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Abstract: We investigate optical Tamm states supported by a dielectric grating placed on top
of a distributed Bragg reflector. It is found that under certain conditions the Tamm state may
become a bound state in the continuum. The bound state, in its turn, induces the effect of critical
coupling with the reflectance amplitude reaching an exact zero. We demonstrate that the critical
coupling point is located in the core of a vortex of the reflection amplitude gradient in the space
of the wavelength and angle of incidence. The emergence of the vortex is explained by the
coupled mode theory.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The combination of plasmonic and photonic structures leads to hybrid systems which have been of
great interest in the recent years. One example of such a hybrid system is a two-dimensional lattice
of nanoparticles combined with a Fabry-Perot resonator [1,2]. The unique properties of such
systems can be applied to narrowband absorbers [3], lasers [4], sensors [5] and photodetectors
[6]. The hybrid systems are used to reduce losses in plasmonics [7] and for local amplification of
the electromagnetic field [8]. Hybrid two-dimensional lattices not only act as structural elements
but can also be used as mirrors for engineering localized states such as Tamm plasmon-polariton
(TPP) [9–16]. The TPP is an optical analogue of the Tamm electronic states from solid state
physics [17]. In contrast to conventional surface plasmon-polariton (SPP), the TPP can be both
TM and TE polarized when their frequencies are above the light cone [18]. The TTPs usually
possess larger absorption Q-factor than the SPPs. This is because of low material losses and
larger resonant volume due to Bragg reflectors [19].

It was recently shown [20] that a TPP can be excited at the interface between binary Au
nanodisk arrays and distributed Bragg reflector (DBR). In this case the coupling between the TPP
and a localized lattice resonant mode results in dual Tamm states. The described structure can be
used to measure the Zak phase. Thus, in [21] the Zak phase has been determined through the
interface state. The propagation of the Tamm plasmons was investigated in [22] by depositing
metallic stripes on top of a semiconductor Bragg mirror. It was shown that the TPPs are coupled
to surface plasmons arising at the stripe edges. These plasmons form an interference pattern
close to the bottom surface of the stripe resulting in a change of both the energy and loss rate for
the TPP.

The disadvantage of the hybrid systems is material losses. Therefore, dielectric metasurfaces
are increasingly used. For example in [23] the authors propose narrowband perfect absorbers
with enormously high fabrication tolerance, that consist of a low-contrast grating and a finite
DBR layer with an ultrathin absorbing medium (graphene). A planar array of optical band-pass
filters composed of low loss dielectric metasurface layers sandwiched between two DBRs is
reported in [24]. The surface states, known as optical Tamm states (OTS), can also be supported
by all-dielectric structures [25–27]. By definition the OTS are surface states which exist on the
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surface of a bulk material with the eigenfrequencies embedded into the material bandgap [28,29].
The OTS in all-dielectric structures are analogous to the conventional TPP and do not differ from
the TPP in regard to their excitation or detection. The difference is in the terminology: an OTS
in dielectric structures can not be called TPP due to the absence of plasmonic material. The OTS
can be observed in both non-chiral [30,31] and chiral [32–34] structures.

Here we compare OTSs in all-dielectric and hybrid structures in the form of a DBR with a
grating on its surface. We numerically demonstrate that the OTS in an all-dielectric structure has
a larger quality factor than the TPP in the hybrid system.

Ultimately, in dielectric structures the OTS can obtain an infinite radiative quality factor, i.e.
the OTS becomes optical bound state in the continuum (BIC) [35]. Such states supported by
dielectric gratings have been previously reported both experimentally [36,37] and theoretically
[38–41]. Here we focus on so-called accidental BICs [42] not protected by symmetry which occur
as Bloch surface waves out of the Γ-point [43]. We demonstrate that such a Tamm BIC induces
the effect of critical coupling (CC). We show that the CC corresponds to a phase singularity in
the space of incidence angle and frequency, while the phase gradient forms a vortex with the CC
point in the core. The phase singularities carry a topological charge [44] defined as the number
of 2π windings of the phase along a closed contour around the CC point. Based on the temporal
coupled mode theory [45] we derive a semi-analytic expression for the reflection amplitudes that
matches well with our full-wave numerical simulations. The CC points are known to lead to
very fast local variation of the phase of the reflection amplitude [46]. Here we find that such fast
variation in the vicinity of the CC is unavoidable due to the phase singularity.

2. Model

Let us consider a DBR with a 2D array of silicon nanostripes [47] on top (Fig. 1(a)). The
DBR unit cell is formed of two layers: silica dioxide (SiO2) with thickness da = 165 nm and
permittivity εa = 2.1, and zirconium dioxide (ZrO2) with thickness db = 135 nm and permittivity
εb = 4.16. The 2D structure with thickness h and width L has infinite length along y axis
with period p. The multilayer structure can be fabricated by chemical vapor deposition, while
the two-dimensional lattice of Si nanostripes can be patterned with e-beam lithography. The
propagation direction and polarization of the incident plane wave are shown by the red and blue
arrows, respectively. The optical properties of the structures have been calculated by commercial
Finite-Difference Time-Domain (FDTD) package.

Fig. 1. (a) Schematic representation of the structure and (b) sketch view of the simulation
box. Reflectance spectra of the 2D silicon (c,d) and gold (e,f) stripes array for different value
of thickness L (c,e) (h = 100 nm) and h (d,f) (L = 300 nm). Period of the array p = 400 nm.
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The simulation box is shown in Fig. 1(b). The PhC structure is illuminated from the top by
a plane wave with its k in E vectors in the x0y plane as shown in Fig. 1. The reflectance R is
calculated at the top of the simulation box. Periodic boundary conditions are applied at the lateral
boundaries of the simulation box, while perfectly matched layer (PML) boundary conditions
were used on the remaining top and bottom interfaces.

3. Results

3.1. Reflection from bare 2D structure

A localized state, such as OTS, can be formed at the boundary of reflecting media. In our
structure, reflection from a DBR is provided by the photonic band gap. If the number of layers is
infinite the layered DBR forms an ideal Bragg reflector [43] which prohibits radiation losses.
Reflection from the 2D structure can be controlled by varying the angle of incidence and lattice
period, as well as the thickness and width of the nanostripes. First we calculated the reflectance
spectra of the bare 2D structure without a DBR. The simulation results are shown in Figs. 1(c)-(f).

The calculations were carried out in two steps. In the initial step, we fixed the height of the
stripes and varied their width. Thus, the width at which the most reflection from the structure is
achieved was determined. In the next step, we varied the height of the stripe with fixed width. In
this way we were able to determine the parameters of the structure at which the largest reflection
from the structure can be achieved. The calculation results showed that the largest reflection is
achieved in the range from 800 to 1200 nm for a structure with a stripes thickness h = 250 nm
and a width of L = 300 nm (see Figs. 1(c) and (d)). We also calculated the reflectance spectra of
a 2D array of gold stripes. The results are presented in the Figs. 1(e) and (f), which shows that
the structure reflects in the entire range of wavelengths investigated, but the reflectance is not
high, and reaches only 60-70%. We determined that the reflection reaches the maximum value
for stripes with thickness h = 150 nm and width L = 300 nm.

3.2. OTS in an all-dielectric structure

We expect that conjugation of the grating with a DBR could lead to the formation of localized
states, since the radiation to the lower half-space is suppressed by the band-gap whereas radiation
into the upper half-space is reduced by the 2D structure acting as a mirror [43]. To verify this the
reflectance spectra of the composite structures were calculated (see Fig. 2). Figure 2(a) shows
that the DBR band gap in the range from 900 to 1100 nm overlaps with the reflection region of a
2D silicon stripes structure. In the area of their overlap, a narrow spectral line (λ = 1060 nm) is
observed within the photonic band gap. This line corresponds to a state localised at the interface
between DBR and 2D array of silicon stripes.

Fig. 2. (a) Reflectance spectra of the structure. (b) The Q-factor of the OTS depends on the
number of DBR layers and (c) field distribution at the OTS wavelength.
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It is important to note that the increase of the number of periods in the DBR leads to a
significant increase in the Q-factor of the resonance (see Fig. 2(b)). Thus, when increasing N
from 3 to 9, the Q-factor grows by more than an order of magnitude. This because the increase in
the number of periods of the DBR leads to a decrease of the radiative decay rate in the lower
half-space. When the DBR is infinite, the losses into the lower half-space are totally suppressed by
the photonic band gap, whereas the losses to the upper half-space are suppressed by interference
[43].

The distribution of the field intensity at the wavelength of the localized state is shown in the
Fig. 2(c). On can see that the field is localized close to the interface between the two constituent
subsystems and exponentially decreases in the photonic crystal and the 2D lattice. However,
unlike conventional OTS, in our case the field is also localized on the front border of the 2D
medium. The maximum intensity of the field is achieved not in the center of the stripe, but at
its boundaries (see bottom subplot in Fig. 2(c)). This leads to enhancement of the field in the
inter-stripe space.

The angular dependence of the reflectance spectra is shown in the Fig. 3. The figure shows that
the spectra of the localized state for DBR bounded by 2D silicon or gold structure are cardinally
different, see Figs. 3(a) and (b). The figure shows that the Q-factor of the localized state for Si
structure is much larger than in the hybrid set-up. This difference is observed in the entire range
of the angles of incidence, see Fig. 3(c). It should be noted that the difference is not only in
the width of the resonance, but also in its shift with the increase of the angle of incidence. For
gold stripes the localized state is shifted to the blue, same as for the conventional TPP [9,28,48],
while for silicon stripes, we observe a red shift. It is worth mentioning that the red shift of
TM-polarized localized state was recently predicted in [16]. Moreover, in both cases, we see
the collapse of the resonant lines, with the only difference that for silicon stripe structure, this
effect is observed at lower angles. Thus, the OTS becomes a non-radiating state, i.e. a BIC, at a
specific incidence angle θ ≈ 10.9◦. Such BICs are robust as they are topologically protected
due to polarization singularities in the far field polarization patterns [49]. However, the exact
nature of the interference mechanism leading an off-Γ BIC at a certain angle of incidence is
currently only a subject of ongoing research. One promising approach is analyzing multipolar
decomposition of the eigenmode within the elementary cell [50]. Such an analysis leads to an
eigenfield with its node in the radiation pattern at the angle of the BIC.

Fig. 3. Reflectance spectra of the structure in case of (a) silicon and (b) gold stripes. (c)
Q-factor of the structures near BIC points. (d,e,f) Reflectance spectra and (g,h,k) reflection
phase of the DBR bounded by 2D silicon stripes for different number of DBR periods. Red
crosses indicate CC points and phase singularities.
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To look at the dielectric structure in more detail we calculated the reflection spectra of the
structure and phase of the reflected wave in the region of the collapse of the resonance line. The
calculation results are shown in Figs. 3(d)-(k). It can be seen from the reflection spectra that
the increase of N leads to the contraction of the resonant lines in the BIC point. By a detailed
examination of Figs. 3(d)-(k) one can observe critical coupling points, where the reflection
coefficient is zero. For N = 5, see Fig. 3(g), only one critical coupling point is observed, while
for N = 7 and N = 9, see Figs. 3(h) and (k) two critical coupling points are present. One can see
that the two points approach one another with the increase of N. As the calculations have shown,
even at N = 9, we do not see merging of the two CC points. Further increase of N up to infinity
would allow us to achieve this effect if the material losses are neglected, but in this case we would
meet difficulties both with simulations and experimental implementation. In Figs. 4(a) and (b)
we plotted the absorptance spectrum for Si structure. One can see that absorptance reaches its
maxima in the CC points, yet, even with N = 9 most of the radiation is transmitted due to the
tunneling through the bandgap. Finally, it is worth to stress that the presence of material losses
does not eliminate the effect of BIC which in the case of an infinitely thick DBR is an ideally
non-radiating localized state. This state, however, has a finial life-time due to absorption. The
Q-factor of such a state is only limited by material losses in the host structure. BICs in lossy
structures have been recently analysed in [51] in application to enhanced absortion in the critical
coupling point.

Fig. 4. (a) Absorptance spectra of the Si+DBR structure with N = 9 for different angles of
incidence; and (b) absorptance spectra of the structure at CC and BIC angles (dotted line in
figure a).

3.3. Coupled mode theory

The scattering spectrum in the vicinity of a localized state can be described in the framework of
the temporal coupled mode theory [45]. According to the temporal coupled mode theory the
reflection amplitude can be written as follows

r = ei2η
(︃
−1 +

2γ1(θ)

i[ω − ω̄(θ)] + γ1(θ) + γ2

)︃
, (1)

where ω is the frequency of the incident wave, ω̄ - the resonant frequency, η - global phase, θ -
the angle of incidence, γ1 is the loss rate due to coupling to the upper lower half-space, and γ2 is
the loss rate due to both absorption and the bandgap tunneling. The latter two effects can be
incorporated into a single constant since both can be regarded as non-dispersive. In the upper
half-space though, the coupling is dependent on θ and cancelled by destructive interference only
if θ = θBIC. By setting r = 0 one immediately arrives at the condition for the CC

ω = ω̄(θCC),
γ2 = γ1(θCC).

(2)
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Since we have two parameters to satisfy two equations the CCs are points in the plane of θ and ω.
One can immediately see from Eq. (2) that in case of a true BIC with no absorption, N = ∞ and
γ2 = 0 the two CC points merge with the BIC. The dispersion of the entries of Eq. (1) are given
by [52]

ω̄ = ω0 − αθ
2 + O(θ4),

γ1 = β(θ
2 − θ2BIC)

2 + O
[︁
(θ2 − θ2BIC)

4]︁ ,
(3)

where we took into account the symmetry of the leaky band about the Γ-point. Notice that γ1 = 0
in the BIC point. Equation (3) contains two unknowns, α and β. The first, α, can be easily
found by fitting to the Lorentzian center-frequency in Fig. 3(d). The second parameter, β, can be
derived as

β =
γ2

(θ2CC − θ2BIC)
2
, (4)

2γ2 being the half-width of the Lorentzian at the CC angle. Equation (1) predicts an exact zero of
the reflection coefficients. The existence of an exact zero can be proven by the phase singularity
with the phase of the reflection coefficient undetermined in the CC points. The phase singularity
manifests itself in the vortical behaviour of the gradient of the phase, ϕ [44] of the reflection
coefficient in space of θ and ω. The phase ϕ in Eq. (5) is implicitly defined via r = |r |eiφ.
Although the phase is not uniquely defined due to 2π windings around the CC point, the gradient
is a well-behaved function and, thus, can be derived analytically from Eq. (1), by using the
following equation

∇ϕ =
r∗∇r − r∇r∗

2i|r |2
. (5)

We spare the reader of the cumbersome equations resulting from Eq. (1) and Eq. (5). Notice,
though, that since the global phase η is independent of both θ and λ it is absent from Eq. (5).

Fig. 5. Reflectance spectra of the DBR bounded by 2D silicon stripes for different number
of DBR periods (a) N = 5, (b) N = 7, (c) N = 9 obtained by coupled mode theory. The red
dotted line represent the direction curve of the OTS.

Fig. 6. Reflection phase of the DBR bounded by 2D lattice for N=7 obtained by (a) FDTD
and (b) coupled mode theory. The red arrows represent the direction of the phase gradient.
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In Fig. 5 we show the reflectance spectra of the systems with different numbers of DBR
periods obtained with the use of the temporal coupled-mode theory. By comparing Fig. 5 against
Figs. 3(d)-(f) one can see that Eq. (1) allowed us to reproduce the reflectance spectra of the
system in a large range of incidence angles and frequencies. Finally, we compare the results
obtained with Eq. (5) against the results of full-wave numerical simulations near the CC point.
Figure 6 shows the phase of the wave reflected from the structure and the direction of the phase
gradient near one of the critical coupling points represented in Fig. 5(b). One can see that the
results are in good agreement and the critical coupling vortex is observed in both cases.

4. Conclusion

In summary, we showed that optical Tamm state in all-dielectric system possess a Q-factor
larger than in hybrid plasmonic dielectric systems. This, in turn, makes it possible to engineer a
structure supporting an optical Tamm state with the radiation loss rate much smaller than the loss
rate due to the light absorption in the structure material. We demonstrated that the presence of
such states lead to the critical coupling effect. The critical coupling is associated with a phase
singularity of the reflection coefficient in the space of wavelength and angle of incidence of the
impinging plane wave. The scattering spectrum is explained by a single resonance coupled mode
approach. The resulting equation is found to correctly account of the topological property of
the critical coupling vortex. We speculate that the results presented open novel opportunities
in engineering critical coupling, whereas the phase singularity yields unlimited sensitivity to
variation of the system’s parameters paving a way to sensing applications. We believe that the
proposed design scheme can be further improved by applying perfect reflectors based on periodic
arrays of rods with cylindrical cross-section [53,54]. Such perfectly reflecting mirrors can replace
the bar grating analysed in the present paper.
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