Magnetic and Magnetoelectric Properties of Scandoborate NdSc₃(BO₃)₄

E. V. Eremin^{a, b, c, *}, A. A. Dubrovskii^a, I. A. Gudim^a, V. R. Titova^{a, b}, and M. V. Merkulov^b

^a Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia

> ^b Siberian Federal University, Krasnoyarsk, 660041 Russia ^c Siberian State University of Science and Technology, Krasnoyarsk, 660037 Russia *e-mail: eev@iph.krasn.ru

Received March 3, 2021; revised March 3, 2021; accepted March 8, 2021

Abstract—Trigonal neodymium scandoborate $NdSc_3(BO_3)_4$ single crystals have been grown by the batch flux method using bismuth trimolybdate and their magnetic and magnetoelectric properties have been investigated in the temperature range of 4.2–300 K in magnetic fields of up to 9 T. Magnetically, the compound is a paramagnet and its properties are determined by the magnetic properties of the Nd^{3+} ion with allowance for the Van Vleck paramagnetic correction. The magnetoelectric polarization value has been found to be comparable with that of the previously investigated diluted neodymium aluminum borate $Nd_{0.35}Y_{0.65}Al_3(BO_3)_4$. The latter circumstance opens up another subclass of compounds that should exhibit the giant magnetoelectric effect.

Keywords: magnetoelectric effect, crystal growth, multiferroics **DOI:** 10.1134/S1063783421070052

1. INTRODUCTION

In the last decade, trigonal rare-earth oxyborates $RM_3(BO_3)_4$ (R is a rare-earth ion and M = Al, Sc, Fe, Ga) have been intensively studied due to the wide possibilities of combining elements R and M and, correspondingly, a great diversity in the physical properties. [1–8]. Oxyborates have a rhombohedral structure of the natural mineral huntite type, which is described by sp. gr. *R*32 or *P*3₁21. The noncentrosymmetric structure makes these materials promising for optical applications due to their good luminescence and nonlinear optical properties. For ferroborates RFe₃(BO₃)₄, it was established that they belong to a new class of multiferroics with the coexisting magnetic, electrical, and elastic order parameters.

The interest in paramagnetic aluminoborates has increased since the discovery of the giant magnetoelectric effect in TmAl₃(BO₃)₄ [9], which turned out to be comparable in value with the effects observed in isostructural ferroborates RFe₃(BO₃)₄. Later, the even greater magnetoelectric effect was discovered in HoAl₃(BO₃)₄ [10], the value of which (~5480 μ C/m²) is several times higher than the known maximum values of the magnetoelectric polarization in ferroborates (~500 μ C/m² in SmFe₃(BO₃)₄ [5], ~300 μ C/m² in NdFe₃(BO₃)₄ [3], and ~900 μ C/m² in $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ [3]). An increase in the magnetoelectric effect is observed also when Fe^{3+} ions in $HoFe_3(BO_3)_4$ are replaced by Ga^{3+} ions [11].

Taking into account that, at the replacement of the magnetic (Fe) subsystem in $RM_3(BO_3)_4$ by the nonmagnetic one (Al, Ga), the magnetoelectric effect attains giant values, it is interesting to explore other subclasses of the huntite-structure oxyborates with one magnetic subsystem, for example, the rare-earth scandoborates $RSc_3(BO_3)_4$. Scandoborate $NdSc_3(BO_3)_4$ was chosen to be an object of study. The choice of this compound was additionally dictated by the fact that a stable $NdAl_3(BO_3)_4$ trigonal phase does not exist and only the substituted aluminoborate $Nd_{0.35}Y_{0.65}Al_3(BO_3)_4$ was previously examined [12].

In this work, we report on the results of magnetic and magnetoelectric investigations of scandoborate $NdSc_3(BO_3)_4$.

2. EXPERIMENTAL

The NdSc₃(BO₃)₄ single crystals were grown in mass on the basis of bismuth molybdate by the flux technique described in detail in [13]. It is convenient to present the flux system in the quasi-binary form 89 wt % [Bi₂Mo₃O₁₂ + 3Li₂O₃ + 2B₂O₃ + 0.1Nd₂O₃] + 11 wt % NdSc₃(BO₃)₄.

Fig. 1. Temperature dependences of the magnetization for NdSc₃(BO₃)₄ measured in different magnetic fields in the geometries (a) **B** \parallel *c* and (b) **B** \perp *c*.

The saturation temperature was refined accurate to $\pm 2^{\circ}$ C using test crystals; for the investigated flux, it was found to be 980°C. The crystals were grown on seeds with a decrease in temperature at a rate of 1°C/day. The initial temperature was $T = T_s - 7^{\circ}$ C. The grown crystals were about 4–6 mm in size. After the growth completion, the crystals were cooled down to room temperature at a rate of no more than 100°C/h.

The magnetic properties were investigated on a Quantum Design PPMS vibrating sample magnetometer at the Center for Collective Use, Krasnoyarsk Scientific Center of the Russian Academy of Sciences in the temperature range of 4.2-300 K and magnetic fields of up to 9 T and on an original vibrating sample magnetometer [14]. To measure the magnetoelectric polarization, electrodes made of epoxy resin with a conductive filler were formed on the face of a prepared plane-parallel plate sample (the face planes are perpendicular to the second-order (*a*) axis). The charge induced on the sample by the magnetoelectric effect was measured with a Keithley 6517B electrometer. The

Fig. 2. Inverse temperature dependence of the magnetic susceptibility for $NdSc_3(BO_3)_4$ measured in a magnetic field of 9 T in the geometries (a) **B** $\parallel c$ (triangles) and (b) **B** $\perp c$ (squares).

magnetic field was applied along the second-order crystallographic axis (a axis) and along the b axis perpendicular to the a axis and the third-order (c) axis.

3. RESULTS AND DISCUSSION

As was shown previously, at high temperatures $NdSc_3(BO_3)_4$ has a rhombohedral structure with sp. gr. *R*32. As the temperature decreases ($T_s = 504$ K), the compound undergoes the structural transition $R32 \rightarrow P3_121$ [12].

The magnetic properties were examined in magnetic fields of B = 0.1, 1, 3, 5, 6, and 9 T directed along the third-order *c* axis and the second-order *a* axis perpendicular to the *c* axis. Figure 1 shows temperature dependences of the magnetization in a magnetic field directed along and perpendicular to the third-order axis. One can see a trend to saturation upon magnetization along the *c* axis at low temperatures and, consequently, to the deviation from the Curie law (Fig. 2).

It can be seen for all the curves in Fig. 1 that the M(T) dependences have a similar form typical of a paramagnet and only have different values. With an increase in the field, the $M_{\parallel}(T)$ and $M_{\perp}(T)$ dependences increase at different rates, exhibiting a noticeable anisotropy (Fig. 3), which increases with the magnetic field.

In the directions **B** $\parallel c$, the magnetization $M_{\parallel}(T)$ is much lower than $M_{\perp}(T)$, depends almost linearly on the magnetic field (Fig. 4), and has a form atypical of classical paramagnets (Fig. 1a). This form of the $M_{\parallel}(T)$ curve can be caused by admixing the excited states of the Nd³⁺ ion to the ground state. In other words, in determining the magnetic moment, one should take

Fig. 3. Temperature dependences $M_{\parallel} - M_{\perp}$ for NdSc₃(BO₃)₄ in different magnetic fields.

into account, along with the orientational paramagnetism, the Van Vleck correction.

Using the Curie–Weiss law, we can determine the paramagnetic Curie temperature θ and the effective magnetic moment of the Nd³⁺ ion in the unit cell from the high-temperature dependence of the magnetic susceptibility. Figure 2 shows such a dependence obtained in a magnetic field of **B** = 0.1 T in different experimental geometries (**B** || *c* and **B** \perp *c*). The effective magnetic moment of the NdSc₃(BO₃)₄ structural unit was found to be $\mu_{eff} = 3.69\mu_B$, which is close to the theoretical μ_{eff} value taking into account the Van Vleck paramagnetism correction ($\mu_{eff} = 3.68\mu_B$), while the theoretical magnetic moment of the Nd³⁺ ion determined as $\mu = g\mu_B\sqrt{J(J+1)}$, where g = 8/11 is the *g* factor of the Nd³⁺ ion in free state, is $\mu_{Nd} = 3.62 \mu_B$.

Figure 5 shows field dependences of the transverse $(\Delta P_{ab}(B_b))$ and longitudinal $(\Delta P_{aa}(B_a))$ magnetoelectric polarization of NdSc₃(BO₃)₄ at different temperatures. As the field increases, the nonlinear growth of the ΔP_{ab} and ΔP_{aa} curves is observed. Such a course of the magnetoelectric polarization curves is typical of paramagnetic huntites [9–11].

A significant anisotropy of the magnetoelectric polarization at different magnetic field directions was found. It can be seen in Fig. 5 that the transverse polarization attains $\Delta P_{ab}(B_b) \sim -163 \ \mu\text{C/m}^2$ and the longitudinal polarization, $\Delta P_{aa}(B_a) \sim 83 \ \mu\text{C/m}^2$ at a temperature of T = 5 K in a field of 9 T. These values exceed the values for the previously investigated neodymium aluminoborate $\text{Nd}_{0.35}\text{Y}_{0.65}\text{Al}_3(\text{BO}_3)_4$, for which we have $\Delta P_{ab}(B_b) \sim -68 \ \mu\text{C/m}^2$ and $\Delta P_{aa}(B_a) \sim 69 \ \mu\text{C/m}^2$ at T = 5 K and H = 9 T. However, if we take into account that the concentration of Nd^{3+} ions in the aluminum borate is lower than in neodymium scandoborate by a factor of $1/0.35 \approx 3$, then it can be

Fig. 4. Field dependences of the magnetization for NdSc₃(BO₃)₄ at T = 4.2 K in the geometry **B** || *c* and **B** \perp *c*.

assumed that the growth of the effect upon replacement of Al (in $Nd_{0.35}Y_{0.65}Al_3(BO_3)_4$) by Sc (in $NdSc_3(BO_3)_4$) is explained by an increase in the con-

Fig. 5. Field dependences of the longitudinal magnetoelectric polarization ΔP_a at different temperatures in the geometries (a) **B** $\parallel a$ and (b) **B** $\parallel b$.

PHYSICS OF THE SOLID STATE Vol. 63 No. 6 2021

centration of magnetically active Nd^{3+} ions. On the other hand, as was previously shown, the magnetoelectric effect can be higher than expected due to the change in the energy structure of the rare-earth ion under local distortions [15]. The local distortions in $Nd_{0.35}Y_{0.65}Al_3(BO_3)_4$ are obviously caused by the different Al^{3+} and Y^{3+} ionic radii and nonuniform distribution of the ions over the crystal matrix. Thus, now we cannot say which of the $RAl_3(BO_3)_4$ and $RSc_3(BO_3)_4$ matrices will give the greatest effect. This requires further investigations. We only can unambig-uously state that Sc^{3+} ions, along with Al^{3+} and Ga^{3+} ones, induce the giant magnetoelectric effect in the rare-earth ion and M = Al, Sc, Ga) with a huntite structure.

4. CONCLUSIONS

Scandoborate $NdSc_3(BO_3)_4$ was grown by the batch flux method using bismuth trimolybdate. Its magnetic and magnetoelectric properties were first investigated in the temperature range of 4.2–300 K and magnetic fields of up to 9 T.

Magnetically, NdSc₃(BO₃)₄ is a paramagnet, the properties of which are entirely determined by the magnetic behavior of the Nd³⁺ ion. The paramagnetic Curie temperature ($\theta_{\perp} = -28$ K and $\theta_{\parallel} = 48$ K) and the effective moment $\mu_{eff} = 3.69\mu_B$ per formula unit were determined. It was shown that μ_{eff} is close to its theoretical value, taking into account the Van Vleck paramagnetism contribution ($\mu_{eff} = 3.68 \mu_B$).

A significant anisotropy of the magnetoelectric polarization in different magnetic field directions was observed: $\Delta P_{ab}(B_b) \sim -163 \ \mu C/m^2$ and $\Delta P_{aa}(B_a) \sim 83 \ \mu C/m^2$ at a temperature of T = 5 K in a field of 9 T. The effect in NdSc₃(BO₃)₄ is weaker than in the previously investigated diluted neodymium aluminoborate Nd_{0.35}Y_{0.65}Al₃(BO₃)₄; however, this can be caused by a change in the energy structure of the rare-earth Nd³⁺ ion in Nd_{0.35}Y_{0.65}Al₃(BO₃)₄ under local distortions due to the different ionic radii of Al³⁺ and Y³⁺ and the non-uniform distribution of the ions over the crystal matrix.

FUNDING

This study was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk krai, and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project no. 18-42-240011 "Development of the Flux Techniques for Growing New Scandoborate Single Crystals with a Huntite Structure and Study of the Interaction of Their Magnetic and Electric Subsystems."

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

- A. K. Zvezdin, S. S. Krotov, A. M. Kadomtseva, G. P. Vorob'ev, Yu. F. Popov, A. P. Pyatakov, L. N. Bezmaternykh, and E. A. Popova, JETP Lett. 81, 272 (2005).
- E. A. Popova, D. V. Volkov, A. N. Vasiliev, A. A. Demidov, N. P. Kolmakova, I. A. Gudim, L. N. Bezmaternykh, N. Tristan, Yu. Skourski, B. Buechner, C. Hess, and R. Klingeler, Phys. Rev. B 75, 224413 (2007).
- R. P. Chaudhury, F. Yen, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, V. L. Temerov, and C. W. Chu, Phys. Rev. B 80, 104424 (2009).
- A. M. Kadomtseva, Yu. F. Popov, G. P. Vorob'ev, A. P. Pyatakov, S. S. Krotov, K. I. Kamilov, V. Yu. Ivanov, A. A. Mukhin, A. K. Zvezdin, A. M. Kuz'menko, L. N. Bezmaternykh, I. A. Gudim, and V. L. Temerov, J. Low Temp. Phys. 36, 511 (2010).
- V. I. Zinenko, M. S. Pavlovskii, A. S. Krylov, I. A. Gudim, and E. V. Eremin, J. Exp. Theor. Phys. 117, 1032 (2013).
- A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).
- A. N. Vasiliev and E. A. Popova, J. Low Temp. Phys. 32, 735 (2006).
- T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi, and T. Kimura, Nat. Mater. 13, 618 (2014).
- R. P. Chaudhury, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, V. L. Temerov, and C. W. Chu, Phys. Rev. B 81, 220402 (2010).
- K.-C. Liang, R. P. Chaudhury, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, V. L. Temerov, and C. W. Chu, Phys. Rev. B 83, 180417 (2011).
- N. V. Volkov, I. A. Gudim, E. V. Eremin, I. A. Begunov, A. A. Demidov, and K. N. Boldyrev, JETP Lett. 99, 67 (2014).
- E. V. Eremin, M. S. Pavlovskiy, I. A. Gudim, V. L. Temerov, M. S. Molokeev, N. D. Andryushin, and E. V. Bogdanov, J. Alloys Compd. 828, 154355 (2020).
- 13. L. N. Bezmaternykh, V. L. Temerov, I. A. Gudim, and N. A. Stolbovaya, Crystallogr. Rep. **50**, S97 (2005).
- A. D. Balaev, Yu. V. Boyarshinov, M. I. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).
- E. Eremin, I. Gudim, V. Temerov, D. Smolyakov, and M. Molokeev, J. Cryst. Growth 518, 1 (2020).

Translated by E. Bondareva