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Abstract—Within the multielectron model of magnetic insulator with two different spin terms at each cation
and spin crossover under high pressure we have studied dynamics of a sudden excited non equilibrium spin
state. We obtain the different relaxation of the magnetization, high spin/low spin occupation numbers, and
the metal-oxygen bond length for different values of the external pressure. For each pressure-temperature val-
ues stationary state agrees to the mean field phase diagrams. We found the long living oscillations of magne-
tization for the high spin ground state at small pressure. Close to crossover pressure the smooth relaxation is
accompanied with a set of sharp strongly non linear oscillations of magnetization and HS/LS occupation
numbers that are accompanied by the Franck–Condon resonances.
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1. INTRODUCTION
The ultrafast magnetism is a very active area in

modern condensed matter physics [1–11]. With the
femtosecond pump - probe technique a lot of exciting
results have been obtained for different magnetic
materials including metals and insulators, among
them the ultrafast demagnetization or long living mag-
netization precession. For example, such precession
has been induced by the femtosecond pumping in
FeBO3 [1, 5, 12]. We will discuss here the ultrafast
magnetic dynamics in materials under high pressure
with account for an electron–vibron interaction
(beyond an adiabatic approximation) and a spin-
orbital interaction between high spin (HS) and low
spin (LS) cation states. We consider such dynamics
both under ambient and external pressure which
induces HS–LS crossover in many magnetic materi-
als. Up to now there are no experiments with spin
crossover under high pressure and femtosecond
pumping. Thus, obtained here results are predictions
for future experiments.

We will discuss here situations, when switching
between the HS state and the LS state is induced by
some external impact like high pressure (typically iron
oxides) or temperature (typically metal-ligand com-
plexes in organic matrix) [13–15]. The HS–LS transi-
tion has been found also under light irradiation and
called the LIESST effect (Light Induced Spin State
Trapping) [13, 14]. The LIESST effect in
Fe(phen)2(NCS)2 has been studied recently by time-

resolved XANES and optical spectroscopy at the XPP
LCLS XFEL (The X-ray Pump-Probe instrument at
the Linac Coherent Light Source) in Stanford [16].
The light-induced LS-HS switching and the forth-
coming relaxation has revealed local deformation and
vibronic oscillations of ligands.

The other group of materials where HS–LS transi-
tions are induced by high pressure is the Fe-based
oxides with Fe3+ or Fe2+ ions [17–22] with the HS
ground state and spin crossover at Pc close to 50–
60 GPa. These oxides are typical Mott–Hubbard
insulators with electronic structure and properties
determined by strong electronic correlations [23, 24].
There is one more unique group of 3d-oxides with the
LS ground state that demonstrates spin crossover with
heating, the rare-earth cobaltites LnCoO3. LaCoO3 is
one paradigmatic example where the strong electron,
spin, and lattice coupling induced by electronic cor-
relations results in a low-temperature spin transition
and a high-temperature semiconductor-to-metal
transition [25]. Recently, the ultrafast metallization in
LaCoO3 using time-resolved soft X-ray reflectivity
experiments has been revealed [26]. Metallization is
shown to occur via transient electronic, spin, and lat-
tice separation. The semiconductor-metal transition
in La-cobaltite is accompanied with the HS → LS
transition [27].

A simple picture of spin crossover is based on the
single 3d-ion in the ligand crystal field picture and
conceptually is quite simple. The intraatomic Cou-
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lomb interaction results in the formation of the HS
electronic configuration (the Hund rule) with the
Hund exchange energy JH gain. Nevertheless in the
crystal the large value of the cubic crystal field 10Dq
may stabilize the LS state. There is a competition
between the Hund exchange and the crystal field.
From the Tanabe–Sugano diagrams it is clear that
spin crossover may occur for dn ionic compounds with
n = 4–7 [28]. Within the single site model the spin
crossover at T = 0 is a quantum phase transition with
the Berry-type phase being the order parameter [29].
The simple single site model qualitatively explain the
origin os spin crossover but cannot answer to several
important questions. Is the spin crossover a thermody-
namic phase transition at nonzero temperature or not?
What are the effects of cooperativity that may be
induced by the interatomic exchange interactions or by
interaction with lattice on the equilibrium phase dia-
gram and ultrafast dynamics of the excited states?

In the literature there are several simplified models
discussing effects of cooperativity and the influence of
pressure, temperature and irradiation on spin cross-
overs [30–39]. The vibron model of the metal-ligand
complexes [40] incorporates the spin crossover and
the change of the local vibrations in the metal-ligand
complexes within non adiabatic theory of electron-
vibron interaction. Molecular dynamics calculations
using the stochastic Monte Carlo approach [41, 42]
allows to describe the photoinduced transition beyond
the Born–Oppenheimer approximation [43]. For
magnetic oxides both mechanisms of cooperativity are
important: the interatomic exchange interaction and
cooperativity of magnetic cations via electron–
vibron–electron interaction. In the present paper we
will study the effect of both cooperativity mechanisms
on spin crossover.

We consider the multielectron model of magnetic
oxide with two local dn terms (HS and LS) with inter-
atomic exchange between cations. The electron-
vibron interaction in this problem is especially import-
ant due to the large (about 10%) difference of the HS
and LS ionic radii, so the transition of the HS into LS
state and back results in a strong Me–O bond length
contraction-dilatation. The local excitations between
the HS and LS terms that results from the spin-orbit
interaction and mix the HS and LS states are also
important and will be considered. Within this model
we study both the equilibrium thermodynamics and
non equilibrium system dynamics.

The paper is organized as follows. In Section 2 we
describe the model and derive a system of the mean
field equations for magnetization of an antiferromag-
netic sublattice m, HS concentration n and the Me–O
bond length q. The pressure-temperature phase dia-
grams and the effects of cooperativity on the equilib-
rium thermodynamics are discussed in Section 3. Sec-
tion 4 contains the application of the master equation
for our dynamical quantities within the Redfield
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approximation. Numerical results for system dynam-
ics at various pressures are analyzed in Section 5. Dis-
cussion of the results is given in Section 6.

2. THE EFFECTIVE HAMILTONIAN
OF THE MAGNETIC INSULATOR

WITH SPIN CROSSOVER

We consider a 3D lattice with the 3dn ions at every site
surrounded by z ligands with the equilibrium Me–O
bond length l0, later we used the notation spin cross-
over (SC) complex. Instead of full set of multielectron
terms we consider only two of them, the HS and LS
with the energies EHS and ELS, due to the crystal field
increasing with pressure these energies become equal
at some pressure PC0 according to a single site model of
a spin crossover. We choose, for example, oxides with
3d6 ions (FeO and Mg1 – xFexO). Spin variables are
inconvenient for describing the possible coexistence of
various cationic terms, since they act only in the sub-
space of the spin sublevels of a given spin term. In our
case the language of Hubbard X-operators con-
structed on the basis of cation eigenstates is more ade-
quate. It can be done for arbitrary values of the HS and
LS, nevertheless we specify the SHS = S = 2 and
SLS = 0. In this work the X-operators are constructed
with the help of orthogonal local set of HS states with
different spin projections |σ, σ = –S, –S + 1, … + S
and LS singlet |s.

We write down the model Hamiltonian in the fol-
lowing way

(1)

Here the first term (see Eq. (2)) describes magnetic
cations with the antiferromagnetic interatomic
exchange interaction J and two multielectron terms,
the HS and the LS with their energies EHS and ELS.
The analysis of the non Heisenberg effects in such
model has been discussed recently in [44].

(2)

A spin gap ΔS = ELS – EHS linearly decreases with
pressure and changes its sign at the P = PC0, the cross-
over pressure in the single site approach. The spin

operator  for S = 2 is written in the Hubbard operator
representation [45, 46]
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 = 6  + 6  is the operator of electron
number at the site i,   = 6. The condition of com-
pleteness of the HS and LS set of states yields the sum

rule  + Xs, s = 1. The effective Hamiltonian
(2) has been obtained [47] from the miscoscopic mul-
tiband p–d model using the projection Hubbard oper-
ators within the multielectron approach LDA+GTB
to the electronic properties of strongly correlated
materials [48, 49].

The second term (see Eq. (3)) in the Hamiltonian
(1) describes the energy of a cation-ligand octahedral
complex, we call it the spin crossover (SC)-complex
with intramolecular full symmetrical vibrations, the
electron–vibron interactions [50, 51] and the elastic
interatomic interaction. This term provides the coop-
erativity throw the elastic lattice and is responsible for
the volume change under external pressure and tem-
perature. It is given by

(3)

where g1 and g2 are the parameters of linear and qua-
dratic electron–vibron interaction within the MeO6
octahedra, k is the elastic parameter, M is the anion
mass,  is the normal coordinate operator of the Me–O
breathing vibration, and  is corresponding momen-
tum operator, Vq is the parameter of interatomic elastic
coupling. Due to the large difference in the HS and LS
ionic radii we have to include in (3) the anharmonic
coupling g2. It results in the renormalization of the
elastic parameter, for the HS kHS = k – 2g2 and for the
LS kLS = k + 2g2.

The Me–O bond length is equal to l = l0 +  ,
where l0 is the equilibrium bond length.

The third contribution (4) to the Hamiltonian
describes the excitations between the HS and LS terms
induced by the spin-orbital interaction [52] that
resulted in mixing of the HS and LS states. It can be
written as

(4)

In general the Hamiltonian (1) describes very com-
plicated many body physics with interacting spin,
charge and lattice degrees of freedom. That is why we
will treat both interatomic interactions, the exchange J
in Eq. (2) and the elastic term Vq in Eq. (3) in the mean
field approximation. All other interactions within the
SC-complex are taken into account exactly. Thus, the
effective Hamiltonian is given by
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(5)

Here B = zJSm is the molecular Weiss field, where z is

the number of nearest neighbors, m =  is the nor-

malized magnetization of sublattice in a two sublattice
antiferromagnet; N is the number of crystal lattice
sites.

To write down the matrix of the mean-field Ham-
iltonian (5) we choose the local multielectron basis
functions as a product of spin and harmonic oscillator
eigenfunctions. The spin eigenfunctions look like |α,
sz, sz = –S, (–S + 1), …, +S for HS state (α = 1) and
sz = 0 for LS state (α = 2). For harmonic oscillator we
introduce phonon creation and annihilation operator

as usually by relations  = (ai + ) and  =

(ai – ), so the eigenstate with nph = 0, 1, 2,

… is given by |nph = (a† |0, 0, …, 0. Finally,

our basis functions are given by |α, sz, nph = |α, sz|nph

and describe local multielectron polarons.

In this basis the matrix of Hamiltonian (5) can be
written as

(6)
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(7)

Without electron–vibron interaction the electronic
part of this eigenfunction describes a superposition of
the LS singlet and the HS term with (2S + 1) spin pro-
jections, in our case with the S = 2 configuration Fe2+

with  has also 3-fold orbital degeneracy that is not
shown in Eq. (7) for simplicity. Nevertheless it is
included in the numerical calculations by a factor 3. So
the number of the HS sublevels is 15 and the total
number of electronic sublevel at each site is 2Ne = 16.
The polaronic representation (7) treat the local elec-
tron–vibron interaction exactly and describes the
superposition of the Ne states without vibron, with one
vibron, etc. The cut-off vibron number Nph is found
from the condition that addition one extra vibron
changes the ground state |ϕ0 energy less than 1%,
E0(Nph + 1) ≈ E0(Nph) and coefficients (Nph + 1) ≈

(Nph), (Nph + 1) ≈ (Nph) (our compu-
tation error is less than 1%) (For finite temperature
computations we also have checked similar properties
for several excited eigenstates |ϕk both for the energy
Ek and coefficients (Nph + 1) ≈ (Nph),

(Nph + 1) ≈ (Nph)). In other words, Nph
determines the number of vibrons that has to be
included for the given set of parameters to form the
vibron cloud around electron in the ground and sev-
eral excited polaronic states. In our computations
Nph = 300–500 depending on the model parameters,
temperature and pressure. The multivibron contribu-
tion to the eigenstates (7) results in the Franck–Con-
don resonances during their excitations [53].

With the eigenfunctions (7) one can obtain the
quantum mechanical averages of the HS concentra-
tion , bond length deformation  and sublattice
magnetization 

(8)
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(10)

After thermodynamic averaging we get a system of
self consistent Eqs. (11)–(13)

+

= =−

 
ϕ  =  +  

 
 

ph

ph ph

ph

, ph , , ph
0

| |2,0, |1, , .
z

z

N S

k n k n s k z
n s S

a n b s n

4 2
2g gt e

ph,0na

ph,0na
ph, ,0zn sb

ph, ,0zn sb

ph,n ka
ph,n ka

ph, ,zn s kb
ph, ,zn s kb

ˆHSn q̂
ˆzS

+
σ σ

σ = =−
  = ϕ ϕ =  

ph

ph

ph

, 2
, ,

0

ˆ | | ,
z

z

N S

HS k k k n s k
n s S

n X b

+

− −
= =−

+

+ +
=−

  = ϕ ϕ  =
ω

  × +  
  

 + + + 
 

 



�

ph

ph ph ph ph

ph

ph ph ph ph

ph , 1, , , 1, ,
0

ph , 1, , , 1, ,

ˆ ˆ| |
2

1 ,

z z

z

z z

z

k k k k
n

N S

n k n k n s k n s k
n s S

S

n k n k n s k n s k
s S

q q
M

n a a b b

n a a b b

+

= =−
  = ϕ ϕ =  

ph

ph

ph

2
, ,

0

ˆ ˆ | | .
z

z

N S
z z

k k k z n s k
n s S

S S s b
JOURNAL OF EXPERIMENTAL AN
(11)

(12)

(13)

where Z = . The LS term does not allow to
write down the magnetization via the Brillouin func-
tion. This is an example of the non Heisenberg behav-
ior. In conventional magnetism decreasing magnetiza-
tion with heating results from decreasing a spin-up and
spin-down population difference. Due to the presence
of the LS term its occupation with heating also pro-
vides magnetization decrease.

Before turning to numerical simulations, we would
like to discuss typical for 3d-oxides parameters. The
most studied at high pressure are Fe2O3 and some
other oxides with 3d5 Fe3+ ion that has HS value S =
5/2 and LS S = 1/2 with PC = 47 GPa for FeBO3 [21].
We consider in this paper spin crossover in oxides with
3d6 ions that have HS S = 2 and LS S = 0, the example
is given by FexMg1 – xO with PC = 55 GPa [54]. The
spin gap values for all 3dn ions are given in [55]. The
spin gap for Fe2+ is equal to ΔS = 2(2JH – 10Dq), where
JH is the intraatomic Hund exchange coupling stabiliz-
ing the HS state, and 10Dq is the cubic crystal field
parameter, stabilizing the LS state. With increasing
pressure and decreasing the interatomic distance the
crystal field and the effective interatomic exchange
interaction linearly grows as 10Dq(P) = 10Dq(0) + αΔP
[54] and J(P) = J0 + bP [54]. Due to the linear
increases crystal field the spin gap can be written as
ΔS = a(PC0 – P) with a = 2αΔ and the critical value of
pressure PC0 that would determine the crossover in the
absence of cooperativity effects. Due to these effects
the critical pressure PC when the crossover occurs dif-
fers from PC0 that will be shown in the Section 3. For
Fe ions JH = 0.8 eV and S ~ 1 eV are typical values. For
example, the crystal field at zero pressure 10Dq(0) =
1.57 eV for FeBO3 has been determined from optical
spectra [56–58].

Via the magnetic anisotropy energy we estimate the
mixing of the HS and LS terms value Jx, induced by
SO interaction. The HS Fe3+ term has zero orbital
moment and is isotropic. The anisotropy energy
induced by the SO interaction appears in the second
order of perturbation theory Ea = /ΔS. For HS Fe2+

ion the SO interaction in the first order contribution
splits the HS term into sublevels with total momentum

 = 1, 2, 3 but does not mix the HS and LS states [59].
The mixing term (4) appears in the second order of
perturbation theory. The typical value of the anisot-
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ropy energy Ea ~ 10 K ~ 1 meV. For the spin gap
ΔS ~ 1 eV we get Jx = 30 meV. Below we will consider
several values of the mixing parameter Jx in the range
10–50 meV.

Thus, we will take the following model parameters
as typical values: z = 6, J0 = 28 K, PC0 = 55 GPa, a =
80 K/GPa, b = 0.5 K/GPa [54], ω = 0.05 eV, k =
7.5 eV/Å2, g1 = 0.8 eV/Å, g2 = 0.75 eV/Å2, Vq =
0.2 eV/Å [40]. Two more parameters related to the
relaxation will be introduced below Eq. (23) in the
Chapter 4.

Due to the anharmonic contribution to the elec-
tron–vibron interaction (3) the local vibration fre-
quencies are different for HS and LS state ωHS =

, ωLS = . For the chosen parameters
the frequencies are found to be ωHS = 0.045 eV, ωLS =
0.055 eV. The increasing frequency in the more dense
high pressure LS state is evident. The Me–O bond
lengths changes are different for the HS and LS states

 = – ,  = . For the chosen set of parame-

ters we obtained  = –0.09 Å,  = 0.13 Å, and the
difference is equal to Δq0 =  –  = 0.22 Å. At T =
0 the bond length l0 is about 2 Å, so Δq0 is close to 10%
of l0. This difference agrees with typical 10% difference
in the LS- and HS-ionic radii.

The unit cell volume as a function of pressure and
temperature may be written in the following way
V(P, T) = Vr(P, T) + ΔV(P, T), where Vr(P, T) is con-
ventional regular contribution due to the lattice anhar-
monicity, and additional contribution ΔV(P, T) ~ q3,
due to electron–vibron interaction. Moreover, in
materials with spin crossover the redistribution of
HS/LS concentrations provides the additional contri-
bution to the lattice dilatation at heating due to large
difference of the ionic radii [60].

3. THE P–T PHASE DIAGRAM

Let us start analysis of the self-consistent mean
field Eqs. (11)–(13) without the Heisenberg exchange
interaction at J = 0. Then we obtain m = 0 for all pres-
sures and sharp drop of the n and q at the crossover
point PC0 at T = 0. In all phase diagrams we use the
rescaled pressure P/PC0 and temperature T/J0. With-
out cooperativity effect the spin crossover at T = 0 is
the quantum phase transition with the Berry phase as
topological order parameter [29]. It transforms in a
smooth crossover for finite temperature. Nevertheless
even for J = 0 we have the other type of cooperativity
due to electron–vibron interaction. In Fig. 1 we can
see a small but finite temperature range of a sharp
crossover close to the critical pressure. For J = 0 the
crossover from paramagnetic HS to non magnetic LS

/HSk M /LSk M
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state is accompanied by isostructural phase transition
with the change of volume (Figs. 1b, 1d).

Figure 2 show maps of all thermodynamic charac-
teristics: HS concentration n (a), magnetization m (b)
and displacement q (c) for J ≠ 0. For some P, T values
we find several solutions for parameters n, m, and q
and check out which of them are stable near the mini-
mum of the free energy F = –kBTlnZ. Due to the
exchange interaction J the antiferromagnetic (AFM)
HS ground state exists up to P = PC > PC0 (Fig. 2b).
Increasing the critical pressure due to effect of cooper-
ativity is expected because the exchange interaction
stabilizes the HS state. At P > PC the ground LS-state
takes place, while the crystal volume reveals a sharp
decrease at P = PC (Fig. 2c). The HS–LS sharp cross-
over at low temperatures and smooth one at high tem-
peratures are seen in Fig. 2a.

In the HS area P < PC (Fig. 2b) with increasing
temperature we found the second order phase transi-
tion from the AFM to the paramagnetic phase when
P < P* and the first order transition, when P* < P < PC.
In the first case we see the smooth volume change,
while in the second case the volume reveals the sharp
change (Fig. 2c). In the tricritical point (T* and P* in
Fig. 2b) the line of second order phase transitions
smoothly transforms in the line of the first order phase
transitions. In the interval PC < P ≤ P ' the ground state
is non magnetic, but with heating the magnetic HS
state is populated and the long range AFM HS-state
appears (Fig. 2b) with the sharp change of the volume
(Fig. 2c). Thus, due to cooperativity the reentrant
magnetic transition in the vicinity of the crossover
appears. With further heating the AFM–PM transi-
tion is of the second order if PC < P ≥ P* and the first
order close to the second if P* < P ≥ P '. At P > P '
(Fig. 2b) the non magnetic LS phase is stable for all
temperatures. For these pressures with heating there is
a smooth crossover from the non magnetic to diluted
paramagnetic state.

Besides reentrant magnetization with increasing
temperature at PC < P ≤ P ', we also have noticed reen-
trant behavior with increasing pressure for tempera-
tures T0 < T ≤ T', where T0 is the Neel temperature for
P = 0 and T ' is the maximal value of the Neel tempera-
ture, increasing due to pressure dependent exchange
interaction. For T0 < T ≤ T ' the paramagnetic state at
low pressure undergo second order transition to AFM
and with forthcoming pressure increase transforms
again into paramagnetic phase by the second order
transition if T* < T0 or T*> T0, T* < T < T ' and first
order transition if T*> T0 and T0 < T < T*, (Fig. 2b).
For our set of parameters T* > T0. The volume with
increasing pressure has a sharp drop if 0 ≤ T ≤ T* or
changes continuously if T > T* (Fig. 2c).

Increasing of the spin-orbital interaction Jx has
strong effect on the magnetization with reducing the
Neel temperature with increasing pressure. At the
YSICS  Vol. 132  No. 3  2021



404 ORLOV et al.

Fig. 1. The P–T diagrams of the HS concentration n (a, c) and the bond length deviation q (b, d) when J = 0. The (c) and (d)
shows the sharp spin crossover at low temperatures close to the critical point.
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same time the n(P) and q(P) dependences show
smaller changes, mainly more smooth crossover. The
reason of strong suppression of magnetization is clear
from the structure of the Hamiltonian (4), where the
operator Xs, σ transforms the HS state with spin projec-
tion σ into the LS singlet state |s. The phase diagram
for Jx = 0.05 eV is shown with more details in Fig. 3.

The Neel temperature at zero pressure T0/J0 ~ 12 is
almost the same in Figs. 2 and 3, while the tempera-
ture dependence of the magnetization changes
remarkable with increasing the value of Jx. The exis-
tence of reentrant magnetic behavior with increasing
temperature is clearly seen (Fig. 3b), but in contrast to
the previous case (Jx = 0.01 eV), the region of existence
of long-range magnetic order decreases. So, there is a
significant decrease of PC (PC < PC0) (Fig. 3b). In addi-
tion, a significant effect of spin-orbital interaction is
the smooth change of the magnetization m at T = 0
and the absence of the first order phase transitions. As
JOURNAL OF EXPERIMENTAL AN
concerns the HS concentration n and lattice distortion
q, they are smoothly spread over pressure range shown
by the color map in Figs. 3a, 3c. All system character-
istics are changing continuously.

4. NON-EQUILIBRIUM QUANTUM 
DYNAMICS AND RELAXATION PROCESSES

To study the relaxation processes, one should
include the interaction with an environment. In what
follows, we consider coupling of the spin crossover
system with a lattice phonon environment. The total
system–environment Hamiltonian can be written as

(14)

Here  = |ϕkϕk| is the Hamiltonian (5) of our
spin crossover system written in the terms of its polar-

= + +0
ˆ ˆ ˆ ˆ.RH H H V

0Ĥ  kk
E

D THEORETICAL PHYSICS  Vol. 132  No. 3  2021
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Fig. 2. The P–T maps of the HS/LS concentration (a), magnetization (b) and lattice distortion (c) for the mixing value
Jx = 0.01 eV.
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onic eigenstates;  = ωq bq is the environment

Hamiltonian with (bq) being phonon creation (anni-

hilation) operators, and  =  +  describes

the interaction of the environment with our spin cross-
over system, that includes the vibron–phonon gv–ph

and spin-phonon gs–ph interactions given by

We use the reduced density-matrix approach, lead-
ing to the master equation:

ˆ
RH  �

q

†

qb
†

qb
V̂ −v phV̂ −s phV̂

− − −= +
† †

v ph v ph, v ph,
ˆ *( ),q q q q

q

V g b a g b a

+ −
− − −= +

†

s ph s ph, s ph,
ˆ ˆˆ *( ).q q q q

q

V g b S g b S
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(15)

where the superoperator  describes coupling to the

environment. In what follows we assume that spin-

crossover system is weakly coupled to phonon envi-

ronment. This allows us to use the Markovian quan-

tum master equation for the reduced density matrix.

Further we assume also that the environment is short

correlated, i.e. the environment will quickly “forget”

its interactions with the system. Then Eq. (15) can be

recast as the Redfield master equation [61–64]. The

Redfield equation [65] for the reduced density matrix

 may be written as

ρ = − ρ + ρ
0

0 0

0

ˆ ˆ ˆˆ[ ( ), ] ,
d i H t V
dt

V̂

ρ0

kl
YSICS  Vol. 132  No. 3  2021
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Fig. 3. The P–T maps of the HS concentration n (a), magnetization m (b) and lattice distortion q (c) for the mixing value Jx =
0.05 eV.
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(16)

The first term in Eq. (16) describes the reversible
motion in terms of the transition frequencies ωkl =

 between energy levels in the spin-crossover

system, and the second term describes relaxation. The
Redfield approximation is valid for time intervals Δt ≫
τc, where τc is the correlation time of the environment.

The second simultaneous condition is [62] RklmnΔt ≪
1. For the spin-crossover system with two channels of
interaction with the environment, the relaxation

matrix, Rklmn, reads Rklmn =  +

 –  – .

Here the Γ is determined by

ρ = − ω ρ − ρ
0 0 0

,

.kl kl kl mn klmn
m n

d i R
dt

−
�

k lE E

+δ Γ nl kppmp
−δ Γ km npplp

+Γnlkm
−Γnlkm
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(17)

Vmk(t) are the matrix elements of the operator  in the

interaction representation. In the secular approxima-
tion with Ek – Em + En – El = 0 the Redfield Eq. (16)

can be written as the generalized Master equation

(18)

where Wln =  + , γkl =  + ) –

 – . For the diagonal matrix elements it looks as

ln ln ln

ln mk ln

∞
+

∞
−

Γ = − ω ρ

Γ = − ω ρ
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�

�

2

0

2

0

1
exp( ) ( ( ) (0) (0)),

1
exp( ) ( (0) ( ) (0)).
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mk R mk R

dt it Tr V t V

dt it Tr V V t

V̂

ln ln kl

≠

∂ ρ = − ω ρ + δ ρ − γ ρ
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,kl kl kl kl nn

n l

i W
t
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+Γllkk l
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(19)

Here the coefficient Wkn gives a probability of tran-

sitions between states of our dynamical system
induced by interaction with environment. Equation
(19) is often called the main kinetic equation of Pauli

(Master equation). For any dynamical operator 

(in our case these are operators , , ), the mean

value is equal to:   = Tr (t).

To calculate the relaxation tensor components we
write down the interaction with environment as

where  = aij + bqaji),

ϕi|a|ϕj = aij, and  = |ϕiϕj|.

Similarly for the spin-phonon interaction  =

, where  = gs–ph, q sij +

bqsji), ϕi| |ϕj = sij.

Finally, for the total interaction with environment

and the Eq. (17) can be written as

(20)

where (τ) = .

For the vibron-phonon relaxation channel the
straightforward calculations result in

that can be estimated as

≠ ≠

∂ ρ = ρ − ρ
∂  0 0 0

( ) ( ) ( ) .kk nn kn kk nk
n k n k

t t W t W
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(21)

where nBE is the Bose–Einstein distribution function.
Similar, for the spin-phonon relaxation channel

(22)

The product Vv–ph(t)Vs–ph(0) in Eq. (17) gives zero

contribution due to the matrix elements. Finally,

(23)

In our case  =  and =  = 0.

The averaged over the Brillouin zone parameters of
the vibron-phonon and spin-phonon coupling are two
external parameters that characterize the dynamics of
our system. As a typical value we accept these param-

eters from experimental data [26, 66–68] to be  ~

 ~ 1 ps,  ~  ~ 1 ps. We want to emphasize

that in spite of chosen equal values of the parameters
γ0 for the vibron-phonon and spin-phonon interac-

tions the magnetic and lattice relaxations times would
be different due to the different matrix elements in
Eqs. (21), (22).

We have calculated coefficients Γ in Eqs. (21)–(23)
and its linear combinations Wln and γkl enter the gener-

alized Master equation. Some information on these
coefficients is given in Fig. 4.

For both pressures we can see in Fig. 4 the forma-
tion of a system of sublevel clusters containing 16 lev-
els. The origin of these clusters is clear from the dis-
cussion of the eigenstate (7) structure: (2S + 1)(2L +
1) gives 15 for HS and 1 for LS. At zero temperature we
can see only under diagonal matrix elements corre-
sponding to the excitations from occupied into non
occupied states. At T = 300 K the matrix is more sym-
metrical indicating up and down excitations.

5. NUMERICAL RESULTS FOR SYSTEM 
DYNAMICS AT VARIOUS PRESSURE

We assume that ground at P < PC HS state may be

suddenly excited (for example, by ultra short light
pulse) into the LS state, or at P > PC the ground LS

state excited in the HS state. Thus, in our simulations
we assume that the ground state for the given pressure

|ϕ0 = |2, 0, nph + |1, sz,

2nph  can be suddenly excited at t = 0 into the non-

equilibrium initial state |ψ0. Its structure depends on

pressure. For P < PC and T = 0 when coefficients in the

ground state |ϕ0 b is close to 1 and a is close to zero,

we write down the initial state as |ψ0 = |2,

ln ln ln
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Fig. 4. The structure of relaxation matrix elements Γijji from Eq. (23) is shown for a set of 169 low energy level for P/PC0 = 0.1

(HS ground state) for T = 0 (a) and 300 K (c) and up to 130 energy levels for P/PC0 = 1.5 (LS ground state) for T = 0 (b) and

300 K (d). The spin-orbital parameter Jx = 50 meV.
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0, nph + |2, 0, nph  by switching HS →

LS, while the lattice is not excited and remains in the

initial state with . And for P > PC vice versa, the

ground state is the LS one with coefficient a ~ 1, b ~ 0.

So we write down at t = 0 the excited initial state to be

in the HS state. It is given by |ψ0 = |1, +2,

nph + |1, +2, nph  and the lattice is in

the LS state. In the experiment [16] the photo exci-

tation of the system from the ground state, for exam-

ple, the LS 1A1g state occurs firstly into some interme-

diate 1T2g, 
1T1g or LMCT (Ligand Metal Charge

Transfer) state from which the system can sufficient

quickly return back to the ground state or fall in a cas-

cade manner into the excited vibronic HS-state and

+

=− ph, ,0z
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S
n ss S
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0
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then due to phonon damping relaxes to the ground

state much more slowly. In the case of the HS 5T2g

ground state 5Eg term acts as an intermediate from

which the system falls rather quickly in a cascade man-

ner into the excited vibronic state LS state and later

also due to phonon damping relaxes much more

slowly to the HS ground state [66–68]. The character-

istic time of cascade transitions is less than 100 fs, and

relaxation along the phonon ladder is about 3 ps [66–

68]; therefore, in this work we do not consider primary

cascade processes in the system and as the initial state

at t = 0 in Eq. (18) we take a nonmagnetic vibronic LS-

state if the ground state is the HS-state and vice versa.

The excited state can be written in the eigenstate

basis (7) as |ψ0 = |ϕk with C0k = ϕk|ψ0. The

initial density matrix is equal to (0) = C0k . For

 0kk
C

ρ0

'kk 0 '
*
kC
D THEORETICAL PHYSICS  Vol. 132  No. 3  2021
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Table 1. Relaxation times for magnetization (τm), HS con-
centration (τn), and lattice distortion (τq) for different pres-
sures and mixing interaction Jx

Jx, meV P/PC0 τm, ps τn, ps τq, ps

10 0.1 1.18 1.06 1.06

1.5 0.52 0.94 0.95

50 0.1 0.40 0.18 0.18

1.5 0.33 0.93 0.95
finite temperatures (0) = |ψkψk| =

Cik |ϕiϕi'|, where |ψk =

|ϕi, Cki = ϕi|ψk.

The relaxation dynamics of sublattice magnetiza-
tion m (red line), HS occupation number n (blue line)
and lattice distortion q (black line) is shown for two
values of the spin-orbital energy Jx = 0.01 eV (Fig. 5)

and Jx = 0.05 eV (Fig. 7). We take into account 3-fold

orbital degeneracy of the HS state. The temperature
was fixed T = 100 K, while the pressure was varied
from 0.1PC0 up to 1.5PC0.

To find the relaxation times we fit the data from

Figs. 5 and 7 by the exponential law yi = y0i + ηi ,

i = m, n, q and ηi and ξi are fitted parameters while the

equilibrium value y0i was taken from the mean field

phase diagrams. Figures 6 and 9 show the results of
such fitting for the low pressure P/PC0 = 0.1 (upper

line) and high pressure P/PC0 = 1.5 (lower line) at Jx =

0.01 eV and Jx = 0.05 eV, correspondingly.

Comparison of Figs. 5 and 6 has revealed that the
non equilibrium magnetization m, HS-concentration
n, and lattice distortion q tend to its equilibrium values
with different relaxation times. For magnetization the
time is tm, while relaxation times for n and q practically

are equal. This agreement is not occasional because
the change of the bond length q is proportional to the
cation radii. The analysis of relaxation times is given in
Table 1.

The strong change of magnetic dynamics in
Figs. 7b, 7c vs. Figs. 5b, 5c is related to the strong sup-
pression of the critical pressure in Fig. 3b. For Jx =

0.05 eV and P/PC0 = 0.5 m(T = 0) = 0, but the reen-

trant magnetization for this pressure appears for the
temperature interval 4 < T/J0 < 10. This reentrance

magnetization appears also dynamically with maximal
value at t = 0.25 in Fig. 7b. Nevertheless the equilib-
rium state is nonmagnetic in agreement to the phase
diagram. In Fig. 7c we see the large amplitude for ini-
tial oscillations of the HS-concentration n. In the
phase diagram for P/PC0 = 1 and T = 0 the value of

n ~ 0.8 with a smooth distribution from n = 1 at
P/PC0 = 0.8 till n = 0 for P/PC0 = 1.2. This wide distri-

bution reveals itself also in temporal scale.

Comparison P/PC0 = 0.1 (a) and P/PC0 = 1.5 (d) in

Fig. 7 shows that for HS n and q has faster relaxation
then m, that demonstrates the long precession. Con-
trary, for LS state m and q has faster relaxation, while
attenuation of n is slower. For t = 5 n is still quite large,
n = 0.2 instead of expected zero value. It has been
shown before that for some dynamical regime of load-
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ing the stationary state may be a mixture of the HS-
and LS-states [69], that is why we have specially
checked the regime P/PC0 > 1 up to 80 ps and found

that suddenly excited HS-state for T = 300 K gradually
relaxes to the stationary LS-state (Fig. 8).

6. DISCUSSION OF RESULTS

We summarize the values of the relaxation times
and oscillation frequencies from the Figs. 5, 7 in
Tables 1, 2. We note from Table 1 that all relaxation
times decreases with larger spin-orbital parameter Jx
and this is absolutely evident. We obtain also opposite
ratio for magnetic/nonmagnetic relaxation times at
small and high pressures. Indeed, when P/PC0 = 0.1

and the HS state is the equilibrium one, the magnetic
relaxation time τm is larger than the HS concentration

relaxation time τn and lattice one τq, for both spin-

orbit coupling values. Contrary, when the ground state
is the non magnetic LS at P/PC0 = 1.5, the magnetic

relaxation is faster than the HS concentration and lat-
tice relaxations. From Table 2 it is evident that the
vibration frequencies are almost independent of the
pressure and spin orbital interaction. As concerns the
magnetization and the HS concentration oscillations
that show a multimodal behavior, they have high fre-
quency components for some pressure values beside
the vibration frequency.

Spectral analysis in Figs. 5 and 7 reveals several
time scales in the complex dynamics of the system. We
found a remarkable difference of the dynamic for weak
and strong spin-orbital interaction. Thus for Jx =

0.05 eV we can see in the m(t) and n(t) curves several
regular and strongly non linear excitations like the
short wave packets with oscillation energy ~ 1 eV. Nar-
row peaks in the spectrum of this short wave packets in
Fig. 7 are splitted with energy interval Δω = 58 meV,
that agrees with the vibron energy ωLS = 55 meV. It

allows us to relate these high frequency excitations
with the Franck–Condon resonances that correlates
with minima and maxima of q(t) oscillations. These
perturbations have the evolution with relaxation time
~τq. For small pressure P/PC = 0.1 we can see long liv-

ing periodic magnetic oscillations with period 140 fs
and energy 35 meV. The same magnetic oscillations
are seen also for Jx = 0.01 eV in the Fourier spectra in
YSICS  Vol. 132  No. 3  2021
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Fig. 5. Quantum dynamics of the photoexcited Franck–Condon states relaxation in magnetic insulator with spin crossover at T =

100 K and pressure P/PC0 = 0.1 (a), P/PC0 = 0.5 (b), P/PC0 = 1 (c), and P/PC0 = 1.5 (d) for Jx = 0.01 eV. In the first column we

show initial stage of relaxation with the time from 0 to 1 in the units τ0 = 10–12 s, in the second column the same up to t = 5. The

right column shows the Fourier transforms of m (red line), HS-concentration n (blue line), and lattice distortion q (black line).
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Fig. 5 with smaller amplitude vs. Fig. 7. Similar low
frequency magnetic oscillations have been found at
the femtosecond pumping of the weak ferromagnet
FeBO3 at normal pressure [70, 71]. In these experi-

ments the initial HS (S = 5/2) state has been excited
JOURNAL OF EXPERIMENTAL AN
into the intermediate state of the Fe3+ with spin S =
3/2, and 4 ps after the excitation periodic oscillations
of magnetization appeared with 2 ps period. In our
calculations periodic magnetic oscillations with
period 0.14 ps appeared after fast (2 ps) relaxation of
D THEORETICAL PHYSICS  Vol. 132  No. 3  2021
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Fig. 6. Exponential fitting y = y0 + ηe–ξt of dynamics m, n, and q for P/PC0 = 0.1 (above) and P/PC0 = 1.5 (down) at Jx = 0.01 eV.
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electronic and elastic systems to the equilibrium for
the HS values. Our model has been developed for the

3d6 Fe2+ oxides with the other HS and LS values then

take place for Fe3+ in FeBO3. Moreover, it has too

many arbitrary parameters to pretend for some quali-
tative agreement with experiment. Nevertheless the
qualitative picture of the magnetic oscillations found
in experiments [70, 71] and found in our calculations
is similar.

We notice that at low pressure P/PC0 = 0.1 and

P/PC0 = 0.5 with the HS ground state, after the sharp

excitation of the electronic and magnetic systems in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH

Table 2. Oscillation frequencies for magnetization, HS conc
orbital interaction Jx. Weak/strong means small/large amplitu
onances centered at 675 meV

Jx, meV P/PC ωm, meV

10 0.1 FCR 1100 with Δω = 55

0.5 55 weak, FCR 675 with Δω = 55

1.0 250+/–100

1.5 FCR 500 with Δω = 45

50 0.1 29, FCR 1100 with Δω = 55

0.5 –

1.0 –

1.5 wide FCR 84 with Δω = 48 FCR 51

with Δω = 45
the LS state without changing the surrounding anions,

the relaxation of the bond length is characterized by

the frequency 55 meV, corresponding to the LS oscil-

lation frequency ωLS. And vice versa, for pressure

P/PC0 = 1.5 when the electronic and magnetic sys-

tems of the LS ground state is sharply excited in the

HS initial state the relaxation is characterized by the

HS frequency ωHS = 45 meV. This fact demonstrates

that the electronic, magnetic and elastic systems in

SC materials are so strongly correlated that the f luc-

tuation in one of them results in similar f luctuations

of the others.
YSICS  Vol. 132  No. 3  2021

entration and bond length for different pressures and spin-
de. FCR 675 is a set narrow equidistant Frank–Condon res-

ωn, meV ωq, meV

55 weak, FCR 1100 with Δω = 27.5 55 strong

55 strong, FCR 675 with Δω = 27.5 55 strong

250+/–100 47

– 45

55 weak, FCR 1100 with Δω = 27.5 55 strong

55, FCR 723 with Δω = 57 55

56, FCR 400 with Δω = 60 56 weak

5 45 weak, FCR 600 with Δω = 45 45
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Fig. 7. Quantum dynamics of the photoexcited Franck–Condon states relaxation in magnetic insulator with spin crossover at T =

100 K and pressure P/PC0 = 0.1 (a), P/PC0 = 0.5 (b), P/PC0 = 1 (c), and P/PC0 = 1.5 (d) for Jx = 0.05 eV. In the first column we

show initial stage of relaxation with the time from 0 to 1 in the units τ0 = 10–12 s, in the second column the same up to t = 5. The

right column shows the Fourier transforms of m (red line), HS-concentration n (blue line), and lattice distortion q (black line).
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7. CONCLUSIONS

In magnetic materials with spin crossover the

switching between HS and LS states is strongly related

to the lattice degrees of freedom, that together with the
JOURNAL OF EXPERIMENTAL AN
interatomic exchange interaction provide the effects of

cooperativity. Up to now the most part of experimen-

tal research of the ultrafast spin crossover dynamics

have been carried out with non magnetic materials. In

this paper we have found magnetization oscillations
D THEORETICAL PHYSICS  Vol. 132  No. 3  2021
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Fig. 8. Slow relaxation of the suddenly excited HS-state at P/PC0 = 1.5, Jx = 0.05 eV and T = 300 K to the stationary LS-state
shown by dotted lines for n and q. For magnetization the stationary state is m = 0.
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Fig. 9. Exponential fitting y = y0 + ηe–ξt of dynamics m, n, and q for P/PC0 = 0.1 (above) and P/PC0 = 1.5 (down) at Jx = 0.05 eV.
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and complex multiscale dynamics of magnetic, HS
concentration and Me–O bond length relaxation in
strongly correlated electronic system with long range
magnetic order. We hope that our theory may stimu-
late more experimental research of the ultrafast mag-
netic dynamics.
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