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Abstract—This paper is devoted to the development of reflection magneto-optical ellipsometry. We have
solved the inverse problem for structures with uniaxial optical anisotropy: have determined the reflection
coefficients for the ambient–sample interface, and have derived an analytic expression for magneto-optical
parameter Q proportional to the magnetization. This expression makes it possible to determine parameter Q
exclusively from experimental data obtained using magneto-optical ellipsometry. We present a detailed algo-
rithm for performing experiment on determining the dielectric tensor in the transverse geometry.
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1. INTRODUCTION. FORMULATION
OF THE PROBLEM

Magneto-optical ellipsometry (ME) is character-
ized by a high sensitivity to the magnetic state as well
as to optical properties of a ref lecting surface. This
method is widely used and is very convenient for mon-
itoring optical, structural, magnetic, and magneto-
optical (MO) properties of nanostructured materials.
Because of the cumbersome mathematical apparatus
of ME, most measurements are made for performing
simple analysis of magnetic characteristics from the
field dependences of ellipsometric angles or for study-
ing simple isotropic and homogeneous media. How-
ever, the structure of many materials (especially, in the
film and disperse states) depends on direction; there-
fore, such materials exhibit uniaxial optical anisot-
ropy. The optical properties of such materials in the
plane of the film and across it are different [1, 2].
Examples of such structures are photonic crystals [3],
polymer films [4], and oriented arrays of carbon nano-
tubes [5, 6]. In recent years, optical properties of
anisotropic 2D systems MXnes [7, 8] and MAX phases
[9–11] have been studied actively (ab initio calcula-
tions). When magneto-optical properties of such a
structure are considered, in addition to existing optical
anisotropy, it is necessary to take into account induced
anisotropy [12] associated with the application of an
external magnetic field, which inevitably complicates
the calculation and analysis of the total dielectric ten-
sor. For this reason, such an approach receives little
attention in the literature. It has been used predomi-

nantly in publications [13–15] based on the formalism
of 4 × 4 matrices [16], which has been developed well
for ME, but is not applicable in all cases because for
determining all matrix elements, measurements must
be performed in different geometries; therefore, the
sample must be rotated.

We have developed an original method for deter-
mining all components of the dielectric tensor for thin
magnetic layers from the ME data from optically iso-
tropic bulk and multilayer structures [17–21], which
combines classical conventional ellipsometric mea-
surements of ellipsometric angles ψ0 and Δ0 without
applying an external magnetic field and ellipsometric
measurements with magnetization reversal of the sam-
ple in an external magnetic field (measurement of δψ
and δΔ) in the transverse configuration. Such mea-
surements can be made for various angles of light inci-
dence and for various wavelengths of incident radia-
tion. The solution of the inverse problem includes the
determination of physical quantities such as the
dielectric tensor components from the set of data on
ψ0, Δ0, δψ, and δΔ by analyzing the system of basic
equations of ellipsometry:

(1)
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Fig. 1. Geometry of the transverse magneto-optical Kerr
effect.
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script “1” corresponds to measurements with the
applied magnetic field. Subscripts “s” and “p” corre-
spond to the s and p polarizations of light.

In this study, we propose to extend this approach to
magnetic optically anisotropic materials; namely, we
first solve the inverse ME problem for semi-infinite
structures with uniaxial optical anisotropy. Examples
of such materials are thick atomic-layer MAX films
[22], columnar ferromagnetic films [23–25], and var-
ious low-symmetry magneto-optically active bulk
crystals [26–28]. The new approach provides infor-
mation on MO properties of the sample from ME
measurements without rotating the sample or the elec-
tromagnet producing the external magnetic field.

Let us consider the geometry of ME reflection
measurements, which corresponds to the transverse
magneto-optical Kerr effect, TMOK in short (Fig. 1).
In the case of the transverse configuration, the magne-
tization lies in the plane of the sample. We choose the
direction of the z axis being parallel to the direction of
magnetization, as usual [12, 17–22, 29, 30]. Thus, the
yz plane is the boundary plane of the reflection surface
and xy is the plane of incidence.

In the general case of optically anisotropic media,
the dielectric tensor is represented as follows [13, 14]:

(2)

where Q = (Qx, Qy, Qz) is the magneto-optical param-
eter, which is independent of magnetization, and M =
(Mx, My, Mz) is the magnetization.

On the other hand, magnetization is traditionally
not separated in the dielectric tensor components;
instead, it is assumed that Q is the magneto-optical
parameter (also known as the Voigt vector) propor-
tional to the magnetization [12, 29–34]. In this case,
for isotropic media, when all diagonal tensor compo-
nents are identical and equal to ε0, the off-diagonal
dielectric tensor components are equal to the product
of the diagonal component and the Voigt vector com-
ponent:

ε − − 
 ε = ε −
 

ε  

,
x z z y y

MO
z z y x x

y y x x z

iQ M iQ M
iQ M iQ M
iQ M iQ M
JOURNAL OF EXPERIMENTAL AN
(3)

where i, j, k take value of x, y, z. The geometry of the ME
problem being solved here implies that the refractive
indices for a uniaxial optical anisotropic semi-infinite
ferromagnetic structure in the yz plane are identical:

(4)

which means that the diagonal components of the
dielectric tensor in the sample plane are also identical:

(5)

Therefore, taking publications [12, 14] into
account, the dielectric tensor in the case of uniaxial
anisotropy can be written as

(6)

where Q = Q1 – iQ2 is the complex magneto-optical
parameter, which is proportional to the magnetization
lying in the plane of the film, εxx =  – i , and εzz =

 – i  (real parts are marked by prime and imagi-
nary parts, by double prime). In this case, the effects
quadratic in magnetization are disregarded.

The reflection coefficients for isotropic structures,
which take into account the magneto-optical
response, are well known [12, 29]:

(7)

(8)

where N0 is the complex refractive index of the ambi-
ent, N1 is the complex refractive index of the ferromag-
netic material, and ϕ0 is the angle of incidence of light
on the sample. These expressions are mainly used in
the method for determining the dielectric tensor com-
ponents for isotropic samples, which has been devel-
oped in [17–20] and based on the Jones matrices.

It is possible to operate with anisotropic media, still
using the Jones matrices and Fresnel coefficients,
when the off-diagonal elements of the Jones matrix for
the reflection coefficients equal zero [35, 36]:

(9)

In our geometry, this expression is valid because in
the case of uniaxial optical anisotropy of a bulk sam-
ple, the condition that the optical axis is parallel or
perpendicular to the light plane of incidence is suffi-
cient for its fulfillment [35, 36].

The method for obtaining of the reflection coeffi-
cients for anisotropic systems in the chosen geometry
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(see Fig. 1) was described in [36]. These coefficients
can be presented in the following way:

(10)

(11)

where angles ϕts and ϕtp are the angles of refraction,
which are defined via

(12)

(13)

In [36], the minus sign in relation N = n – ik has
been taken into account from the very outset, which is
traditional for the representation of the refraction
index in ellipsometry and ME. In isotropic limit Nx =
Ny = N1, Eqs. (10) and (11) yield the standard Fresnel
coefficients [35].

However, reflection coefficients (10) and (11) in
[36] do not take into account the effect of the external
magnetic field and are insufficient for analyzing the
MO properties of the sample. We must supplement the
familiar expressions for the reflection coefficients of
anisotropic media with expressions taking into account
the magneto-optical response, connect them with
parameters measured using ME technique, and find the
expression for obtaining information on MO parameter
Q = Q1 – iQ2 and on total dielectric tensor (6).

2. TAKING INTO ACCOUNT
FOR THE MAGNETO-OPTICAL RESPONSE 
WHILE CALCULATING THE REFLECTION 

COEFFIIENTS FOR THE INTERFACE 
BETWEEN THE AMBIENT

AND AN OPTICALLY ANISOTROPIC 
UNIAXIAL BULK SAMPLE WITH

To add the magneto-optical response to expres-
sions (10) and (11), let us follow the approach used by
Sokolov and Krinchik [12, 29], who considered the
situation at the interface between two isotropic media.
To take into account the TMOKE while analyzing the
reflection at the interface between an ambient and an
optically anisotropic bulk crystal, the same steps are to
be taken as in the case when it is considered at the
interface with an isotropic sample. All expressions
presented below are valid for visible spectral range and
have been obtained assuming that μ ≈ μ0 ≈ 1, and MO
parameter Q ≪ 1 [12, 30, 32, 37].

We use tensor (6) and solve the Maxwell equations
with the following relations between the electric field
intensity and electric displacement:
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We seek the solution in the form of a plane inho-
mogeneous wave propagating in a magnetic medium:

(15)

where α*, β*, and γ* are direction cosines and  is the
velocity of the wave propagating in the medium. This
gives the following system of equations:

(16)

After a number of transformations (see Appendix A)
with account for relations (4) and (5), we obtain

(17)

With account for the coordinate system introduced
here, the boundary conditions for the s polarization are

(18)

(19)
while for the p polarization, they are

(20)

(21)

where subscripts i, r, and d on E correspond to the
incident wave, reflected wave, and the wave transmit-
ted through the medium, respectively; Ed1, Ed2, and
Ed3 are the x, y, and z components of the electric field
intensity amplitude of the transmitted wave, respec-
tively [12, 29].

The resulting reflection coefficient rssTMOKE coin-
cides with reflection coefficient (10) for anisotropic
media in zero magnetic field,

(22)
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We obtain the reflection coefficient for the p polar-
ization from expressions (20) and (21), which are sup-
plemented with the expression connecting Ed1 and Ed2
(see Appendix A):

(24)

where

(25)

Since for taking into account the MO contribution,
the changes in ellipsometric parameters are measured
in the experiment (i.e., there is the change in the
reflection coefficient as compared to expression (11)
characterizing the behavior of light in zero magnetic
field), it would be interesting to obtain an explicit
expression describing the variation of ref lection coef-
ficient Rp1. For this purpose, we write expression (24)
for rppTMOKE as the sum of rpp disregarding the external
magnetic field (i.e., expression (11)) and the term
responsible for the contribution of the TMOK (see
Appendix A). Therefore, we obtain the reflection
coefficient for the p polarization, where the MO
response in the geometry of the TMOK is considered:

(26)

Using this expression, we can derive the expression
for the reflection coefficient for the interface with the iso-
tropic crystal, assuming that Nx = Nz = N1 and ϕtp = ϕ1:

(27)

Using the Snell law

(28)
we obtain familiar expression (8) for the reflection
coefficient in the p-polarization at the interface
between two isotropic media [12, 38].

3. ANALYTICAL CALCULATION OF 
MAGNETO-OPTICAL PARAMETER Q

As shown in our previous works on investigation of
MO properties of isotropic structures [20, 39], in the
case when the magnetic field contribution to the
reflection coefficients is small, one can use in calcula-
tions small parameters such as ratios of the magnetic to
nonmagnetic parts of the reflection coefficient for the
p-polarization:

(29)

(30)
where subscripts “0” and “1” correspond to the mea-
surements taken in zero magnetic field and in the pres-
ence of an external magnetic field (TMOKE), respec-
tively. These small parameters are expressed in terms
of experimentally measured ellipsometric (ψ0, Δ0) and
magneto-ellipsometric (δψ, δΔ) parameters in the fol-
lowing way [20]:
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i.e., the reflection coefficient for the p-polarization
can be written as follows:
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Let us compare expressions (34) and (35) with

expression (26) derived above:
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Thus, we can calculate analytically the magneto-
optical parameter for a uniaxial anisotropic bulk crys-
tal from the results of ME measurements performed in
the TMOK configuration.

If we set Nx = Nz = N1 and ϕtp = ϕ1 in expression
(37), the resulting expression is transformed to

(39)

Using the Snell law (28), we obtain the following
expression coinciding with the one for the MO param-
eter for an isotropic crystal [20]:

(40)

4. DISCUSSION OF RESULTS
As follows from expression (37) derived above, for

calculating all components of dielectric tensor (6), it is
sufficient to have information on

(i) the angle of incidence ϕ0,
(ii) the refractive index N0 of the ambient,
(iii) the refractive indices of the anisotropic struc-

ture in the plane of the sample (Ny = Nz) and perpen-
dicular to it (Nx),

(iv) the ellipsometric parameter ψ0 measured in
zero magnetic field, and

(v) the magneto-ellipsometric parameters

measured in the transverse configuration of the mag-
neto-optical Kerr effect, where ±H is the external
magnetic field on the sample.

Experimental and mathematical approaches to
measuring the refractive indices of an anisotropic
(including opaque) film of an arbitrary thickness by
means of conventional ellipsometry have been devel-
oped long ago and require no additional explanations
[40–42]. The realization of a specific approach can
depend on the experimental conditions and on the
available instrumental base of the experimenter.

It should be borne in mind that the proposed
method for finding out the MO parameter Q is limited
not only by the features of the model of a homoge-
neous semi-infinite medium and the geometry of the
TMOKE, but also by the condition of smallness of the
MO contribution to reflection coefficient Rp, ensuring
the smallness of parameters α and β [20]. The latter
condition can be violated in the case of closeness to the
Brewster angle (especially for weakly absorbing sam-

ples). Therefore, in our opinion, the approach involv-
ing multiangle ellipsometric measurements appears to
be most reliable in view of the simplicity of the optical
scheme and the possibility to avoid the closeness to the
Brewster angle. The sample must have a smooth
reflecting surface, which is opaque in the spectral
range used in experiments, and as thin as possible
nonferromagnetic oxide layer on the surface. In this
case, the algorithm of a ME experiment can be
described as follows.

(1) We measure the spectral dependences of ψ0 and
Δ0 in zero magnetic field for arbitrary angle ϕ0. Then
we calculate the spectral dependence of the real com-
ponent of the Brewster angle for the sample in the iso-
tropic semi-infinite medium approximation. We
choose at least two angles of incidence ϕ0, which are
accessible for setting on the magnetoellipsometer and
do not coincide with the values of the Brewster angle
in the required spectral range.

(2) For one of the chosen angles ϕ0, we measure
field dependences of ψ0 and Δ0 at a fixed wavelength
corresponding to the maximal value of the signal-to-
noise ratio for the magnetoellipsometer.

(3) From the field dependences of ψ0 and Δ0, we
choose the best values of magnetic field ±H for further
spectral ME measurements (i.e., if the sample is ferro-
magnetic, it is expedient to choose the value of H from
the condition of ferromagnetic saturation of the sample).

(4) For the first chosen angle ϕ0, we measure the
spectral dependences of ψ0 and Δ0 of the demagne-
tized sample and the changes in δψ and δΔ during the
magnetization reversal of the sample in fields ±H.

(5) We set the second chosen angle of incidence ϕ0
and measure the spectral dependences of ψ0 and Δ0 for
the demagnetized sample.

(6) Using numerical methods, we obtain complex
values of Nx and Nz = Ny for the demagnetized sample,
from which Q is calculated using expression (37).

Having determined the values of the MO parame-
ter Q and refractive indices Nx, Ny, and Nz, we can cal-
culate all components of dielectric tensor (6).

5. CONCLUSIONS
Thus, we have derived expressions for the reflec-

tion coefficients in the p- and s-polarizations for the
interface between the ambient and the sample with
uniaxial optical anisotropy, which take into account
the magneto-optical response in the geometry of the
transverse magneto-optical Kerr effect. Analytical cal-
culation of the magneto-optical parameter Q for the
chosen experimental geometry has been proposed.
The scheme of magneto-ellipsometric measurements
for obtaining all components of the dielectric tensor
has been demonstrated for materials with uniaxial
anisotropy, e.g., MAX phases.
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APPENDIX A
Below, we describe below the derivation of the

reflection coefficients at the interface between the
ambient and a bulk medium with uniaxial optical
anisotropy and the dielectric tensor

(A.1)

All expressions given below are valid for the visible
spectral range and have been obtained under the
assumption that μ ≈ μ0 ≈ 1 and the magneto-optical
parameter Q ≪ 1 [12].

We seek the solutions to the Maxwell equations

(A.2)

in the form of a plane inhomogeneous wave propagat-
ing in a magnetic medium:

(A.3)

where α*, β*, and γ* are the direction cosines and 
is the velocity of wave propagation in the medium.
This gives the following system of equations:

(A.4)

We then multiply the lines of this system by
α*, β*, and γ*, respectively, sum

them, take into account the fact that Ny = Nz, ε = N2, α* =
cosϕtp, β* = sinαtp, and γ* = 0, and finally, we obtain

(A.5)

(A.6)

Given the chosen system of coordinates (see
Fig. 1), we obtain the boundary conditions for the s-
polarization:

(A.7)

(A.8)
while for the p-polarization, we get

(A.9)

(A.10)

where subscripts i, r, and d on E correspond to the
incident, reflected, and transmitted wave, respec-
tively, and Ed1, Ed2, and Ed3 are the x, y, and z compo-
nents of the electric field intensity amplitude of the
transmitted wave, respectively [12, 29].

Consequently, for the s-polarization, the reflection
coefficient for the case of TMOKE is

(A.11)

We obtain the reflection coefficient for the p-polar-
ization for TMOKE from expressions (A.9) and
(A.10), which must be supplemented with the relation
connecting Ed1 and Ed2. The required relation can be
obtained from (A.6):

(A.12)

Accordingly, we solve the following system of three
equations:

(A.13)

Expressing Ed1 from the first equation of this system
and substituting it into the third equation, we obtain

(A.14)

This gives the following expression for Ed2:

(A.15)
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Since we seek the expression for reflection coefficient
rp = E0rp/E0ip, it is convenient to introduce notation

(A.17)

Considering that Ny = Nz, we divide the numerator
and denominator of F by :

(A.18)

Expression (A.16) takes the form
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(A.20)
Thus, we can see that the reflection in the p-polar-
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(A.21)
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contribution:
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Thus, we have singled out the first term, which is given by expression (11) as expected. Let us transform the
second and third terms:

(A.28)

Let us consider separately the expression in the parentheses of the second term, denoting it by A:

(A.29)

Removing the parentheses, we obtain

(A.30)

(A.31)

Ultimately, expression (A.28) takes the form

(A.32)

where the first term is Rp0 and the second term is Rp1.
Thus, we have obtained the reflection coefficient for the p-polarization, which takes into account for the MO

response in the TMOKE geometry:

(A.33)

APPENDIX B
Below, we describe the derivation of the expression for the MO parameter Q from system of equations (36).

From the second equation, we get
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expression (B.1):
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Then the magneto-optical parameter takes form

(B.4)

Substituting the value of Rp0 from expression (36), we obtain

(B.5)

This leads to the following expression for calculating the magneto-optical parameter for auniaxial anisotropic
bulk crystal:

(B.6)
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