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Abstract—The studies of the topological properties of systems have recently been extended due to a new con-
cept of higher-order topological insulators and superconductors. Many models were proposed for two-
dimensional systems on a square lattice, where corner excitations can appear; however, the problem of exis-
tence of such excitations in superconducting systems with a triangular crystal lattice is still poorly understood.
Using a topological insulator in the form of a triangle with a chiral superconducting order parameter as an
example, we shows that corner excitations can exist in C3-symmetric systems. In spite of a nontopological
character, these excitations have energies inside the gap of the first-order edge excitation spectrum over a wide
parameter range and are well localized at the corners of the system. Gapless corner excitations are shown to
exist in the system at certain parameters. The application of a magnetic field in the system plane removes the
triple degeneracy of the corner excitation energy and makes it possible to control the position of the mini-
mum-energy corner excitation using a magnetic field. At the same time the fine adjustment to achieve the
gapless excitations at the chosen corner can be made with changing of the magnetic field value.
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INTRODUCTION
The studies of topologically nontrivial systems have

recently received a new direction related to the con-
cept of higher-order topological insulators (HOTIs)
[1]. In such systems, both the spectrum of bulk states
and the spectrum of first-order edge states are gapped,
and edge states appear at higher-order boundaries,
namely, corners in two-dimensional systems and cor-
ners and hinges in three-dimensional systems, appear.
It should be noted that, before [1], the authors of [2, 3]
demonstrated the possibility of appearance of local-
ized states at domain walls between regions with differ-
ent topological indices located at an open system
boundary.

Higher-order topological systems are of particular
interest due to the possibility of appearance of Majo-
rana corner states in two-dimensional higher-order
topological superconductors (HOTSCs) [4, 5], since
they solve one of the problems of creating Majorana
states in practice. First-order Majorana states require
a purely one-dimensional system, which can hardly be
achieved in practice, and the broadening of a chain
gives rise to the appearance of a gapless edge excitation
band. Although zero-energy excitations are still sepa-
rated from bulk excitations in this case, they are not
separated from other edge excitations. In addition,
when a one-dimensional system broadens, the charac-

ter of excitations changes from a purely Majorana
character to a chiral one, which is accompanied by a
change in the length-to-width ratio of the system [6,
7]. The predicted Majorana corner states solve these
problems. First, their energy lies in the gap of the spec-
tra of both bulk and edge excitations. Second, their
localization exactly at system corners hinders a change
in the character, and they are still Majorana states irre-
spective of the length-to-width ratio of the system.

Additional interest in HOTSC is caused by the pos-
sibility of changing the position of corner excitations
by varying the system parameters [5, 8, 9]. The corner
excitations in two-dimensional systems are thought to
be good candidates for braiding, which is one of the
key requirements for creating a topological qubit [10].
Another possible practical application of such systems
is the possibility of creating nanodevices with con-
trolled transport characteristics on their basis. For
such practical applications to be implemented, it is
important to control corner excitations using external
fields, which was demonstrated in [5, 8].

The widely used approach used to create HOTSC
consists in considering a topological insulator model
with allowance for superconducting coupling chosen
so that the spectrum of first-order edge excitations
acquires a gap and the Dirac mass for these excitations
has opposite signs at contacting boundaries [4]. In this
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Fig. 1. Chiral superconducting pairing of the d + id type on
the triangular lattice. (on the left) Direction of supercon-
ducting pairing Δj (Eq. (2)). (on the right) Signs of ReΔk
and ImΔk [29]. (points) Nodal points Δk (Eq. (3)).
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case, the corners in a system serve as domain walls at
which second-order edge excitations would appear,
i.e., as gapless corner excitations. This approach works
well in systems on a square crystal lattice, for which
numerous HOTI and HOTSC models were proposed
[11–15]. However, this approach cannot be applied to
C3-symmetric systems, since an even number of topo-
logically protected corner states always appear in terms
of the method described above [16].

Another method for forming corner states was sug-
gested using the Kagome lattice as an example [17–
19]. At certain parameters, the sites located at the cor-
ners of a system with open boundary conditions in the
form of a triangle become isolated from the remaining
system to form corner states (similarly to the edge
states in the Su–Schrieffer–Heeger model or the
Kitaev model [20]). These states are gapless and
appear in the entire parameter region, which is not
separated from a specific parametric point by closing
the gap in an edge state spectrum. The authors of [18,
19] suppose that such states are topologically pro-
tected by generalized chiral symmetry. However, the
key feature of the systems under study was the absence
of electron–hole symmetry; therefore, such an
approach cannot be applied to create HOTSC. More-
over, the conclusions about the topological protection
of corner states in the Kagome lattice were disputed
later [21, 22]. In addition, the authors of [21] con-
cluded that topologically protected corner states can-
not exist in a C3-symmetric system.

Although the topologically protected corner states
in systems in the form of a triangle, which have a tri-
angular crystal lattice, are prohibited, these systems
are still of interest. First, there exist other manifesta-
tions of the nontrivial topology apart from the appear-
ance of gapless corner states [16]. In particular, a
charge anomaly can appear in a C3-symmetric system
[23]. Second, edge states, including gapless ones, can
appear in the systems that do not provide their topo-
logical protection. For example, edge states were
detected in the trivial phase of a one-dimensional
JOURNAL OF EXPERIMENTAL AN
chain with spin–orbit coupling and s-type supercon-
ductivity [24, 25] and an exciton insulator with a spin–
orbit coupling [26]. Zero-energy edge excitations were
found in the trivial phase of a two-dimensional topo-
logical insulator with chiral superconductivity and
120-degree magnetic ordering [27, 28].

Since systems with a triangular lattice do not have
topologically protected corner states, it is important to
study the possibility of existence of nontopological
corner excitations, including gapless corner exci-
tations, in such a system. The purpose of this work is
to study the conditions of appearance of corner exci-
tations in a two-dimensional topological insulator in
the form of a triangle with chiral superconductivity on
a triangular lattice and their modification in an
applied magnetic field.

MODEL FOR TOPOLOGICAL INSULATOR 
WITH CHIRAL SUPERCONDUCTIVITY

ON THE TRIANGULAR LATTICE

Similarly to [4], we consider a two-level model in
the tight-binding approximation and take into account
the hybridization induced by the Rashba spin–orbit
coupling and the superconducting singlet pairing at
neighboring sites,

(1)

Here, the sum over f means summation over lattice
sites, fm corresponds to summation over the nearest
neighbors, dfm is the unit vector along the direction
from site m to site f, μ is the chemical potential of the
system, 2Δε is the difference between the site energies
in two subbands, t is the parameter of hopping between
the nearest neighbors, λ is the spin–orbit coupling
parameter, σj are the Pauli matrices in the spin space,

and  are the operators of electron creation at site f
in different subbands designated by index ν = ±1.

We consider the case of chiral superconducting sin-
glet pairing between electrons at the nearest sites cor-
responding to the symmetry of a triangular lattice
(Fig. 1),

(2)
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The bulk excitation spectrum of the system has the
form

(3)

Here,  is the bulk excitation spectrum in a topo-
logical insulator,

(4)

Δk is the superconducting pairing, which has the two-
dimensional representation

(5)

Since Δk has two-dimensional representation, it
has nodal points, as spin–orbit coupling, rather than
nodal lines, as in [4].

In the absence of superconducting pairing, Hamil-
tonian (1) describes a two-dimensional chiral topo-
logical insulator characterized by the Chern spin num-
ber [30]

(6)

In the absence of hybridization between subbands,
the investigated system is a topological superconduc-
tor [31, 32] with opposite Chern numbers in the upper
and lower subbands,

(7)
It should be noted that, since the Chern numbers

have opposite signs, the total Chern number of the sys-
tem at the intersection of nontrivial regions for the
upper and lower subbands is C = 0. Therefore, the sys-
tem is sensitive to hybridization between subbands.

When chiral superconducting pairing and spin–
orbit coupling are taken into account simultaneously,
the diagram of topological phases remains the same as
in the absence of spin–orbit coupling. The trivial
regions with C±1 = 0 remain trivial, and the regions
where only one of the Chern numbers is C±1 ≠ 0 and
the other is  = 0 remain topologically nontrivial.
Both regions are not interesting for searching corner
excitations. The region in which both Chern numbers
C±1 are nonzero forms a topological phase with Chern
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number C = 0, which now has no topologically pro-
tected edge excitations. However, both nontopological
edge excitations, including gapless ones, and corner
excitations can exist within this region. Therefore, we
will study this region below.

CORNER EXCITATIONS
IN A TRIANGULAR SYSTEM

The results of numerical calculation of the single-
electron excitations of a topological triangular insula-
tor with chiral superconductivity demonstrate the
presence of three situations in the region under study
depending on the parameters (Fig. 2, on the left).
First-order gapless edge excitations appear in the sys-
tem in a significant part of the region despite the fact
that it is topologically trivial. The second part of the
region corresponds to nontopological corner exci-
tations with energy inside the gap in the edge exci-
tation spectrum. The energy of such excitations is tri-
ply degenerate because of the equivalence of the cor-
ners in the system. The third case corresponds to the
presence of a gap in the system in the spectrum of
first-order edge excitations, and corner excitations
with an energy inside the gap are absent in the system.

A mutual correspondence between the energy and
character of edge excitations exists in one-dimensional
systems. If the energy of a state is inside the gap of a
bulk spectrum, the state is an edge one; if the energy of
a state inside the spectrum of allowed bulk states, the
state is a bulk one. This correspondence in two-
dimensional systems is valid only in one direction. If
the energy of a state is inside the absolute gap of a bulk
state spectrum, this state is still an edge one. However,
the converse is generally speaking wrong. The same is
true of the corner excitations in two-dimensional sys-
tems. Therefore, to determine the character of states in
two-dimensional cases, it is useful to calculate the
inverse participation ratio (IPR) [33, 34], which char-
acterizes the localization of a state. This parameter
approved itself for detecting edge states in topological
insulators [35],

(8)

where Am(f) is the amplitude of excitation with number
m at site f and q > 1. Parameter Iq is relatively high for
localized states (Iq = 1 for a state localized at one site)
and has an order of 1/Vq – 1 for a delocalized state in a
system with V sites.

Figure 3 shows I4 as a function of chemical poten-
tial μ for various eigenexcitations in the system. The
excitations characterized by the minimum energy at
μ = 0 are seen to remain well localized at triangle cor-
ners even when the energy is outside the gap of the
edge excitation spectrum in the system (Fig. 3d).
Small I4 peaks appear due to the tendency of first-

( )
=




( ( ))
( ) ,

( )

q
mf

q q

mf

A f
I m

A f
YSICS  Vol. 133  No. 1  2021



74

JOURNAL OF EXPERIMENTAL AN

FEDOSEEV

Fig. 2. Parameter diagram of a topological triangular insu-
lator with chiral superconductivity on a triangular lattice.
(on the left) In the absence of magnetic field; (on the right)
in the presence of in-plane magnetic field at h = 0.3 and
φh = π/2. Red regions correspond to first-order gapless
edge excitations, and violet regions correspond to gapless
bulk excitations. Blue regions correspond to the parameter
regions in which corner excitations with energies inside the
edge excitation spectrum gap appear in the system. In yel-
low parameter regions, an edge excitation spectrum has a
gap and corner excitations with energies inside the gap are
absent. The white line corresponds to the parameters at
which gapless corner excitations appear, and the blue line
corresponds to the parameters at which the edge excitation
spectrum gap closes in a magnetic field. The spin–orbit
coupling parameter is λ = 0.5t, and the superconducting
pairing parameter is Δ1/t = 0.5.
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order edge excitations with energies deep in the gap of
the bulk excitation spectrum toward localization at the
corners of limited systems [36]. Such excitations can
easily be distinguished from corner excitations by
changing the system size. Since edge excitations are
distributed over the entire system boundary even in the
presence of the tendency toward localization at the
corners, their IPR values decrease with increasing sys-
tem size. In contrast, the IPR values of the corner
states remain unchanged.

Zero-energy corner excitations can appear in the
system at certain values of the parameters forming a
line in the parameter diagram (Fig. 2, on the left).
These zero-mode lines do not represent the size
effect, in contrast to the situations considered in [25,
37, 38]. The presence of a disorder in the system does
not affect the possibility of existence of zero-energy
corner excitations in it. However, the values of the
parameters at which such excitations appear turned
out to be very sensitive to the disorder at the corners
of the system.

EFFECT OF MAGNETIC FIELD
ON THE REALIZATION CONDITIONS

OF CORNER EXCITATIONS

We now consider the influence of a homogeneous
magnetic field directed in the system plane on the cor-
D THEORETICAL PHYSICS  Vol. 133  No. 1  2021
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Fig. 4. (top) Corner excitation energy vs. the direction of
magnetic field h = 0.3t directed in the system plane. (bot-
tom) Spatial distribution of two minimum-energy exci-
tations at φh = π/2.
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ner states in a triangular topological insulator with chi-
ral superconductivity on a triangular lattice,

(9)

An applied magnetic field changes the parameter
diagram described in the previous section (Fig. 2, on
the right). For example, the bulk excitation spectrum
closes in the parameter region rather than at lines. In
addition, a parameter line, which corresponds to the
closing of the gap in the first-order edge excitation
spectrum, appears inside the parameter region corre-
sponding to corner excitations. When a magnetic field
is applied, the line of gapless corner modes splits into
two lines. However, the regions of corner excitations
remain almost the same.

Since the spin and space degrees of freedom are
interrelated in the investigated system due to spin–
orbit coupling, the application of a magnetic field in
the system plane breaks the spatial symmetry and
makes the corners nonequivalent. In this case, the
excitation energy depends on both the magnitude and
direction of magnetic field (Fig. 4). For example, the
excitation located at the angle the direction to which
from the center of the triangle coincides with magnetic
field direction has an extremum energy. Thus, using a
magnetic field, we can finely adjust the system to form
a zero-energy corner excitation and determine the
angle at which this excitation appears.

Since the excitations induced by a magnetic field
have a nontopological character and cannot be repre-
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sented in the form of two split Majorana operators,
this system cannot be used for braiding. However, it
can be useful for a device, the transport through which
can be controlled by a magnetic field.

CONCLUSIONS
Using a two-dimensional triangular topological

insulator with chiral superconductivity on the triangu-
lar lattice, we demonstrated the possibility of existence
of corner excitations in C3-symmetric systems. The
corner excitations in such a system were shown to have
energies both inside and outside the gap of a first-
order edge excitation spectrum. The corner excitations
are gapless at certain values of the parameters that
form a line in the parameter diagram. The application
of a magnetic field to the system removes the degener-
acy of corner excitations, and the corner excitation
energy depends on both the magnitude of a magnetic
field and its direction in the system plane. This finding
makes it possible to perform fine adjustment to
achieve zero-energy corner excitation and to choose
the angle at which this excitation exists.
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