holes corresponding to the valence
FSB is low since it is proportional to the rms f luctua-
tion of the charge density in the conduction band. This
circumstance promotes a fast transition to the filling of
valleys with light holes [22].

It is noteworthy that the FSB for Hubbard fermi-
ons, located much below the chemical potential, leads
only to the redistribution of filling of fermion states.
The situation is significantly different in the case
under consideration because the FSB plays a decisive
role in the thermodynamic properties of TIs.

Since the energy intervals of bands at different 
values are different, split parts of the conduction and
valence bands are overlapped. As a result, the total
density of states holds only one gap in the spectrum of
states. This case is demonstrated in Fig. 3, where the
fermion density of states of the TI is shown. The den-
sity of states decreases strongly with the distance from
the upper edge of the gap, but it does not vanish
because of the overlapping of bands.

The overlapping of energy bands for TIs with nar-
rower bare bands is smaller and a decrease in the den-
sity of states is stronger. In a narrow-gap TI where
hopping parameters in absolute value are much
smaller than the intersite Coulomb interaction param-
eter, the complete separation of the FSB occurs and is
accompanied by the appearance of dielectric gaps and
by vanishing of the density of states. This case is
demonstrated in Fig. 4.

=x yk k

xk
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Fig. 3. (Color online) Fermion density of states of the
topological insulator within the BHZ + V model. The
parameters are the same as in Fig. 1.

Fig. 4. (Color online) Fermion density of states of the nar-
row-gap topological insulator within the BHZ + V model
obtained with the parameters , , and the
other parameters the same as in Fig. 1.

−= 0.3at = 0.3bt

Fig. 5. (Color online) Spectrum of bulk and edge states of
the topological insulator within the BHZ + V model. The
parameters are the same as in Fig. 1.
5. SPECTRUM OF EDGE STATES 
IN THE BHZ + V MODEL

It is a relevant problem to determine the position of
the spectrum of edge states in TIs with the split band
structure. To solve this problem, the above system of
self-consistent equations was solved for cylinder
geometry. The calculated energy structure is shown in
Fig. 5. For the sake of clarity, the spectrum is shown
for the part of the Brillouin zone corresponding to rel-
atively low quasimomenta in the direction for which
periodic boundary conditions are used. It is seen that
the energies of edge states are between the valence
FSB and FSB of conduction electrons.

This result means that the features of the energy
structure caused by charge f luctuations are of signifi-
cant importance for the interpretation of the proper-
ties of Tis. Since changes are expected in materials
where the intersite Coulomb interaction parameter is
not small, some remarks are in order concerning the
parameter V in the CdTe/CdHg/CdTe quantum well
described within the BHZ model.

In this model, spin–orbit coupling enters into the
zeroth Hamiltonian used to construct the actual basis
of electronic states of the Te ion [3]. Only the two low-
est spin orbitals are taken into account, whereas the
upper spin orbitals are ignored.

This approach is justified if the hopping parameter
between spin orbitals belonging to neighboring Te ions
is smaller than the spin–orbit coupling constant. This
condition restricts the allowed hopping parameter val-
ues of the valence band: , where λ is the spin–
orbit coupling constant. Taking into account real
λ values, one can expect that the Coulomb interaction
between electrons located on neighboring Te and Hg
ions corresponds to the case where V is not smaller
than other energy parameters of the BHZ model and

λ| | | |bt �
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the energy structure of the quantum well with the
width corresponding to the TI regime should be
described by the BHZ + V model. As seen in Fig. 5,
edge states in this case are adjacent to two FSBs, where
effective masses are significantly renormalized. Corre-
spondingly, the electronic specific heat, magnetic sus-
ceptibility, and other characteristics change signifi-
cantly.

6. CONCLUSIONS

To conclude, we emphasize that the ISCI between
electrons in the TI phase, where the top of the valence
band and the bottom of the conduction band are
inverted, qualitatively changes the energy spectrum
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and the fermion density of states when the ISCI
parameter is not small compared to hopping integrals.

The main modification is due to the generation of
two FSBs; as a result, the total spectrum of fermionic
excitations in the TI has the four-band energy struc-
ture.

It is substantial that FSBs play the main role in the
spectral and thermodynamic properties because these
bands are in the immediate vicinity of the gap in the
spectrum of bulk states and the spectrum of edge states
in the TI is between them. Quasiparticles from FSBs
with renormalized effective masses (in our case,

) correspond to the top of the valence band
and the bottom of the conduction band. Such an
increase in the mass of quasiparticles is due to the cor-
related motion of fermions with surrounding charge
fluctuations. An increase in the energy near the bot-
tom of the conduction band is accompanied by a
decrease in the density of states corresponding to a
pseudogap behavior.

In the p-type narrow-gap topological insulator,
where the intersite Coulomb interaction parameter
exceeds the hopping parameters, the density of states
vanishes and an additional energy gap appears.

The picture for the electron density of states near
the top of the valence band is similar.

It is noteworthy that the predicted features of the
energy structure caused by charge f luctuations will be
characteristic not only of the model under consi-
deration but also of other multiband models of semi-
metals.
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