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Abstract—A scenario of the formation of an experimentally observed inflection point on the temperature
dependence of the London penetration depth λ in cuprate high-temperature superconductors (HTSCs) with
optimal hole doping is discussed within the spin-polaron concept. It is shown that the reason for the appear-
ance of an inflection point on the 1/λ2(T) dependence is due to the features of the energy spectrum of spin-
polaron quasiparticles in the superconducting phase, as well as to the specific temperature dependence of
their spectral density.
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1. INTRODUCTION
Experiments on the measurement of the tempera-

ture dependence of the magnetic field penetration
depth (or the London depth) λ provide important
information about the symmetry of the superconduct-
ing order parameter. The possibility to extract infor-
mation on the structure of the superconducting gap on
the basis of such measurements is due to the fact that
the nature of the temperature evolution of the London
depth is mainly determined by the density of quasipar-
ticle states available for thermal excitation.

In particular, the temperature dependence of 1/λ2

obtained in [1] for single-crystal YBa2Cu3O7 – δ exhib-
its a pronounced linear behavior at low temperatures
and is characterized by a finite slope at T = 0. This
behavior of the function 1/λ2(T) is explained by the
presence of zeros in the spectrum of Bogolyubov exci-
tations at the k-space points located at the intersection
of the Fermi surface and the zero line of the d-wave
order parameter and significantly differs from the
well-known dependence 1/λ2(T), which is observed in
conventional superconductors with s-wave symmetry
of the order parameter and is perfectly described
within the BCS theory [2, 3].

The linear behavior of the function 1/λ2(T) in the
initial region is observed in many known cuprate high-
temperature superconductors (HTSCs) [4–18] and is
traditionally considered as evidence of the d-wave
symmetry of the order parameter in these compounds.

Another interesting feature observed in the tem-
perature dependence of 1/λ2 in some cuprate HTSCs
is associated with the so-called inflection point. This
point is determined by the value of temperature Ti in
the vicinity of which the curve 1/λ2(T) changes its cur-
vature. The fact that the inflection point is not
observed in all cuprates is apparently due to the choice
of the measurement technique and the quality of sam-
ples [10]. For example, the inflection point manifests
itself only in experiments based on muon spin rotation
(μSR) spectroscopy. In a fairly large number of works
[8, 16, 17, 19–25] that used the μSR spectroscopy
method, the inflection point was observed; however,
in some experiments [26–29] carried out by the same
technique, the inflection point did not show up. When
studying the London depth in HTSC cuprates by other
experimental methods, this feature was not detected
[4, 8, 11, 14].

The description and comparison of experimental
techniques used to measure the magnetic field pene-
tration depth can be found, for example, in [30, 31]
or in the above-cited publications. We note an
important advantage of μSR experiments, which is
that this technique allows one to directly measure the
absolute values of λ–2(T) [8]. When using other, as a
rule, indirect, experimental methods for measuring
the London depth, the data obtained must be nor-
malized by 1/λ2 at T = 0.
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The inf lection point is most clearly noticeable in
samples the doping level of which are close to opti-
mal. For example, in Bi2.15Sr1.85CaCu2O8+δ and
Bi2.1Sr1.9Ca0.85Y0.15Cu2O8+δ systems investigated in
[25], the inflection point on the function 1/λ2 was
especially pronounced in samples doped slightly
higher than the optimal level. In approximately the
same doping range, the inflection point is also
observed in some other cuprate compounds.

To study the stability of the inflection point to
external effects, the authors of [24] performed several
cooling cycles on samples, but the experimental results
remained practically unchanged. At temperatures
below Ti, the dependence λ–2(T) became flatter with
an increase in the magnetic field [16, 29]. This sug-
gested that the change in the curvature of the λ–2(T)
dependence at the inflection point became less
noticeable. A similar behavior of the function λ–2(T)
was observed in [17], where measurements were car-
ried under varying pressure. These facts suggest that
the origin of an inflection point on the temperature
dependence of the inverse square of the London depth
is not attributed to external factors, but is internal in
origin.

Several scenarios for the origin of an inflection
point have been proposed. Thus, in [32], an increase
in the growth rate of the superconducting current den-
sity in the YBa2Cu3O7 – δ compound upon cooling in
the temperature range below Ti was attributed to the
thermal depinning of Abrikosov vortices. A similar
scenario was discussed in [24] when studying the Lon-
don depth in the La2 – xSrxCuO4 compound. However,
analytical calculations performed in these works
showed that an inflection point exists only for the
order parameter with s-wave symmetry, while no
inflection point was observed for the d-wave order
parameter, which is characteristic of cuprates. Of
interest are scenarios for the origin of an inflection
point that suggest the coexistence of two supercon-
ducting gaps [21, 22, 33]. In [21, 22], the case of gaps
with s and  wave symmetry was considered,
while, in [33], the authors considered the case of dxy-
and -type gaps.

In this paper, we propose an alternative mechanism
for the origin of an inflection point on the temperature
dependence of the inverse square of the London depth
in cuprate superconductors. This mechanism does not
require a change in the symmetry of the supercon-
ducting order parameter and naturally follows from
the analysis of the subsystem of charge carriers in the
CuO2 plane within the spin polaron concept [34, 35].

The starting point of this concept is a strong cou-
pling between the spin and charge degrees of freedom,
which is implemented in cuprates owing to the strong
electron correlations and the significant amount of
hybridization between the d states of copper ions and p
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states on oxygen ions. Within the spin-polaron
approach, the spin–charge coupling is taken into
account exactly, which gives rise to a Fermi quasipar-
ticle, whose motion is strictly correlated with the
dynamics of localized spins on the nearest copper ions.
Such a quasiparticle is usually called a spin polaron.

The spin-polaron concept was developed on the
basis of the Kondo lattice model [36–38], as well as
within the spin-fermion model (SFM). In the second
case, the spin-polaron approach turned out to be espe-
cially successful in describing the properties of cupra-
tes in both the normal [39–43] and the superconduct-
ing [44, 45] d phase.

The authors of [46] studied the temperature depen-
dence of the London depth in hole-doped cuprate
HTSCs within the spin-polaron concept. On the
curves λ–2(T) calculated in this work, they obtained an
inflection point, just as in the experiment, at doping
levels close to the optimal level. However, the reason
for the appearance of this feature on the correspond-
ing curves was not revealed.

In this paper, we present the results of additional
analysis to clarify the nature of the inflection point. In
particular, we show that the reason for the appearance
of an inflection point on the λ–2(T) dependence is
associated with the specific features of the Fermi spec-
trum of spin-polaron quasiparticles. The latter fact
can be considered as an additional Justification of cor-
rectness of using the spin-polaron approach to study
the properties of hole-doped copper oxide HTSCs.

The further presentation is organized as follows. In
Section 2, we describe the SFM and point out the
progress achieved within this model in describing the
properties of cuprates in the superconducting phase.
In Section 3, we formulate the SFM Hamiltonian tak-
ing into account a weak magnetic field. In this section,
we also describe a method for obtaining an expression
for calculating the temperature dependence of the
London depth in a system of spin-polaron quasiparti-
cles. The reason for the appearance of an inflection
point on the theoretical dependence of the London
depth on temperature is revealed in Section 4. In the
final Section 5, we discuss the proposed scenario for
the formation of an inflection point and formulate
conclusions.

2. SPIN-FERMION MODEL
The most important features of the crystal struc-

ture of the CuO2 plane and all the main types of inter-
actions in the electron subsystem of cuprate hole-
doped HTSCs are taken into account within the
Emery model or the three-band p–d model [47–49].
The main parameters of this model are the hopping
integral of holes between oxygen ions, tpp; the Cou-
lomb interaction of two holes on a copper ion, Ud; the
hybridization parameter of p and d orbitals on oxygen
and copper ions, tpd; and the charge-transfer gap Δpd =
D THEORETICAL PHYSICS  Vol. 133  No. 3  2021
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εp – εd, where εp and εd are the binding energies of
holes on oxygen and copper ions, respectively.

It is important to note that the quantitative rela-
tionships between these parameters, characteristic of
cuprates, correspond to the regime of strong electron
correlations:

The large values of the parameters Ud and Δpd, on
the one hand, significantly complicate the theoretical
description of the low-temperature properties of
cuprates, while, on the other hand, they make it pos-
sible to integrate the high-energy degrees of freedom
in the Emery model and obtain a formally simpler
SFM [50–54]. It is important that the SFM, in con-
trast to other effective low-energy models of cuprates,
such as the Hubbard model or the t–J model, takes
into account the spatial separation of hole states on the
copper ion and two oxygen ions in a single unit cell of
the CuO2 plane. The most important interaction in
the SFM is the exchange interaction between the spin
localized on the copper ion and the hole on the nearest
oxygen ion. The energy of this interaction is deter-
mined by the parameter J. The same parameter
describes the intensity of spin-correlated hoppings
similar to three-center interactions in the t–J* model,
the importance of which for the superconducting d
phase was mentioned in [55]. In addition, the SFM
takes into account the superexchange interaction in
the localized spin subsystem (with the exchange inte-
gral I), as well as the Coulomb interaction between
holes on oxygen ions. In this work, just as the authors
of the earlier papers [46, 56], we take into account the
Coulomb repulsion of two holes on the same oxygen
ion with interaction energy Up, as well as the interac-
tion of holes on different nearest (V1) and next nearest
(V2) ions. The SFM Hamiltonian is given in the next
section and takes into account additional interactions
due to the inclusion of a magnetic field.

Previously, the SFM was used to construct a theory
of the superconducting d phase of cuprates within the
spin-polaron concept [44, 45, 57, 58]. In particular, it
was shown that the Cooper instability develops in an
ensemble of spin polarons, while the exchange inter-
action (I) between spins localized on copper ions is
responsible for the effective attraction between spin-
polaron quasiparticles and acts as a mechanism of
high-temperature superconductivity.

The aim of this work is to analyze the expression for
the magnetic field penetration depth obtained within
linear response theory on the basis of the SFM Ham-
iltonian and the spin-polaron concept. The procedure
for obtaining an expression for λ–2(T) is described in
detail in [46]. Therefore, in the next section, following
this work, we only briefly describe the main steps of
obtaining the expression for the London depth.

− Δ Δ >�, .d pd pd pd ppU t t
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3. CALCULATION OF THE RESPONSE 
FUNCTION IN THE ENSEMBLE

OF SPIN POLARONS
The response of spin-polaron quasiparticles to a

weak magnetic field can be calculated within the Lon-
dons theory, which takes into account the relationship
between the superconducting current density j and the
vector potential of the magnetic field A in the local
approximation:

where c is the velocity of light. The applicability con-
dition for the Londons theory is the relation λ ≫ ξL,
where ξL is the coherence length of Cooper pairs. For
cuprate HTSCs, this condition is satisfied, since λ ≈
2540 Å and ξL ≈ 250 Å in these superconductors (see,
for example, the review [59]). The local character of
the Londons equation allows us to consider the vector
potential in the long-wavelength limit (A = Aq = 0) and
assume that the quantity Aq = 0 is small.

To calculate the superconducting current j, it is
necessary to generalize the SFM Hamiltonian by
including the vector potential A, using, for example,
the Peierls substitution [60, 61]. The substitution con-
sists in the renormalization of the hopping integrals of
holes (both between oxygen and copper ions and only
between oxygen ions) by the phase factor

where Rj is the radius vector of the oxygen ion with
index j, Rjj ' = Rj – Rj ', and e is the hole charge.

Within the framework of the traditional approach
[2, 3, 62, 63], it is customary to expand the exponen-
tial factors in a series in a small quantity, the vector
potential, up to the second order in Aq = 0, which, in
particular, makes it possible to separately analyze the
paramagnetic and diamagnetic parts of the total
superconducting current.

However, when using the Zwanzig–Mori projec-
tion technique [64, 65] (within the framework of
which the spin-polaron concept is implemented in the
above-cited papers), this approach leads to difficulties
associated with the appearance of new operators that
are not included in the original basis. This circum-
stance does not allow one to obtain an expression for
the superconducting current j (q = 0), closed with
respect to the initial set of operators, without expand-
ing the basis. The solution to this problem proposed in
[46] was that, after the Peierls substitution, one should
not try to immediately distinguish the linear and qua-
dratic corrections in Aq =0, but keep the vector poten-
tial in the exponent. It turns out that this approach
only slightly changes the definitions of the basis oper-
ators, but their total number does not increase. In
addition, due to the holding the vector Aq =0 in the
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exponent, followed by the transition to the quasimo-
mentum representation, the SFM Hamiltonian takes
an especially convenient form [44]:

(1)

When writing this expression, we used the follow-
ing notation:

(2)

where μ is the chemical potential, τ is the rate of hole
hopping due to hybridization processes in the original
Emery model in the second order of perturbation the-
ory, N is the number of unit cells in the CuO2 plane,
σ = (σx, σy, σz) is a vector composed of the Pauli
matrices σi (i = x, y, z), and Sf is the vector spin oper-
ator on a copper ion. The functions sk, x(y) arise in the
transition to the k-representation and, along with the
symmetry of the CuO2-plane, also take into account
the relations between the phases of the p and d orbitals.

The first sum in (1) corresponds to the kinetic
energy of holes arising from doping. The operators 
(akα) and  (bkα) create (annihilate) a hole in a state
with quasimomentum k and spin projection α = ±1/2
in the oxygen ion subsystem with px and py orbitals,
respectively. In the second sum, the product of opera-
tors ukα and Lkα describes the hole motion along oxy-
gen ions, correlated with the spin state on the nearest
copper ion. The third sum is the superexchange inter-
action energy operator.

The last term in (1) takes into account the Cou-
lomb interaction energy. In the approximation used in
Section 2, this energy has the form

(3)
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where the functions

(4)

appeared similar to the functions sk, x(y) upon passing
to the quasimomentum representation and take into
account the symmetry of the CuO2 plane. For simplic-
ity, the numbers in expression (3) denote quasimo-
menta the conservation law of which is provided by the
Kronecker symbols δ1 + 2 – 3 – 4.

The above-mentioned convenience of writing the
SFM Hamiltonian in the form (1) is due to the fact
that the dependence on the field of the vector potential
Aq = 0, the direction of which is chosen along the x axis,
manifests itself only in the phase shift in the argument
of the trigonometric function sk, x. The value of the
shift αx is given by the expression

(5)

where gx is the unit cell parameter along the x axis.
The Zeeman energy due to the interaction of the

field with the hole spins is not taken into account in
Hamiltonian (1), since this energy vanishes in the
long-wavelength limit (q → 0).

We used the following numerical values (in eV) for
the SFM parameters:

We will not dwell on the discussion of the values of
these parameters, since this issue has been considered
in detail in the relevant cited works. We only note that,
according to the results of [67], the parameter V1,
which corresponds to the intensity of the Coulomb
interaction of holes on the nearest oxygen ions, does
not affect the value of Tc, since it drops out from the
system of equations for the d-wave order parameter for
symmetry reasons.

The expression for the superconducting current
density is obtained, as usual [61], by varying the Ham-
iltonian over the vector potential field, followed by
averaging over the thermodynamic ensemble. More-
over, the density matrix with which the averaging is
performed must take into account the field Aq = 0. As a
result, the expression for the superconducting current
density is obtained in the form

(6)

where the dependence on the field of the vector poten-
tial  is defined only as an additive renormalization
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Fig. 1. SFM spectrum of Fermi excitations in the normal
phase. The lower band ε1k corresponds to spin-polaron
states (blue curves) formed due to the strong spin-fermion
coupling J. The upper bands ε2k and ε3k are mainly formed
by purely hole states. In the low-density regime, when the
chemical potential (green line) lies in the lower spin-
polaron band, these bands remain empty. A specific fea-
ture of the spin-polaron spectrum is that it has a minimum
in the vicinity of the points (±π/2, ±π/2) [43, 72]. 
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of the quasimomentum kx by the value αx. This renor-
malization in formula (6) is taken into account both
explicitly, in the argument of the cosine and in the
function sk, x, and implicitly, in the thermodynamic
averages.

Note that expression (6) gives the correct limiting
behavior of the superconducting current density
during the transition to the normal phase. As shown in
[46], in the limit as T → Tc, the right-hand side of (6)
identically vanishes, as it should be.

The expression for the magnetic field penetration
depth follows from the Londons equation

and has the form

(7)

where gy(z) is the lattice parameter along the y(z) axis
and the current density jx (q = 0) is determined by
expression (6).

Since the values of λ–2 must be calculated by for-
mula (7) in the limit as  → 0, the second fraction
on the right-hand side of (7) is, up to a constant, sim-
ply the derivative of the current density with respect to
the vector potential at the point  = 0. This means
that, when determining the London depth, only cor-
rections linear in  to the current density jx (q = 0)
are actually taken into account, as it should be in linear
response theory.

The explicit dependence of the current density on
the vector potential, due to the projection method
used, turns out to be rather complicated. Despite the
fact that the analytical calculation of the derivative of
the current density with respect to αx is, in principle,
possible, a simpler solution is numerical differentia-
tion. In this case, of course, the values of αx should be
taken from the interval in which the function jx(αx) is
linear [46].

4. THE ORIGIN OF AN INFLECTION POINT 
ON THE TEMPERATURE DEPENDENCE

OF THE LONDON DEPTH

A significant factor for calculating the current den-
sity is the fact that only three operators appear in for-
mula (6) in the definition of thermodynamic averages:
akα, bkα, and Lkα; it is these operators that are used in
the definition of the SFM Hamiltonian (1). If the cor-
responding exponents in Hamiltonian (1) were
expanded to the second order in the potential , as

= −
πλ24
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is customary, then an additional composite operator of
the form

would appear in the expression for the current, which,
obviously, does not reduce to a linear combination of
the original three operators akα, bkα, and Lkα.

Thus, within the proposed scheme for calculating
the superconducting current density, six operators can
be considered as basis operators. The first three are the
operators ak ↑, bk ↑, and Lk ↑. The basis of these opera-
tors is sufficient for a satisfactory description of, for
example, the spectral properties of cuprates in the nor-
mal phase (see Fig. 1). It should be noted here that the
operator Lkα is extremely important. The inclusion of
precisely Lkα in the basis allows us to correctly take
into account the strong coupling between a spin local-
ized on a copper ion and a hole moving along the four
nearest oxygen ions [42]. To describe the anomalous
properties of an ensemble of spin polarons, it is neces-
sary to add three more operators, , , and ,
to the operator basis [44].

In [46], we used this basis of six operators, ak ↑, bk↑,

Lk ↑, , , and , to calculate the thermody-
namic averages appearing in expression (6) for the
superconducting current. The calculation was carried
out within the Zwanzig–Mori projection method [64,
65], on the basis of which the spin-polaron concept
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Fig. 2. Inflection point on the experimental and theoreti-
cal temperature dependence of the inverse square of the
London depth at x = 0.17. The solid curve is calculated in
the spin-polaron approach, and the symbols represent
experimental data for La1.83Sr0.17CuO4 [21, 24]. The
dash-dotted line for T < Ti is the extrapolation of the
function λ–2(T) on the right of the inflection point Ti. The
lower dashed curve demonstrates the temperature depen-
dence of the term (8) selected from the right-hand side of
expression (7) for λ–2. The upper dashed curve reflects the
sum of the remaining terms on the right-hand side of (7).
The sum of the dotted and dashed curves is given by the
solid curve. The model parameters (in eV) are as follows:
J = 3.4, τ = 0.1, I = 0.136, tpp = 0.11, Up = 4.0, and
V2 = 0.12. 
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was implemented in the previous works [39, 42]. By
calculating the thermodynamic averages in (6) and
substituting the result for the current into (7), we
found an expression for the inverse square of the pen-
etration depth. Due to the awkwardness of this expres-
sion, we do not reproduce it in full here; but below we
give a part of this expression that will be necessary for
our purposes.

An example of the function λ–2(T) obtained in [46]
for a doping value of x = 0.17 on the basis of self-con-
sistent numerical calculations of the equation for jx
(q = 0) (jointly with the equation for the order param-
eter and the chemical potential) is shown by the solid
curve in Fig. 2. An important result of these numerical
calculations is that an inflection point is observed on
the theoretical dependence λ–2(T), which fairly well
reproduces a similar feature in the experimental
dependence shown in the same Fig. 2 by square sym-
bols. However, the physical reason for the appearance
of the inflection point on the theoretical curves was
not revealed in the cited papers.
JOURNAL OF EXPERIMENTAL AN
As follows from expression (7), to answer this ques-
tion, one should take the derivative of a rather compli-
cated expression for the current jx (q = 0) obtained ear-
lier in [46] with respect to the phase αx. As a result, a
large set of terms arises each of which should be ana-
lyzed. Fortunately, there is no need to write out all
these terms here, because, as numerical analysis has
shown, only one of them leads to an inflection point
on the 1/λ2(T) curve. This term has the form

(8)

Here the prime at the Fermi–Dirac distribution
function f(x) = (ex + 1)–1 denotes its derivative with

respect to the energy Ek =  of
Bogolyubov excitations, where |Δk|2 is the gap function
of -wave symmetry [73] and T is temperature.
Three branches of the spectrum εjk (j = 1, 2, 3)
describe the band structure of spin-polaron quasipar-
ticles in the normal phase (see Fig. 1). Here 
denotes the projection of the velocity of spin-polaron
quasiparticles onto the x axis:

(9)

In Fig. 2, the lower dashed curve represents the
temperature dependence of the term (8),which is
extracted from the general expression for λ–2; the full
expression is given in [46]. In the vicinity of 12 K, this
curve exhibits a change in curvature corresponding to
the inflection point. The upper dashed line shows the
temperature dependence of all the other contributions
that remained in the expression for λ–2 after separating
the term (8). One can see that the temperature depen-
dence of these contributions does not show any fea-
tures indicating the presence of an inflection point.
The solid line in Fig. 2 is the sum of the dotted
and dashed lines and describes, as mentioned above,
the temperature dependence of the inverse square of
the London depth at a doping level of x = 0.17.
Thus, we see that the presence of an inf lection point
on the resulting curve λ–2(T) is attributed solely to
the term (8).

The analysis of the structure of expression (8)
allows us to reveal the reason for the anomalous tem-
perature behavior of λ–2. Indeed, since, at low tem-
peratures, the derivative of the Fermi–Dirac function
in (8) is proportional to the delta function, the main
contribution to the sum over the quasimomenta k
comes from the neighborhood of points of the Brill-
ouin zone where Ek vanishes, that is, at the intersec-
tion of the Fermi surface (hole pockets) and the zero
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Fig. 3. The origin of an inflection point on the dependence
1/λ2(T) within the spin-polaron concept. (a) Two neigh-
borhoods of the intersection points of the zero line of the
order parameter and the Fermi surface in the first quadrant
of the Brillouin zone are shown in blue and red (the doping
level is x = 0.17 and T = 20 K); the projections of quasipar-
ticle velocities on the horizontal axis for the red region are
opposite in sign to the corresponding projections of quasi-
particle velocities for the blue region. (b) Contributions to
the temperature dependence of (8) from the red and blue
regions of the Brillouin zone are marked in red and blue,
respectively; competition between these two contributions
ultimately gives rise to an inflection point on the tempera-
ture dependence λ–2(T) shown by the solid line in Fig. 2
and by the dashed line in Fig. 3b. The model parameters
are the same as in Fig. 2. 
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lines of the d-wave order parameter. There are two
such points in each quadrant of the Brillouin zone. In
Fig. 3a, the neighborhoods of these points are high-
lighted in blue and red.

An important circumstance for explaining the
appearance of an inflection point on the 1/λ2(T) curve
is that the group velocities of Fermi quasiparticles in
these two regions have opposite signs. Therefore, the
contributions from the red and blue regions to the sum
in expression (8) turn out to be opposite in sign. Sepa-
rate contributions from the red and blue regions
(which increase in area with increasing temperature)
to the sum (8) as a function of temperature are shown
in Fig. 3b by red and blue lines, respectively. The con-
tribution from the blue region (which is located closer
to the Γ point of the Brillouin zone) is negative, and its
temperature dependence is concave downward. The
contribution from the red region (which is located far-
ther from the Γ point) is, on the contrary, positive, and
its temperature dependence is concave upward. As a
result of competition between the contributions from
these two regions to the sum (8), an inflection point
arises on the resulting dependence 1/λ2(T) shown by
the solid line in Fig. 2.
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5. DISCUSSION AND CONCLUSIONS
The analysis carried out within the spin-polaron

concept has shown that the origin of an inflection
point on the temperature dependence of the inverse
square of the London depth in cuprate HTSCs is
attributed to the specific features of the spectrum of
spin-polaron quasiparticles associated with the pres-
ence of two intersection points of the Fermi surface
with the zero line of the d-wave order parameter in
each quadrant of the Brillouin zone.

Not only the fact that the states of Fermi spin-
polaron quasiparticles at the two above-mentioned
intersection points gives a competing (in sign) contri-
bution to the expression for 1/λ2, but also the fact that
the nature of the temperature dependence of these
contributions is different (see Fig. 3b), are important
for the appearance of an inflection point. The tem-
perature dependence of the contribution of the states
from the neighborhood nearest to the Γ point of the
Brillouin zone (the blue region in Fig. 3a) has a down-
ward concave shape, whereas the temperature depen-
dence of the contributions from the neighborhood dis-
tant from the Γ point (the red region in Fig. 3a) is con-
cave upward. The latter fact is due to the different
temperature dependence of the spectral weight of qua-
siparticles from these two neighborhoods of the inter-
section points of the Fermi surface with the zero line
of the order parameter. Obviously, the specific charac-
ter of this dependence is due to the spin-polaron
nature of Fermi quasiparticles.

In this work, we have carried out an analysis of the
reason for the origin of an inflection point on the tem-
perature dependence of the London depth in cuprate
HTSCs for a doping value of x = 0.17, which is close to
the optimal value. The choice of this value of x has
been primarily associated with the fact that it is the
optimal doping region in which the inflection point is
experimentally determined most clearly. On the other
hand, the theoretical temperature dependence of λ–2

obtained in [46] agrees best with the experimental
curves for the values of x in the interval 0.12 < x < 0.2,
which includes the optimal doping region. At the same
time, with an increase in the doping level, the inflec-
tion point shifts to lower temperatures, while, with a
decrease in x, it shifts to higher T. Outside the interval
0.12 < x < 0.2, the agreement with experiment wors-
ens, in our view, for the following reasons: for the val-
ues of x > 0.2, the low density approximation used in
this work is insufficient, while, for x < 0.12, the
pseudogap effects, which are not taken into account in
this theory, become important.

We should also make the following remark regard-
ing the topology of the Fermi surface. The representa-
tion of the Fermi surface in weakly doped cuprate
HTSCs in the form of four hole pockets centered in
the vicinity of the points (±π/2, ±π/2) of the Brillouin
zone is the result of numerical calculations that are
largely based on model Hamiltonians. Experimen-
YSICS  Vol. 133  No. 3  2021
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tally, one observes only the edge of the hole pocket
close to the Γ point of the Brillouin zone—the so-
called Fermi arcs (the blue region in Fig. 3a). The far
edge of the hole pocket (the red region in Fig. 3a) is
usually (for example, in ARPES experiments [74, 75])
invisible. It is believed that the spectral weight of these
states is significantly suppressed due to significant spin
fluctuation scattering [76, 77]. Obviously, the sup-
pression of the spectral weight of the states corre-
sponding to the red region leads to a decrease in their
contribution to expression (8) for 1/λ2 and, accord-
ingly, to an increase in the relative contribution of the
states from the blue region. The comparison of the
corresponding curves in Fig. 3b shows that this should
lead to an even greater slope of the resulting depen-
dence 1/λ2(T) in the low-temperature region; as a
result, one can expect an even stronger manifestation
of the inflection point.

Finally, note that the distinctive feature of the sce-
nario for the appearance of an inflection point on the
1/λ2(T) dependence, proposed in this paper, is that
there is no need to modify the symmetry of the d-wave
order parameter, for example, by adding the s compo-
nent, as was done in [21, 22]. Within the spin-polaron
approach, the inflection point appears naturally,
and therefore its experimental observation can be
considered as a justification of using the concept of
spin-polaron quasiparticles to describe the spectral
and superconducting properties of cuprate supercon-
ductors.
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