УДК 532.783

Е. М. Аверьянов

АДДИТИВНЫЕ ОПТИЧЕСКИЕ СВОЙСТВА ОДНООСНОЙ ЖИДКОКРИСТАЛЛИЧЕСКОЙ СМЕСИ

Институт физики им. Л. В. Киренского, ФИЦ КНЦ СО РАН, Академгородок, 50, строение № 38, 660036 Красноярск, Россия. E-mail: aver@iph.krasn.ru

Получены соотношения аддитивности, связывающие оптические параметры одноосной жидкокристаллической смеси в области прозрачности [показатели преломления n_j для света, поляризованного вдоль (j = ||) или нормально ($j = \bot$) оптической оси, $\Delta n = n_{||} - n_{\bot}$, $\langle n \rangle = (n_{||} + 2n_{\bot})/3$, $\varepsilon_m = (n_{||}^2 + 2n_{\bot}^2)/3$, $n_m = \varepsilon_m^{-1/2}]$ с подобными характеристиками составляющих ее одноосных жидкокристаллических компонентов. При выводе соотношений аддитивности использован микроскопический подход с учетом анизотропии локального поля световой волны в смеси и составляющих ее компонентах. Все полученные соотношения аддитивности подтверждены с высокой точностью для нематической смеси пара-азоксианизола с параазоксифенетолом в широком интервале температур мезофазы и длин световой волны.

Ключевые слова: жидкокристаллические смеси, показатели преломления, соотношения аддитивности.

DOI: 10.18083/LCAppl.2021.3.68

E. M. Aver'yanov

ADDITIVE OPTICAL PROPERTIES OF UNIAXIAL LIQUID-CRYSTALLINE MIXTURE

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 50 Akademgorodok, building № 38, Krasnoyarsk, 660036, Russia. E-mail: aver@iph.krasn.ru

The additivity relations, which connect the optical parameters of an uniaxial liquid-crystalline mixture in the transparency region [refractive indices n_j for the light polarized along (j = ||) or across $(j = \bot)$ optical axis, $\Delta n = n_{||} - n_{\bot}$, $\langle n \rangle = (n_{||} + 2n_{\bot})/3$, $\varepsilon_m = (n_{||}^2 + 2n_{\bot}^2)/3$, $n_m = \varepsilon_m^{1/2}$] with similar values of pristine liquid-crystalline components constituting the mixture, were obtained. To derive the additivity relations, for the mixture and its individual components, a microscopic approach was used, taking into account the anisotropy of the local field of light wave. All additivity relations for the nematic mixture of para-azoxyanisole with para-azoxyphenetole obtained in a broad range of mesophase temperatures and light-wave wavelengths were confirmed with high accuracy.

Key words: liquid-crystalline mixtures, refractive indices, additivity relations.

[©] Аверьянов Е. М., 2021

Введение

Жидкокристаллические смеси (ЖК-смеси) используются в качестве рабочих сред в устройствах электрооптики для записи, отображения и обработки информации. Изменение их состава позволяет варьировать в широких пределах такие важные в практическом отношении характеристики материалов, как положение и ширину температурного интервала мезофазы, величину и знак диэлектрической анизотропии, оптическую анизотропию [1-3]. Большинство практических применений одноосных ЖК-смесей основано на изменении их показателей преломления n_i для света с поляризацией вдоль (j = ||) и нормально ($j = \bot$) оптической оси ЖК и двупреломления $\Delta n = n_{\parallel} - n_{\perp}$ под влиянием внешних воздействий или изменения термодинамических параметров. Это определяет актуальность исследований связи анизотропных оптических свойств ЖК-смесей со структурной упорядоченностью и молекулярными свойствами компонентов [3-10]. Для оптимизации и прогнозирования оптических характеристик этих материалов особый интерес представляют соотношения аддитивности [3-9], связывающие оптические параметры одноосной ЖК-смеси с подобными параметрами составляющих ее одноосных ЖКкомпонентов в области прозрачности. Большинство известных соотношений этого типа являются чисто эмпирическими [1-5] либо основаны на произвольных предположениях о свойствах тензора локального поля световой волны и молекулярной поляризуемости [6, 7] в ЖК-смеси и ее ЖКкомпонентах. Последовательный микроскопический подход к оптическим свойствам ЖК-смесей [8] позволил установить границы применимости для ряда эмпирических соотношений аддитивности [9]. Развитие и экспериментальное подтверждение этого подхода [10] открыло возможность получения новых соотношений аддитивности с учетом приближений, обоснованных результатами экспериментальных исследований особенностей локального поля и молекулярной поляризуемости для широкого круга одноосных ЖК и других объектов мягкой материи [10-12].

Целью настоящей работы является вывод и экспериментальная проверка соотношений аддитивности, связывающих оптические параметры одноосной ЖК-смеси [значения n_j , Δn , $\langle n \rangle = (n_{\parallel} + 2n_{\perp})/3$, $\varepsilon_m = (n_{\parallel}^2 + 2n_{\perp}^2)/3$, $n_m = \varepsilon_m^{1/2}$] с подобными

параметрами составляющих ее одноосных ЖКкомпонентов в области прозрачности.

Соотношения аддитивности

Тензор диэлектрической проницаемости смеси

Рассмотрим одноосную ЖК-смесь, состоящую из одноосных молекул разного сорта α (α -молекул) при отсутствии специфических взаимодействий (водородных связей, комплексов с переносом заряда, диполь-дипольных ассоциатов) между молекулами разного сорта в смеси. Число α -молекул в единице объема смеси равно N_{α} . Данная смесь с оптической осью, параллельной директору **n**, характеризуется показателями преломления n_j для световых волн, поляризованных вдоль (j = ||) и нормально ($j = \bot$) директору. В области прозрачности компоненты $\varepsilon_j = n_j^2$ тензора диэлектрической проницаемости смеси даются выражением [8]

$$\varepsilon_j - 1 = 4\pi N \Sigma_\alpha x_\alpha \gamma_j^\alpha f_j^\alpha. \tag{1}$$

Здесь $N = \Sigma_{\alpha} N_{\alpha}$, $x_{\alpha} = N_{\alpha}/N$ – мольная доля α молекул в смеси. Компоненты γ_i^{α} имеют вид

$$\gamma_{\parallel}^{\alpha} = \gamma_m^{\alpha} + (2/3)\delta\gamma_{\alpha}, \quad \gamma_{\perp}^{\alpha} = \gamma_m^{\alpha} - (1/3)\delta\gamma_{\alpha}.$$
(2)

Для одноосных α -молекул с продольной (γ_l^{α}) и поперечными (γ_l^{α}) компонентами поляризуемости имеем

$$\gamma_m^{\alpha} = (\gamma_l^{\alpha} + 2\gamma_l^{\alpha})/3, \quad \delta \gamma_{\alpha} = S_{\alpha} \Delta \gamma_{\alpha}. \tag{3}$$

Здесь $S_{\alpha} = \langle 3\cos^2\theta - 1 \rangle_{\alpha}/2; \theta$ – угол между **n** и продольной осью молекулы; скобки $\langle ... \rangle_{\alpha}$ означают усреднение по ансамблю α -молекул; $\Delta \gamma_{\alpha} = (\gamma_l^{\alpha} - \gamma_t^{\alpha})$ – анизотропия поляризуемости α -молекул. В общем случае величины γ_m^{α} , $\Delta \gamma_{\alpha}$ для α -молекул. В смеси отличаются от аналогичных величин для состоящего из α -молекул однокомпонентного ЖК (α -ЖК) с тем же типом мезофазы, что и ЖК-смесь. То же относится к величинам $S_{\alpha}(\Delta T)$ при одинаковых значениях $\Delta T = T_c - T$, где T_c – температура перехода между двумя фазами (например, нематической и изотропной), имеющимися как в ЖКсмеси, так и в α -ЖК.

В системе осей *j* эллипсоида рефракции смеси локальное поле световой волны $E_j^{\alpha}(\omega) = f_j^{\alpha}(\omega)E_j(\omega)$, поляризующее α -молекулы, отличается от макроскопического (среднего) поля $E_j(\omega)$ световой волны в смеси. В формуле (1) компоненты тензора локального поля имеют вид [8]

$$f_j^{\alpha}(\omega) = 1 + L_j^{\alpha}[\varepsilon_j(\omega) - 1].$$
(4)

Компоненты L_j^{α} тензоров Лорентца L^{α} ($\Sigma_j L_j^{\alpha} = 1$) в смеси зависят от x_{α} , и при сравнимых значениях x_{α} последовательный расчет величин L_j^{α} невозможен в силу статистической природы пространственного и ориентационного распределений молекул смеси. Для ЖК-смеси экспериментально определяются значения [8, 10]

$$L_j = \sum_{\alpha} x_{\alpha} L_j^{\alpha}, \quad \sum_j L_j = \sum_{\alpha} x_{\alpha} (\sum_j L_j^{\alpha}) = 1$$
(5)

и используется тензор локального поля с компонентами [8, 10]

$$f_j = \sum_{\alpha} x_{\alpha} f_j^{\alpha} = 1 + L_j (\varepsilon_j - 1).$$
 (6)

В результате для ЖК-смеси компоненты ε_j с высокой точностью даются выражением [10]

$$\varepsilon_j - 1 = 4\pi N \gamma_j f_j \tag{7}$$

с величиной $f_j(6)$ и усредненными компонентами

$$\gamma_j = \sum_{\alpha} x_{\alpha} \gamma_j^{\alpha}. \tag{8}$$

Отсюда для величин $\gamma_m = (\gamma_{\parallel} + 2\gamma_{\perp})/3$ и $\delta\gamma = \gamma_{\parallel} - \gamma_{\perp}$, приходящихся на одну молекулу смеси, с учетом (2) и (3) получаем экспериментально измеряемые значения

$$\gamma_m = \Sigma_\alpha x_\alpha \gamma_m^\alpha, \quad \delta \gamma = \Sigma_\alpha x_\alpha \delta \gamma_\alpha. \tag{9}$$

Используя комбинации

$$\varepsilon_m = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3, \quad \Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$$
(10)

компонент ε_j (7), введем параметр $Q = \Delta \varepsilon / (\varepsilon_m - 1)$, связанный с величинами (9) выражением [10]

$$\delta \gamma = \gamma_m Q(1 + \sigma). \tag{11}$$

Здесь $\sigma \propto \Delta f$ – поправка на анизотропию $\Delta f = f_{\parallel} - f_{\perp}$ компонент f_j (6). Помечая штрихом величины, относящиеся к чистому α -ЖК, запишем для него аналогичную связь [11]

$$(\delta \gamma_{\alpha})' = (\gamma_m^{\alpha})' Q_{\alpha} (1 + \sigma_{\alpha}'), \qquad (12)$$

где $\sigma_{\alpha}' \propto (\Delta f_{\alpha})'$ – поправка на анизотропию $(\Delta f_{\alpha})' = (f_{\parallel}^{\alpha} - f_{\perp}^{\alpha})'$ компонент $(f_{j}^{\alpha})'$ в α -ЖК, которые отличаются от компонент f_{j}^{α} (4) для α -молекул в смеси.

Соотношение аддитивности для Δn

С использованием разности $\xi(\delta \gamma_{\alpha}) = \delta \gamma_{\alpha} - (\delta \gamma_{\alpha})'$ преобразуем выражение для $\delta \gamma$ (9) к виду

$$\delta \gamma = \Sigma_{\alpha} x_{\alpha} (\delta \gamma_{\alpha})' + \Sigma_{\alpha} x_{\alpha} \xi (\delta \gamma_{\alpha}). \tag{13}$$

С учетом экспериментальных данных [10–12] при переходе от α -ЖК к ЖК-смеси изменение $\xi(\Delta \gamma_{\alpha}) = \Delta \gamma_{\alpha} - (\Delta \gamma_{\alpha})'$ относительно $(\Delta \gamma_{\alpha})'$ существенно меньше изменения $\xi(S_{\alpha}) = S_{\alpha} - S_{\alpha}'$ относительно S_{α} и можно записать $\xi(\delta \gamma_{\alpha}) = (\Delta \gamma_{\alpha})'\xi(S_{\alpha})$. Для части α молекул знаки величин $\xi(S_{\alpha})$ различны, а связанные с ними слагаемые частично компенсируют друг друга, причем $|\xi(S_{\alpha})| \ll S_{\alpha}'$. Так что вторым слагаемым в правой части (13) можно пренебречь. С учетом этого подстановка ($\delta \gamma_{\alpha}$)' из (12) в (13) дает

$$\delta \gamma = \Sigma_{\alpha} x_{\alpha} (\gamma_m^{\alpha})' Q_{\alpha} (1 + \sigma_{\alpha}'). \tag{14}$$

Далее используем разности $\xi(\sigma_{\alpha}') = \sigma_{\alpha}' - \sigma$ с поправкой σ (11). В результате формула (14) примет вид

$$\delta \gamma = (1 + \sigma) \Sigma_{\alpha} x_{\alpha} (\gamma_m^{\alpha})' Q_{\alpha} + + \Sigma_{\alpha} x_{\alpha} (\gamma_m^{\alpha})' Q_{\alpha} \xi(\sigma_{\alpha}').$$
(15)

Для части α -молекул знаки величин $\xi(\sigma_{\alpha}')$ различны, а связанные с ними слагаемые частично компенсируют друг друга, причем $|\xi(\sigma_{\alpha}')| \ll (1 + \sigma)$ [10]. В результате вторым слагаемым в правой части (15) можно пренебречь, и с учетом (11), (12) получаем выражение

$$\gamma_m Q = \Sigma_\alpha x_\alpha (\gamma_m^\alpha)' Q_\alpha, \qquad (16)$$

вид которого не зависит явно от поправок σ_{α}' и σ на локальное поле. Однако связь величин γ_m и $(\gamma_m{}^{\alpha})'$ со значениями ε_j и $\varepsilon_j{}^{\alpha}$ зависит от анизотропии локального поля в ЖК-смеси и α -ЖК.

Для исключения γ_m из обеих частей (16) используем для ЖК-смеси связь [9]

$$\frac{\varepsilon_m - 1}{N(\varepsilon_m + 2)} = \frac{4\pi\gamma_m}{3}(1 + \eta)$$
(17)

и аналогичную связь для α-ЖК. Здесь коэффициент η имеет вид

$$\eta = \frac{2\tau\Delta\varepsilon}{\varepsilon_m + 2} + \frac{2S\Delta\gamma\Delta f}{3\gamma_m(\varepsilon_m + 2)},$$
(18)

где $\tau = (L_{\parallel} - L_{\perp})/3$. Для чистых каламитных (дискотических) ЖК, а также для их ЖК-смесей, выполняются неравенства $\eta < 0$ и $|\eta| << 1$ [9–12]. С использованием разностей $\xi(\eta_{\alpha}') = \eta_{\alpha}' - \eta$ и коэффициентов

$$\kappa = (n_{\parallel} + n_{\perp})/(\varepsilon_m + 2) \tag{19}$$

для ЖК-смеси и α-ЖК подстановка (17) в (16) дает выражение

$$\kappa \Delta n = N \Sigma_{\alpha} x_{\alpha} V_{\alpha}' \Delta n_{\alpha} \kappa_{\alpha} - N \Sigma_{\alpha} x_{\alpha} V_{\alpha}' \Delta n_{\alpha} \kappa_{\alpha} \xi(\eta_{\alpha}') / (1 + \eta_{\alpha}').$$
(20)

Для части α -молекул знаки величин $\xi(\eta_{\alpha}')$ различны, а связанные с ними слагаемые частично компенсируют друг друга, причем $|\xi(\eta_{\alpha}')| \ll (1 + \eta_{\alpha}')$. В результате вторым слагаемым в правой части (20) можно пренебречь. Далее в первом слагаемом (20) учтем, что $V_{\alpha}' = M_{\alpha}/(N_A\rho_{\alpha})$ – объем, приходящийся на молекулу в α -ЖК, M_{α} – молекулярный вес α -молекул, N_A – число Авогадро, $N = 1/V = N_A \rho/M$, $V = \Sigma_{\alpha} x_{\alpha} V_{\alpha}'$ – объем, приходящийся на молекулу в ЖК-смеси, $M = \Sigma_{\alpha} x_{\alpha} M_{\alpha}$, ρ – плотность ЖК-смеси. Переходя к объемным долям $\varphi_{\alpha} = N x_{\alpha} V_{\alpha}' \alpha$ -компонентов ЖК-смеси до их смешивания, из (20) получаем

$$\kappa \Delta n = \Sigma_{\alpha} \varphi_{\alpha} \Delta n_{\alpha} \kappa_{\alpha}. \tag{21}$$

Значения ϕ_{α} отличаются от объемных долей $y_{\alpha} = Nx_{\alpha}V_{\alpha} = N_{\alpha}V_{\alpha}$ [9] α -компонентов ЖК-смеси после их смешивания, где V_{α} – объем, приходящийся на α -молекулу в ЖК-смеси. В экспериментальном плане обычно задаются значения ϕ_{α} .

Коэффициенты к_α в (21) слабо различаются для чистых α-ЖК разных химических классов и слабо меняются при изменении величин $n_i^{\alpha}(\Delta T, \lambda)$ в широком диапазоне температур мезофазы и длин λ световой волны [9, 13–15]. При одинаковых значениях ΔT , λ и *j* для ЖК-смеси и α -ЖК значения n_i для смеси заключены в интервале $\min\{n_i^{\alpha}\} < n_i < n_i$ $\max\{n_{j}^{\alpha}\}$ между минимальным и максимальным значениями n_i^{α} для ансамбля α -ЖК. Вследствие этого величина к (19) для смеси заключена к узком интервале min{ κ_{α} } < κ < max{ κ_{α} } между минимальным и максимальным значениями к_α для ансамбля α-ЖК. Отсюда следует слабая зависимость к для ЖК-смеси от химической структуры αмолекул, значений ΔT и λ в области прозрачности. Используя в (21) разности $\xi(\kappa_{\alpha}) = \kappa_{\alpha} - \kappa$, получаем

$$\kappa \Delta n = \kappa \Sigma_{\alpha} \varphi_{\alpha} \Delta n_{\alpha} + \Sigma_{\alpha} \varphi_{\alpha} \Delta n_{\alpha} \xi(\kappa_{\alpha}).$$
 (22)

Из ограничений на к следует, что для части α -ЖК знаки величин $\xi(\kappa_{\alpha})$ различны, а связанные с ними слагаемые в (22) частично компенсируют друг друга, причем $|\xi(\kappa_{\alpha})| << \kappa$, и второе слагаемое в (22) пренебрежимо мало в сравнении с первым. В результате окончательно имеем

$$\Delta n = \Sigma_{\alpha} \varphi_{\alpha} \Delta n_{\alpha}. \tag{23}$$

Соотношения аддитивности для ε_m

Используем восприимчивость $\chi_m = (\varepsilon_m - 1)/4\pi$ и следующее из формул (6)–(9) соотношение

$$\chi_m = N \Sigma_\alpha x_\alpha (f_m \gamma_m^\alpha + 2\Delta f \,\delta \gamma_\alpha / 9). \tag{24}$$

Здесь $f_m = (f_{\parallel} + 2f_{\perp})/3$ и $\Delta f = (f_{\parallel} - f_{\perp})$ – комбинации компонент f_j (6), а величины γ_m^{α} , $\delta \gamma_{\alpha}$ даются выражениями (3). Учитывая изменение $\delta \gamma_{\alpha}$ при переходе от α -ЖК к смеси и пренебрегая слабым изменением (γ_m^{α})', используем в (24) вместо γ_m^{α} выражение [8]

$$(\gamma_m^{\alpha})' = \frac{\chi_m^{\alpha} M_{\alpha}}{N_A \rho_{\alpha} (f_m^{\alpha})'} - \frac{2}{9(f_m^{\alpha})'} \delta \gamma'_{\alpha} \Delta f'_{\alpha}.$$
(25)

В результате имеем

$$\frac{\chi_m M}{N_A \rho} = \sum_{\alpha} x_{\alpha} \left(\frac{\chi_m^{\alpha} M_{\alpha} f_m}{N_A \rho_{\alpha} (f_m^{\alpha})'} - \frac{2f_m}{9(f_m^{\alpha})'} \delta \gamma'_{\alpha} \Delta f'_{\alpha} + \frac{2}{9} \delta \gamma_{\alpha} \Delta f \right).$$
(26)

Здесь ρ и ρ_{α} – плотности ЖК-смеси и α -ЖК. В скобках (26) второе и третье слагаемые разного знака имеют второй порядок малости по сравнению с первым и, в дополнение к этому, частично взаимно компенсируются. В результате с высокой точностью выполняется соотношение

$$\frac{M}{\rho}(\varepsilon_m - 1) = \sum_{\alpha} x_{\alpha} \left[\frac{M_{\alpha}}{\rho_{\alpha}} (\varepsilon_m^{\alpha} - 1) \frac{f_m}{(f_m^{\alpha})'} \right].$$
(27)

Если учесть, что с точностью до слагаемых второго порядка малости справедливы выражения $f_m = (\varepsilon_m + 2)/3$ и $(f_m^{\alpha})' = (\varepsilon_m^{\alpha} + 2)/3$ [9], то из (27) следует соотношение аддитивности молярных рефракций для ЖК-смеси

$$\frac{M(\varepsilon_m - 1)}{\rho(\varepsilon_m + 2)} = \sum_{\alpha} x_{\alpha} \left[\frac{M(\varepsilon_m - 1)}{\rho(\varepsilon_m + 2)} \right]_{\alpha}.$$
 (28)

При использовании массовых долей $w_{\alpha} = x_{\alpha}M_{\alpha}/M$ α -компонентов ЖК-смеси это соотношение принимает вид

$$\frac{(\varepsilon_m - 1)}{\rho(\varepsilon_m + 2)} = \sum_{\alpha} w_{\alpha} \left[\frac{(\varepsilon_m - 1)}{\rho(\varepsilon_m + 2)} \right]_{\alpha}.$$
 (29)

В работах [1, 6] здесь вместо массовых долей w_{α} фигурируют мольные доли x_{α} , что допустимо при равных или близких значениях $M_{\alpha} \approx M$. Концентрации ϕ_{α} и w_{α} связаны выражением

$$\varphi_{\alpha} = w_{\alpha} \rho / \rho_{\alpha} = (w_{\alpha} / \rho_{\alpha}) [\Sigma_{\alpha} w_{\alpha} / \rho_{\alpha}]^{-1}.$$
(30)

С учетом этого формула (29) преобразуется к виду

$$(\varepsilon_m - 1)/(\varepsilon_m + 2) = P = \Sigma_\alpha \varphi_\alpha P_\alpha, \qquad (31)$$

откуда следует наиболее простая форма соотношения аддитивности для ε_m :

$$\varepsilon_m + 2 = [\Sigma_\alpha \varphi_\alpha / (\varepsilon_m^\alpha + 2)]^{-1}.$$
(32)

Переходя здесь к разностям $\xi(\varepsilon_m^{\alpha}) = \varepsilon_m^{\alpha} - \varepsilon_m$ и параметрам $u_{\alpha} = \xi(\varepsilon_m^{\alpha})/(\varepsilon_m + 2)$, получаем соотношение

$$\Sigma_{\alpha} \varphi_{\alpha} / (1 + u_{\alpha}) = 1.$$
(33)

Разложение $(1 + u_{\alpha})^{-1}$ в ряд по степеням u_{α} и учет $\Sigma_{\alpha} \phi_{\alpha} = 1$ дает связь

$$\varepsilon_m = \sum_{\alpha} \varphi_{\alpha} \varepsilon_m^{\alpha} + \sum_{q \ge 2} \frac{(-1)^{q-1}}{(\varepsilon_m + 2)^{q-1}} \sum_{\alpha} \varphi_{\alpha} [\xi(\varepsilon_m^{\alpha})]^q .$$
(34)

В квадратичном по параметрам ξ(ε_m^α) приближении отсюда следует выражение

$$\varepsilon_m = \Sigma_\alpha \varphi_\alpha \varepsilon_m{}^\alpha - \frac{1}{\varepsilon_m + 2} \Sigma_\alpha \varphi_\alpha [\xi(\varepsilon_m{}^\alpha)]^2.$$
(35)

Отметим, что неравенство $\varepsilon_m < \Sigma_{\alpha} \varphi_{\alpha} \varepsilon_m^{\alpha}$ выполняется также для средней (эффективной) диэлектрической проницаемости изотропных мелкодисперсных смесей (эмульсий, порошков и т.п.) [16] и композитных материалов с частицами, мезоскопические размеры которых много меньше длины световой волны. В силу неравенств $\varphi_{\alpha} < 1$, $\xi(\varepsilon_m^{\alpha}) << \{\varepsilon_m, \varepsilon_m^{\alpha}\}$ второе слагаемое в (35) пренебрежимо мало по сравнению с первым, результатом чего является соотношение

$$\varepsilon_m \approx \Sigma_\alpha \varphi_\alpha \varepsilon_m^{\alpha}.$$
 (36)

Из (35) следует неравенство

$$n_m = \varepsilon_m^{1/2} < [\Sigma_\alpha \varphi_\alpha \varepsilon_m^\alpha]^{1/2}. \tag{37}$$

Для величин $n_m^{\alpha} = (\varepsilon_m^{\alpha})^{1/2}$ выполняется неравенство

$$\Sigma_{\alpha} \varphi_{\alpha} n_m^{\ \alpha} < [\Sigma_{\alpha} \varphi_{\alpha} \varepsilon_m^{\ \alpha}]^{1/2}. \tag{38}$$

На основании (36)–(38) можно ожидать выполнения соотношения

$$n_m \approx \Sigma_\alpha \varphi_\alpha n_m^\alpha \tag{39}$$

с высокой точностью.

$$\langle n \rangle = (n_{\parallel} + 2n_{\perp})/3 \tag{40}$$

для смеси и аналогичные величины $\langle n \rangle_{\alpha}$ для α -ЖК. Из выражения (19) следует связь

$$\Delta n = 3\kappa(\varepsilon_m + 2) - 6\langle n \rangle \tag{41}$$

для ЖК-смеси. С учетом аналогичных выражений для α-ЖК получаем

$$\Sigma_{\alpha}\varphi_{\alpha}\Delta n_{\alpha} = 3\Sigma_{\alpha}\varphi_{\alpha}\kappa_{\alpha}(\varepsilon_{m}^{\alpha}+2) - 6\Sigma_{\alpha}\varphi_{\alpha}\langle n\rangle_{\alpha}.$$
 (42)

Подстановка сюда выражений $\kappa_{\alpha} = \kappa + \xi(\kappa_{\alpha})$ дает

$$\Sigma_{\alpha} \varphi_{\alpha} \Delta n_{\alpha} = 3\kappa \Sigma_{\alpha} \varphi_{\alpha} (\varepsilon_{m}^{\alpha} + 2) + + 3\Sigma_{\alpha} \varphi_{\alpha} (\varepsilon_{m}^{\alpha} + 2) \xi(\kappa_{\alpha}) - 6\Sigma_{\alpha} \varphi_{\alpha} \langle n \rangle_{\alpha}.$$
(43)

Как отмечено выше, для части α -ЖК знаки величин $\xi(\kappa_{\alpha})$ различны, а связанные с ними члены второй суммы в правой части (43) частично компенсируют друг друга, причем $|\xi(\kappa_{\alpha})| << \kappa$. В результате вторая сумма в правой части (43) пренебрежимо мала по сравнению с первой и ею можно пренебречь. С учетом этого и формулы (23) из сравнения (41) и (43) следует соотношение

$$\langle n \rangle = \Sigma_{\alpha} \varphi_{\alpha} \langle n \rangle_{\alpha} + (\kappa/2) (\varepsilon_m - \Sigma_{\alpha} \varphi_{\alpha} \varepsilon_m^{\alpha}).$$
 (44)

В приближении (35) имеем

$$\langle n \rangle \approx \Sigma_{\alpha} \varphi_{\alpha} \langle n \rangle_{\alpha} - \frac{\kappa}{2(\varepsilon_m + 2)} \Sigma_{\alpha} \varphi_{\alpha} [\xi(\varepsilon_m^{\alpha})]^2.$$
 (45)

Комбинация формул (23), (44) дает выражение

$$n_j = \sum_{\alpha} \varphi_{\alpha} n_j^{\alpha} + (\kappa/2) (\varepsilon_m - \sum_{\alpha} \varphi_{\alpha} \varepsilon_m^{\alpha}).$$
 (46)

Приближению (35) отвечает соотношение

$$n_j \approx \Sigma_{\alpha} \varphi_{\alpha} n_j^{\alpha} - \frac{\kappa}{2(\varepsilon_m + 2)} \Sigma_{\alpha} \varphi_{\alpha} [\xi(\varepsilon_m^{\alpha})]^2. \quad (47)$$

Поправки к суммам $\Sigma_{\alpha} \varphi_{\alpha} n_j^{\alpha}$ в формулах (46), (47) не зависят от индекса *j*, в результате чего из этих формул следует выражение для Δn , совпадающее с (23). С учетом того, что к/2 \approx 0.36 [9, 13–15] и второе слагаемое в формулах (45), (47) пренебрежимо мало по сравнению с первым, можно ожидать выполнения высокоточных соотношений

$$n_j \approx \Sigma_\alpha \varphi_\alpha n_j^\alpha, \quad \langle n \rangle \approx \Sigma_\alpha \varphi_\alpha \langle n \rangle_\alpha.$$
 (48)

Перейдем к экспериментальной проверке полученных соотношений аддитивности.

Сравнение с экспериментом

Необходимые экспериментальные данные относятся к нематическим смесям *параазоксианизола* (РАА, $\alpha = 1$, $M_1 = 258,279$) с *параазоксифенетолом* (РАР, $\alpha = 2$, $M_2 = 286,333$). Они включают значения показателей преломления n_j^{α} и n_j в широких интервалах изменения $\Delta T = T_{\rm NI} - T$ и λ при нескольких значениях массовой доли $w(\rm PAP) = w_2$ [4, 5]. Согласно примечанию авторов работы [6] на стр. С4-26, в работах [4, 5] индекс т

означает долю w₂. Значения n_i^α и n_i для нематических фаз РАА, РАР и их смеси с $w_2 = 0,4$ при указанных значениях ΔT и λ приведены в таблице. С учетом связи (30) плотности $\rho_1 = 1,155$ и 1,180 г/см³ ($\rho_2 = 1,072$ и 1,098 г/см³) при температурах $\Delta T = 1$ и 27 °C [5] дают величины $\varphi_2 = 0,418$ и 0,417, которые отличаются от w_2 меньше, чем мольная доля $x_2 = w_2 M_1 / [M_2 - w_2 (M_2 - M_1)] = 0,376$ [6]. Выбор температур $\Delta T = 1$ и 27 °С (значений $\lambda = 0,589$ и 0,48 мкм) связан с проверкой соотношений аддитивности в условиях сильного и слабого температурного изменения (слабой и сильной спектральной дисперсии) величин n_i^{α} и n_i . При $\lambda >$ 0,589 мкм и $\Delta T > 27$ °C точность экспериментальных значений *п*⊥^α и *п*⊥ мала [4, 5] из-за близости точек $T_0(\lambda)$ минимума на зависимостях $n_{\perp}^{\alpha}(\Delta T)$ и $n_{\perp}(\Delta T)$ [17].

Таблица. Показатели преломления $n_j^{(1)}$, $n_j^{(2)}$ и n_j [4,5] нематических фаз РАА, РАР и их смеси с массовой долей $w(PAP) = w_2 = 0,4$ вместе с экспериментальными и рассчитанными значениями к (19), Δn (23), P (31), ε_m (36), n_m (39), n_j и $\langle n \rangle$ (48), при указанных значениях λ (мкм) и $\Delta T = T_{NI} - T$ (°C)

Table. Refractive indices $n_j^{(1)}$, $n_j^{(2)}$ and n_j [4,5] of nematic phases of PAA and PAP, and their mixture with the mass fraction $w(PAP) = w_2 = 0.4$, along with the experimental and calculated values of κ (19), Δn (23), P (31), ε_m (36), n_m (39), n_j and $\langle n \rangle$ (48) for indicated values λ (µm) and $\Delta T = T_{NI} - T$ (°C)

λ	0,589		0,480	
ΔT	1	27	1	27
$n_{\parallel}^{(1)}$	1,779	1,866	1,885	1,995
$n_{\parallel}^{(2)}$	1,758	1,833	1,860	1,956
n_{\parallel}	1,768	1,852	1,875	1,977
$\Sigma_{\alpha} \varphi_{\alpha} n_{\parallel}^{\alpha}$	1,770	1,852	1,875	1,979
$n_{\perp}^{(1)}$	1,581	1,559	1,626	1,595
$n \perp^{(2)}$	1,530	1,515	1,563	1,543
n_{\perp}	1,561	1,543	1,599	1,577
$\Sigma_{\alpha} \varphi_{\alpha} n_{\perp}^{\alpha}$	1,560	1,541	1,600	1,573
κ ₁	0,712	0,716	0,710	0,715
κ ₂	0,716	0,720	0,716	0,720
к	0,713	0,718	0,712	0,716
Δn_1	0,198	0,307	0,259	0,400
Δn_2	0,228	0,318	0,297	0,413
Δn	0,207	0,309	0,276	0,400
$\Sigma_{\alpha}\phi_{\alpha}\Delta n_{\alpha}$	0,210	0,312	0,275	0,405
$\langle n \rangle_1$	1,647	1,661	1,712	1,728
$\langle n \rangle_2$	1,606	1,621	1,662	1,681
$\langle n \rangle$	1,630	1,645	1,691	1,710
$\Sigma_{\alpha}\phi_{\alpha}\langle n\rangle_{\alpha}$	1,630	1,646	1,691	1,709
$\varepsilon_m^{(1)}$	2,721	2,781	2,947	3,023
$\varepsilon_m^{(2)}$	2,591	2,650	2,782	2,863
Em	2,666	2,731	2,876	2,961

Продолжение таблицы

$\Sigma_{\alpha} \phi_{\alpha} \varepsilon_m{}^{\alpha}$	2,667	2,726	2,878	2,956
$n_{m}^{(1)}$	1,650	1,668	1,717	1,739
$n_m^{(2)}$	1,610	1,628	1,668	1,692
n_m	1,633	1,652	1,696	1,721
$\Sigma_{\alpha} \varphi_{\alpha} n_m^{\alpha}$	1,633	1,651	1,696	1,719
P_1	0,365	0,373	0,394	0,403
P_2	0,347	0,555	0,373	0,383
Р	0,357	0,366	0,385	0,395
$\Sigma_{\alpha} \phi_{\alpha} P_{\alpha}$	0,357	0,365	0,385	0,395

Анализ табличных данных начнем с проверки эмпирических ограничений на параметры к_α (19) для однокомпонентных ЖК [9, 13–15] и ожидаемых ограничений на к для ЖК-смеси, поскольку эти ограничения использовались при выводе соотношений аддитивности для величин Δn (23), n_i и $\langle n \rangle$ (48). Табличные значения κ_{α} и к близки между собой и слабо увеличиваются с ростом ΔT при $\lambda =$ Const или уменьшаются при снижении λ и $\Delta T =$ *Const.* При одинаковых парах $\{\Delta T, \lambda\}$ для α -ЖК и ЖК-смеси выполняются ожидаемые ограничения $\kappa_1 < \kappa < \kappa_2$ и ($\kappa_2 - \kappa_1$) $\ll \kappa$, что обосновывает их использование в рамках развитого выше подхода. Различие экспериментальных и рассчитанных по (23) значений Δn не превышает 0,003, что достаточно для расчета и прогнозирования фазовой задержки электрооптических ЖК-ячеек [1].

С наибольшей точностью выполняются соотношения аддитивности для величин Р (31), єт (36), *n_m* (39) и (*n*) (48). При этом формула (31) получена без использования эмпирических соотношений. Для четырех рассмотренных пар $\{\Delta T, \lambda\}$ второе слагаемое в правой части формулы (35) не превышает значения 0,003, что объясняет высокую точность формул (36), (39). Для всех пар $\{\Delta T, \lambda\}$ второе слагаемое в правых частях формул (45), (47) не превышают значения 0,001, что соответствует высокой точности формул (45), (48). Различие экспериментальных и рассчитанных по (48) значений n_i не превышает 0,003, что близко к точности 0,001 экспериментальных значений n_i^{α} и n_i [4, 5] и достаточно для прогнозирования анизотропных оптических свойств ЖК-смесей.

Выводы

Результаты работы сводятся к следующему: – впервые дан последовательный микроскопический вывод соотношений аддитивности для основных оптических параметров (величин n_j , $\Delta n = n_{\parallel} - n_{\perp}$, $\langle n \rangle = (n_{\parallel} + 2n_{\perp})/3$, $\varepsilon_m = (n_{\parallel}^2 + 2n_{\perp}^2)/3$, $n_m = \varepsilon_m^{1/2}$) ЖК-смесей с учетом ранее установленных экспериментальных данных о свойствах тензоров молекулярной поляризуемости и локального поля световой волны для ЖК-смеси и ее чистых ЖК-компонентов;

 установлены и подтверждены ограничения на параметр к (19) для ЖК-смеси, использованные при выводе соотношении аддитивности;

– получены и оценены поправки к аддитивным значениям величин n_j , $\langle n \rangle$, ε_m , n_m для ЖК-смеси; – все соотношения аддитивности подтверждены с высокой точностью для нематической смеси РАА

высокой точностью для нематической смеси РАА с РАР в широком интервале температур $\Delta T = T_{\rm NI} - T$ и длин λ световой волны в области прозрачности.

Это открывает новые возможности для объяснения, оптимизации и прогнозирования свойств ЖК-материалов.

Список литературы / References

- Блинов Л. М. Электро- и магнитооптика жидких кристаллов. М. : Наука, 1978. 384 с. [Blinov L.M. Eectro-optics and magneto-optics of liquid crystals, Moscow : Nauka, 1978. 384 p. (in Russ.)].
- Гребенкин М. Ф., Иващенко А. В. Жидкокристаллические материалы. М. : Химия, 1989. 288 с. [Grebyonkin M.F., Ivashchenko A.V. Liquid-crystalline materials. Moscow : Khimiya, 1989. 288 p. (in Russ.)].
- Томилин М. Г., Пестов С. М. Свойства жидкокристаллических материалов. СПб. : Политехника, 2005. 296 с. [Tomilin M.G, Pestov S.M. Properties of liquid-crystalline materials. St. Petersburg: Politekhnika, 2005. 296 p. (in Russ.)].
- Chatelain P., Germain M. Indices des mélanges de para-azoxyanisole et de para-azoxyphénétole dans l'etat nématique. C. R. Acad. Sci. Paris., 1964, 259 (1), 127–130. https://gallica.bnf.fr/ark:/12148/ bpt6k40130/f127.item

 Brunet-Germain M. Indices des mélanges de paraazoxyanisole et de para-azoxyphénétole dans l'etat nématique. Interprétation des résultats a l'aide de la théorie de Maier et Saupe. *Mol. Cryst. Liq. Cryst.*, 1970, **11** (3), 289–303.
 DOL 10 1020/15421407002022520

DOI: 10.1080/15421407008083520.

- Chandrasekhar S., Madhusudana N.V. Orientational order in p-azoxyanisole, p-azoxyphenetole and their mixtures in the nematic phase. *J. de Phys. Colloq. C4*, 1969, **30** (11–12), C4-24–C4-27. DOI: 10.1051/jphyscol:1969406.
- Palffy-Muhoray P., Dunmur D.A., Price A. Orientational order and refractive indices in binary nematic mixtures. *Chem. Phys. Lett.*, 1982, **93** (6), 572–577.
 DOI: 10.1016/0009-2614(82)83732-9.
- Аверьянов Е. М. Структурная и оптическая анизотропия смешанных жидких кристаллов // Кристаллография. 1981. Т. 26, № 4. С. 673–676. [Aver'yanov E.M. Structural and optical anisotropy of mixed liquid crystals. Sov. Phys. Crystallogr., 1981, 26 (4), 381–384].
- Аверьянов Е. М. Эффекты локального поля в оптике жидких кристаллов. Новосибирск : Наука, 1999. 552 с. [Aver'yanov E.M. Effects of local field in optics of liquid crystals. Novosibirsk : Nauka, 1999. 552 p. (in Russ.). DOI: 10.13140/RG.2.1.4720.6882].
- 10. Аверьянов Е. М. Молекулярно-оптическая и структурная анизотропия нематической смеси Е7 // Жидк. крист. и их практич. использ. 2019. Т. 19, № 1. С. 42–51. [Aver'yanov E.M. Molecular-optical and structural anisotropy of the nematic mixture E7. Liq. Cryst. and their Appl., 2019, **19** (1), 42–51. **DOI:** 10.18083/LCAppl.2019.1.42].
- Аверьянов Е. М. Новая парадигма исследования мягкой материи // Жидк. крист. и их практич. использ. 2013. Вып. 2. С. 42–51. [Aver'yanov E.M. New paradigm for investigation of soft matter. Liq. Cryst. and their Appl., 2013, 2, 42–51 (in Russ.)].

- 12. Аверьянов Е. М. Изменение поляризуемости молекул при фазовых переходах изотропная жидкость – нематик – смектик A – кристалл B в жидком кристалле 40.8 // Жидк. крист. и их практич. использ. 2017. Т. 17, № 2. С. 6–13. [Aver'yanov E.M. Change of polarizability of molecules at the isotropic liquid – nematic – smectic A – crystal B phase transitions of the liquid crystal 40.8. Liq. Cryst. and their Appl., 2017, 17 (2), 6–13 (in Russ.). DOI: 10.18083/LCAppl.2017.2.6].
- Poggi Y., Robert J., Borel J. Relations between liquid crystal order parameter and macroscopic physical coefficients – experimental proof. *Mol. Cryst. Liq. Cryst.*, 1975, **29** (2), 311–322.
 DOI: 10.1080/15421407508083208.
- 14. Wu S.-T. Birefringence dispersion of liquid crystals. *Phys. Rev. A*, 1986, **33** (2), 1270–1274. **DOI:**10.1103/PhysRevA.33.1270.
- Wu S.-T. A semi-empirical model for liquid crystal refractive index dispersion. J. Appl. Phys., 1991, 69 (4), 2080–2087. DOI: 10.1063/1.348734.
- Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. М. : Наука, 1982. 624 с. [Landau L.D., Lifshits E.M. Electrodynamics of continuous media. Moscow : Nauka, 1978. 384 p.].
- Аверьянов Е. М. Влияние дисперсии показателей преломления на особенности их температурного поведения в одноосных жидких кристаллах // Жидк. крист. и их практич. использ., 2007. Вып. 3. С. 5–13. [Aver'yanov E.M. Influence of dispersion of the refractive indices on the features of their temperature behavior in uniaxial liquid crystals. Liq. Cryst. and their Appl., 2007, 3, 5–13 (in Russ.)].

Поступила 24.06.2021 г. Received 24.06.2021 Принята 26.07.2021 г. Accepted 26.07.2021