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Abstract—The effect of the high pressure on the electronic properties of NiO is studied within the multielec-
tron approach. The low energy physics is described by the effective Hubbard model based on Ni d-electrons
and O p-electrons in three charge sectors of the Hilbert space: neutral states (configurations d8 + d9L +
d10L2), electron removal states (configurations d7 + d8L + d9L2), and electron addition states (d9 + d10L) with
L denotes a ligand hole. Due to a high spin (HS)-low spin (LS) crossover in the electron removal states at
pressure PS determined by a competition of the intraatomic Hund exchange interaction and increasing with
pressure crystal field 10Dq, the effective Hubbard parameter Ueff and the insulator gap Eg depend on pressure.
We find weak increasing of Eg for P < PS and weak decreasing Eg for P > PS. The Mott-Hubbard transition
pressure is estimated to be in the interval 450–650 GPa.
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1. INTRODUCTION

Strongly correlated electronic systems (SCES)
include many novel materials such as Mott insulators,
high-Tc superconductors, manganites with colossal
magnetoresistance, multiferroics, heavy fermion
materials, etc. Strong local Coulomb interactions
result in the specific properties of SCES. NiO is one of
the most important SCES compounds. Firstly, it was
considered by Mott [1] to demonstrate a deviation
from a single electron band theory and to explain the
origin of the Mott insulators. It is expected that under
high external pressure a broadening of the bandwidth
will result in the insulator-metal transition (IMT) with
the closing of the insulator gap Eg and delocalization of
3d electrons [2] and the collapse of magnetic moments
[3]. In many other 3d metal monoxides the IMT and
magnetic collapse are known above 70 GPa in FeO [3,
4], between 80 and 100 GPa in MnO [5, 6], and above
120 GPa in CoO [7, 8]. The NiO has so far been found
to be stable up to 147 GPa [9], no magnetic collapse
has been found by nuclear forward scattering of syn-
chrotron radiation up to 280 GPa [10]. Pressure-
dependent insulator gap Eg from the change of the
optical absorption spectra and the IMT from transport
measurements at 240 GPa have been found in [11].
According to the authors [11], the measured IMT in
NiO is most probably due to minor charge carriers
from impurities and not reflects intrinsic physics.

Density functional theory (DFT) nowadays is quite
successful in condensed matter physics to treat itiner-
ant electrons in periodic crystal lattices [12]. Never-
theless, for SCES its simplest versions like the LDA
and GGA usually failed [13]. Localized electrons can
be better treated in the cluster approaches with more
adequate accounts for strong Coulomb interactions.
For NiO, a cluster model was proposed in [14, 15]. In
this approach a (NiO6)10– cluster is treated as a separa-
ble unit and its electronic structure is described by
configuration interaction. Although translational
symmetry is ignored, local interactions can be treated
explicitly. The most important interactions included
are the d–d Coulomb interactions and the O 2p–Ni 3d
hybridization. This is done by consideration of the
two-hole configurations contributing to the ground
state (d8, d9L, and d10L2), the one-hole states contrib-
uting to the electron-affinity (BIS) spectrum (d9 and
d10L), and the three-hole states contributing to the
ionization (XPS) spectrum (d7, d8L, d9L2, and d10L3).
Holes are defined relative to filled 3d and ligand (O2p)
states and L denotes a ligand hole. Within the cluster
approach, it was concluded that NiO is not a Mott–
Hubbard insulator [16]. A general classification of two
competing insulator states, the Mott-Hubbard insula-
tor, and the charge-transfer insulator, has been pro-
posed by Zaanen, Sawatzky, and Allen [17]. It appears
that NiO can be placed in the intermediate regime of
the Zaanen, Sawatzky, and Allen phase diagram. A
recent analysis of the X-ray experimental data and the
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NiO electronic structure within the cluster approach
can be found in [18].

To treat SCES within the Hubbard model several
different numerical approaches, such as quantum
Monte Carlo (QMC) [19–23], cluster perturbation
theory (CPT) [24, 25], variational cluster approxima-
tion (VCA) [26], dynamical mean-field theory
(DMFT) [27], its cluster (CDMFT) [28, 29] exten-
sions, and other techniques designed for dealing with
strongly correlated systems [30–34], see the recent
review [35]. To introduce effects of strong correlations
in the density functional theory several hybrid
schemes have been invented, the LDA+DMFT with a
local self-energy [36–39] and its cellular extensions
[29, 40–42].

To combine the advantages of the band and the
cluster approaches to SCES a multielectron general-
ized tight-binding (GTB) method was suggested [43].
In this method, the ideas of the Hubbard model treat-
ment in the regime of strong correlations [44] are
developed for the multiband p–d model that allows
considering the different SCES like cuprates, manga-
nites, cobaltates etc. The tight-binding model param-
eters can be calculated from ab initio within the hybrid
LDA+GTB approach [45, 46]. The low energy limit
within the GTB is described by the effective Hubbard
model with the parameter Ueff = E0(n + 1) + E0(n – 1) –
2E0(n) [17], where E0(n) is the ground term of the
MeO6 cluster with n electrons, for NiO n = 8. Similar
to the cluster approaches [14, 15] the ground term
E0(n) is formed by a mixture of dn, dn + 1L, dn + 2L2 con-
figurations. The intercluster electron hopping can be
written in terms of the multielectron Hubbard X-oper-
ators constructed within n – 1, n, and n + 1 cluster
eigenstates. It allows going beyond the cluster model
and calculating the electronic structure of a lattice
within this effective Hubbard model. At high pressure,
different dn configurations may undergo a spin-cross-
over from HS to LS state, such crossover results in the
pressure-dependent Ueff(P) [47, 48]. Recently we have
considered the effect of high pressure on the electronic
structure of CoO [49].

In this paper, we consider the high-pressure effect
on the electronic structure and properties of NiO. The
peculiarity of NiO is the stability of the neutral d8 and
electron addition d9 states and the HS to LS crossover
in the electron removal configuration d7. This cross-
over results in a kink in the Ueff(P) dependence. Our
theory contains two pressure-dependent parameters,
the pressure derivatives of the crystal field and the
pressure derivatives of the bandwidth. The first one
has been found by [50] from the pressure-dependent
optical d–d excitations. The second one we have esti-
mated from the pressure-dependent Néel temperature
[51]. Then we can extrapolate the insulator gap to zero
to estimate that the Mott-Hubbard transition and
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magnetic collapse in NiO may be expected in the
interval 450–650 GPa.

The rest of the paper is organized as follows. The
main ideas of the multielectron generalized tight-
binding (GTB) approach and its relation to the exact
Lehmann representation are discussed in Ch. 2. The
effect of spin crossover in the first electron removal
states on the pressure dependence of Ueff(P) is
described in Ch. 3. Estimation of the electron band-
width increment αw from the experimental data for the
Néel temperature TN(P) is discussed in Ch. 4. Chapter
5 contains the analysis of the insulator gap Eg pressure
dependences below and above the spin crossover. The
estimation of critical pressure of the IMT transition
within two approaches is also given in Ch. 5. The lin-
ear extrapolation of the bandwidth results in the
PIMT = 900 GPa, the more realistic approach using the
Birch–Murnaghan equation of states gives the PIMT in
the interval 450–650 GPa. Discussion of results is
given in Ch. 6.

2. MAIN IDEAS OF THE MULTIELECTRON 
GENERALIZED TIGHT-BINDING (GTB) 

APPROACH

To clarify a notion of an electron in strongly cor-
related materials where convenient theory based on
renormalized free electrons is inadequate we start with
the exact Lehmann representation for the single-elec-
tron Green function [52], which at T = 0 can be writ-
ten as

The poles of this function are given by a set of sin-
gle-particle excitations (quasiparticles, QP) with the
energies

and spectral weight

Here |m, N is the mth eigenstate of the system with
N electrons,

At finite temperature the Lehmann representation
for the Green function can be written in the following
way

σ + −
 ω ωω = + ω − Ω ω − Ω 


( , ) ( , )( , ) .m m

m m m

A k B kG k

+

−

Ω = + − − μ
Ω = − − − μ

0

0

( 1) ( ) ,

( ) ( 1) ,
m m

m m

E N E N

E N E N

σ

σ

ω =  + 

ω =  − 

2

2

( , ) | 0, | | , 1 | ,

( , ) | , 1| |0, | .
m k

m k

A k N a m N

B k m N a N

 = | , | ,mH m N E m N

+−Ω
σ +

ωω = +
ω − Ω +

/( , )( , ) (1 ) .
0

mnR Tmn
n

mn mn

A kG k W e
i

YSICS  Vol. 133  No. 3  2021



376 OVCHINNIKOV, OVCHINNIKOVA

Fig. 1. A scheme of the multielectron terms of the NiO6
cluster for 3 sectors of the Hilbert space with electron
numbers 8 (charge-neutral) states, electron removal
(7 electrons) configuration, and electron addition (9 elec-
trons) configuration. For each term its spin value is shown,
the occupied at T = 0 ground d8 term is marked by a cross.
Dotted lines show virtual electron-hole pair excitations
forming the 180° antiferromagnetic superexchange inter-
action of the next nearest magnetic cations. The upper part
(a) corresponds to a small pressure P < PS, and part (b) is
for P > PS. 
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Here, the QP as the excitation between the initial
state n and final one m has the energy

the statistical weight of a state |n is determined by the
Gibbs distribution with the thermodynamic potential Ω:

At non-zero temperature both the ground state
|0, N and the excited states |n, N are partially occu-
pied. Thus a QP is numerated by a pair of indexes
(m, n). It is a single electron excitation in the mul-
tielectron system due to addition of one electron to the
initial N-electron state |n, N with formation the final
(N + 1)-electron state |m, N + 1. The electron addition
energy is  = Em(N + 1) – En(N) – μ, while the elec-

tron removal energy is  = Em(N) – En(N – 1) – μ. In
practical calculations the Lehmann representation is
useless because the multielectron eigenstates |m, N for
crystal are not known.

The GTB method is the cluster perturbation reali-
zation of the multielectron ideas of the Lehmann rep-
resentation. In this approach, the total Hamiltonian is
rewritten as a sum of all intracluster terms, Hf, H0 =
ΣHf, and the sum of all intercluster terms, Hfg, Hint =
ΣHfg. The intracluster term Hf includes all d electrons
and nearest oxygen p orbitals that are orthogonalized
to form molecular orbitals centered at site f (see [45,
46] for details) and all local interactions of p and d
electrons. The numerical exact diagonalization of the
local part provides the exact multielectron eigenener-
gies and eigenstates, Hf|m = Em|m. Similar to the con-
ventional Hubbard model, we introduce the Hubbard
operators  = |mn|, determined by a set of exact
intracluster eigenstates. Then the local part of the total
Hamiltonian becomes diagonal Hf = ΣmEm  and
describes the energy of the multielectron terms |m in
different configurations. The Hilbert space of the
exact eigenstates for the NiO6 cluster is shown sche-
matically in Fig. 1. Here the occupied at T = 0 d8

ground term with S = 1 is marked by a cross, and the
excited d8 singlet is empty. The electron removal terms
of the d7 configuration are the HS with S = 3/2 and LS
excited S = 1/2 terms for the low pressure (Fig. 1a),
which become inverted above spin crossover, see
Eq. (4) below (Fig. 1b). For electron addition d9 states
we show only the ground term with S = 1/2.

The next step in the GTB is to include effects of the
intercluster hopping and interactions that are treated
by a perturbation theory. Analysis of the diagram
expansion within the Hubbard operator diagram tech-
nique [53] results in the exact generalized Dyson
equation [54] for the fermionic quasiparticles with
electrical charge e and spin 1/2. Thus electron is a lin-
ear combination of excitations between different mul-
tielectron terms similar to the Lehmann representa-
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tion. They were called the Hubbard electrons in the
GTB approach to emphasize the difference with a free
electron.

3. LOW ENERGY EFFECTIVE
HUBBARD MODEL

It is well known that strong correlations split the
one-electron band in the Hubbard model into the
lower and upper Hubbard subbands (LHB and UHB,
respectively). In the conventional Hubbard model
with an orbitally nondegenerate band of width 2W and
an intraatomic Coulomb Hubbard parameter U, the
band gap in the limit of strong electron correlations
(U ≫ W), Eg = U – W, decreases with the growth of
pressure P due to the band broadening resulting from
the interatomic distance decrease, W(P) = W(0) +
αWP. This leads to the Mott–Hubbard insulator-metal
transition in the case of a half-filled band when the
band half-width attains the critical value Wc = aU
(a ~ 1) [1, 44]. The Hubbard parameter U is of an
intraatomic nature and is assumed to be pressure-
independent. The situation becomes different in mul-
tiorbital analogs of the Hubbard model, which can be
used to describe NiO. For such models, the initial
Hubbard concepts should be supplemented by taking
into account various multielectron dn terms and
anionic sp states. In the low-energy range, the effective
Hamiltonian of such multiband p–d model within the
GTB approach can be written in the form of the effec-
tive Hubbard model, in which the d0, d1, and d2 atomic
terms of the single-band Hubbard model are replaced
by local multielectron d7, d8, and d9 terms [17, 55].
Here each dn term is just a notation meaning the
D THEORETICAL PHYSICS  Vol. 133  No. 3  2021
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hybridized dn + dn + 1L + dn + 2L2 as in the cluster
approaches. In the atomic limit (W = 0), the analogs
of LHB and UHB correspond to energies  = E0(d8)
–E0(d7) (a valence band) and Ωc = E0(d9) – E0(d8), (a
conductivity band) respectively. It is assumed that the
average number of electrons is ne = 8. Then, the gap
between UHB and LHB is determined by the effective
Hubbard parameter [17]

(1)
Owing to the competition between the intraatomic

Hund’s exchange coupling JH and the cubic compo-
nent of the crystal field 10Dq, each dn term (n = 4–7)
can have either HS or LS ground states [56]. The HS–
LS spin-crossover can occur due to the growth of the
crystal field with pressure, which can also be approxi-
mated by the linear dependence 10Dq(P) = 10Dq(0) +
αΔP [57]. As a result, the spin crossover changes
Ueff(dn), suggesting a relationship with the Mott–Hub-
bard transition. The effect of the spin-crossover on the
electron correlation parameter turns out to be not uni-
versal; for d5 ions, Ueff is suppressed, whereas for d6

ions, Ueff increases due to the spin crossover [47, 48,
58], for d7 ion in CoO the Ueff does not change at the
spin crossover [49].

For NiO only the first electron removal state can
reveal a spin-crossover between the two terms:

(a) the high-spin (HS) term with spin S = 3/2 and
energy

(2)
(b) the low-spin (LS) term with spin S = 1/2 and

energy

(3)

Here, EC(d7) is the spin-independent part of the
Coulomb interaction for seven electrons at a (NiO6)9–

cluster. From these formulas, we can see that for a free
ion at zero crystal field, the high-spin state is more
favorable in energy, but with an increase in the crystal
field, the energy of the low-spin state decreases faster,
and both energies become equal at 10Dq = 2JH. This
condition corresponds to the pressure

(4)

For d8 and d9 configurations the ground state
energy may be written as

(5)

(6)
Finally we can write down the Ueff(P) below and

above crossover pressure PS in the following way
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Here U(8) = EC(d9) + EC(d7) – 2EC(d8) is pressure-
independent contribution. The pressure-dependent
insulator gap is given by

(8)

Here we denoted 10Dq (P = 0) = Δ0. One can see
from Eq. (8) that increasing crystal field at small pres-
sure below spin-crossover tends to the insulator gap
growth, while the increasing bandwidth tends to the
gap decreasing for all pressures. Thus the HS–LS
crossover for compounds with d8 ionic states competes
with a tendency to the insulator-metal transition
(IMT) under the pressure growth. Depending on the
relations between two baric derivatives αΔ and αW, the
gap may change the initial growth to the decreasing
with further pressure increase or monotonically
decrease with pressure. Anyhow, in both cases, the gap
will have a kink at the spin-crossover pressure PS in the
unoccupied d7 configuration.

4. DISCUSSION OF MODEL PARAMETERS

Some parameters are known from the literature.
For example, the crystal field at ambient pressure Δ0 =
0.08Ry = 1.08 eV is found from optical absorption
spectra [59, 60], its baric derivative αΔ =
7.28 meV/GPa taken from pressure-dependent optical
spectra [50]. The bandwidth W(0) and Coulomb
parameters U and JH have been estimated from the
analysis [16] of the experimental data. Additional fit-
ting of these parameters using the pressure-dependent
optical absorption spectra of NiO has been provided in
[11] and yields the following best fit

With these parameters, the spin crossover pressure
PS = 57.7 GPa is very close to the kink in the gap Eg at
55 GPa measured in [11]. The only still unknown
parameter is the baric derivative of the bandwidth W,
below we discuss how we use the Néel temperature
TN(P) baric dependence [51], dTN/dP = 7.33 K/GPa,
to estimate this parameter. In the Anderson theory
[61] for NiO, the 180° antiferromagnetic superex-
change interaction of the next nearest magnetic cat-
ions is known to be J = 2t2/Ueff. Here t is the inter-
atomic cation-anion-cation electron hopping param-
eter that determines the bandwidth W(0) = 6t0. With
W(0) = 1.8 eV one gets t0 = 0.3 eV. For NiO the nearest
neighbors 90° exchange is negligibly small and we will
neglect it. The parameter Ueff = U + JH in the denom-
inator of the effective Heisenberg exchange in the case
of NiO is determined by virtual electron-hole pair cre-
ation and annihilation. These excitations involve the

Δ− + Δ − + α − α <=  + − − α >
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Fig. 2. The insulator gap in NiO and its pressure depen-
dence.
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LS electron removal term (see Fig. 1), at P = 0 the
ground d7 term has S = 3/2, but the AFM exchange
coupling occurs via S = 1/2 LS d7 term for all pressures
[62], so for P = 0 in the mean-field approximation to
the effective Heisenberg model with the exchange
interaction J, S = 1 and number of second neighbors
z2 = 6 the Néel temperature is given by

(9)
Its baric derivative is equal to

where αt determines the hopping parameter increase
under pressure, t(P) = t0 + αtP. With the given above
parameters U, JH, t0 and the experimental value dTN/dP =
7.33 K/GPa measured in [39] below 30 GPa, we obtained
αt = 9.47 K/GPa = 0.815 meV/GPa. The baric depen-
dence of the bandwidth αW = 6αt = 4.89 meV/GPa.

Now we are ready to discuss the insulator gap (8) at
ambient pressure and its pressure dependence. At zero
pressure Eg(0) = 3.98 eV. Due to the larger crystal field
baric derivative αΔ = 7.28 meV/GPa vs. αW = 6αt =
4.89 meV/GPa the gap increases up to the spin cross-
over pressure PS (Fig. 2). At the crossover point
Eg(PS) = 4.12 eV. The baric dependence of the gap
2.39 meV/GPa can be compared with experimental
value 2.78 ± 0.3 meV/GPa from Fig. S5 in the supple-
ment to the paper [11].

Above spin-crossover the gap is decreasing with the
increment –αW = –4.89 meV/GPa, which can be com-
pared with the experimental value –5 ± 0.3 meV/GPa
[11]. Assuming the same linear trend, we extrapolate
the gap given by Eq. (8) to zero to estimate the IMT
pressure PIMT = 900 GPa. It should be mentioned that
linear extrapolation of the crystal field and the elec-
tronic bandwidth pressure dependences, which is valid
at small pressures below 240 GPa (linear dependence
of the gap has been measured in [11] up to this pres-
sure), is questionable at higher pressures. That is why
below we present the other estimation of the band-
width and the IMT pressure using the Birch–Mur-
naghan equation of states. It is known that the inter-
atomic hopping parameter for d electrons depends on
the interatomic distance as t ~ r–5 [63]. We write this
relation as a function of volume

(10)
where t0 and V0 are the hopping parameter and volume
at ambient pressure. The volume and the pressure are
related via the Birch-Murnaghan equation of states.
Denote u = V/V0, we write this equation as

(11)
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We introduce a new variable

Then the equation for the critical pressure of the
insulator-metal transition looks like

(12)

The critical pressure can be found from the condi-
tion

(13)

We emphasize that this condition does not contain
linear extrapolation and is valid for all pressure values.
For the set of parameters U = 5.45 eV, JH = 0.75 eV,
W0 = 1.8 eV found in [11], the critical value is given by

(14)
For this value of x one can find the critical volume

at the IMT, V/V0 = 0.47 and the critical pressure
P/B0 = 2.34 (Fig. 3). For the bulk modulus from [50]
B0 = 197 GPa and B ' = 3.4 we obtain PIMT = 461 GPa.

This solution depends on the bulk modulus values
that are different in the literature. In Table 1 we pres-
ent a set of data chosen from the literature. When sev-
eral pairs B0 and B ' were available from the same
authors, we take the data measured at small pressure to
avoid the non-hydrostatic effects. From this table it is
clear that the expected value of the PIMT is 450–
650 GPa, and the value 900 GPa obtained within the
linear extrapolation is too overestimated.

5. DISCUSSION OF RESULTS
In this paper, we take the empirical values of the

model parameters, mainly found from the pressure
dependences of optical absorption spectra [11] and the
baric dependence of the Néel temperature. Now we

−= 5/3
0( ) ( / ) .x P V V

= + − =g IMT H 0 IMT( ) ( ) 0.E P U J W x P

= +IMT H 0( ) ( )/ .x P U J W

=IMT( ) 3.44.x P
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Fig. 3. The volume dependence on the dimensionless pres-
sure from the Birch–Murnaghan equation. The critical
point of the insulator-metal transition is shown by a star.
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can compare the ambient pressure gap Eg(0) = 3.98 eV
with the values 4.3 eV obtained by XPS and BIS mea-
surements [16] and 4 eV by XAS and XES measure-
ments [14, 66, 67]. There are a lot of theoretical papers
with different DFT-based approaches to calculate
electronic parameters and spectra of NiO [3, 14, 68–
84] as well as experimental studies [9–11, 16, 50, 70,
85–90]. The main conclusion from these papers is the
importance of strong electron correlations that is the
central idea of our paper. We want also to mention the
DFT paper [84] with hybrid potential B3LYP, which
gives a reasonable value for zero pressure gap Eg(0) =
4.2 eV and the IMT pressure 2.4 TPa and magnetic
collapse at 3.7 TPa. With the other choice of the cal-
culation scheme, the PWGGA, the same authors
obtained Eg(0) = 1.3 eV and the IMT pressure
700 GPa. Our approach is too oversimplified to treat
fine details of NiO electronic spectra. Nevertheless, it
allows us to understand the origin of the kink in the
insulator gap dependence on pressure found previ-
ously from optical spectra study [11].
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH

Table 1. The NiO bulk modulus from different experimental
groups and the calculated values of the critical pressure for
the insulator-metal transition

Authors B0, GPa B'
PIMT, 
GPa

Gavrilyuk et al. [50] 197 3.4 461
Potapkin et al. [10] 170 4.35 552
Eto et al. [9] 192 4.0 634
Huang [65] 187 4.0 617
Liu et al. [64] 189 4.0 624
As concerning the high-pressure experiments, the
kink at 55 GPa [11] is very well reproduced by our cal-
culations. Assuming linear dependence of the crystal
field and electronic bandwidth we have obtained both
the kink position as well as slopes of the gap pressure
dependence below and above the kink in very good
agreement to experimental data [11]. The origin of the
kink is related to the spin crossover in the electron-
removal d7 subspace of the total Gilbert space. We
want to emphasize that all d7 terms are not occupied in
the stoichiometric samples. These states are involved
in the formation of the electronic structure only virtu-
ally. The kink in the insulator gap is the demonstration
of the multielectron effects. The extrapolation of the
linear bandwidth pressure dependence results in the
IMT at pressure 900 GPa, which is too large a value for
the linear extrapolation. We have developed the alter-
native approach of the estimation of the bandwidth at
large pressures using the know expression of the hop-
ping parameter on the interatomic distance and the
Birch-Murnaghan equation. One can see from Fig. 3
that the linear dependence of the crystal volume on
the pressure can be considered below 100 GPa. At
higher pressures, the nonlinear dependence of V(P)
results in much smaller values of the IMT pressure.
From Table 1 these values are within 450–650 GPa
interval.

This high value agrees with the stability of the mag-
netic state in NiO at least up to 280 GPa [10]. Previ-
ously the insulator-metal transition in NiO was found
in [11] at pressure 240 GPa. It is accompanied by the
change of slope of the resistivity vs. pressure that is
typical for the insulator-metal transition, and the acti-
vation energy from resistivity measurements drops to
zero. Nevertheless, the absolute value of the activation
energy below transition is about 0.15 eV, that is why the
authors [11] themselves consider this effect as metalli-
zation of some minor charge carriers related to sample
defects.

In summary, NiO is the most stable Mott insulator
among other 3d-monoxides. We have found that the
insulator gap dependence on pressure is characterized
by the kink resulting from the HS–LS crossover in the
unoccupied d7 configuration. These states contribute
to the formation of the insulator gap due to the effects
of strong correlations. Our analysis shows the IMT
and magnetic collapse are expected at very high pres-
sure within 450–650 GPa intervals.
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