03,04,19

Синтез, кристаллическая структура, люминесценция и теплофизические свойства TbGaGe₂O₇

© Л.Т. Денисова¹, М.С. Молокеев^{1,2}, А.С. Крылов², А.С. Александровский^{1,2}, Л.А. Иртюго¹, В.В. Белецкий¹, В.М. Денисов¹

 ¹ Сибирский федеральный университет, Красноярск, Россия
² Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
E-mail: antluba@mail.ru

Поступила в Редакцию 7 сентября 2020 г. В окончательной редакции 7 сентября 2020 г. Принята к публикации 16 сентября 2020 г.

Твердофазным методом из исходных оксидов Tb₂O₃, Ga₂O₃ и GeO₂ синтезирован германат TbGaGe₂O₇. С использованием рентгеновской дифракции определена его структура. При комнатной температуре измерены спектры люминесценции. Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на теплоемкость оксидного соединения. По экспериментальным данным $C_p = f(T)$ рассчитаны термодинамические свойства.

Ключевые слова: галлий германат тербия, твердофазный синтез, кристаллическая структура, люминесценция, высокотемпературная теплоемкость, термодинамические свойства.

DOI: 10.21883/FTT.2021.01.50401.190

1. Введение

Сложные оксидные соединения с общей формулой $RMGe_2O_7$ (R = P33; M = Al, Ga, In, Fe) могут быть идентифицированы в двух типах кристаллической структуры: тортвейтитоподобной и тортвейтитовой. Если соединения со структурой типа тортвейтита кристаллизуются в моноклинной сингонии (пр. гр. C2/m), то соединения с тортвейтитоподобной структурой кристаллизуются в различных пространственных группах ($C2, P2_1/m$, Р2₁/с, С2/с) [1]. Интерес исследователей и практиков к подобным соединениям обусловлен не только особенностями их структуры, но и возможностями их практического применения [1,2]. Последнее связано с использованием в качестве лазерных материалов [1,3], лазеров, рентгеновских люминофорных экранов, в ядерной промышленности [1,2]. К подобным материалам относится и TbGaGe₂O₇. Для него имеются сведения только о параметрах элементарной ячейки [4]. Данные об его люминесценции и теплофизическим свойствам в литературе отсутствуют. Можно полагать, что TbGaGe₂O₇ является наименее изученным из соединений RMGe₂O₇. Принимая это во внимание представлялось необходимым провести синтез TbGaGe $_2O_7$ и исследовать его структуру, люминесцентные и теплофизические свойства.

2. Синтез образцов и техника эксперимента

Германат $TbGaGe_2O_7$ получали твердофазным методом из исходных оксидов Tb_2O_3 , Ga_2O_3 и GeO_2 .

Стехиометрическую смесь готовили их предварительно прокаленных оксидов при 1173 К. Гомогенизацию проводили в агатовой ступке и затем прессовали таблетки. Их обжигали на воздухе последовательно при 1273 К (40 h), 1373 К (100 h) и 1473 К (70 h). С целью увеличения полноты твердофазной реакции таблетки через каждые 20 h перетирали и снова прессовали. Учитывая, что относительно высокие температуры приводят к частичному испарению GeO₂ [5], синтез проводили в тиглях с крышкой. При этом время синтеза и введение дополнительного количества GeO₂ подбирали экспериментально. Фазовый состав полученных образцов контролировали методом рентгеноструктурного анализа.

Порошковая рентгенограмма TbGaGe₂O₇ снята при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker, используя линейный детектор VANTEC и CuK_{α}-излучение. В ходе эксперимента использовалась щель первичного пучка 0.6 mm в диапазоне углов 2 θ = 11–120°. Шаг сканирования равен 0.016° и оставался постоянным во всем интервале углов, время экспозиции на каждом шаге 2s.

Спектры люминесценции измерены с помощью спектрометра Horiba-Jobin-YvonT6400 при комнатной температуре.

Измерение теплоемкости TbGaGe₂O₇ проводили на термоанализаторе STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной в работе [6]. Полученные результаты обрабатывали с помощью пакета программ NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента

Systat Sigma Plot 12 (Systat Software Inc, США). Ошибка экспериментов не превышала 2%.

3. Экспериментальные результаты

Практически все рефлексы, за исключением слабых примесных пиков, проиндицированы моноклинной ячейкой с параметрами близкими к таковым у SmFeGe₂O₇ [7], поэтому именно эта структура была использована в качестве исходной. Ион Sm был заменен на Tb, а ион Fe на Ga. Уточнение Ритвельда реализовано при помощи программы TOPAS 4.2 [8]. Результаты уточнения приведены в табл. 1 и на рис. 1. Координаты атомов и тепловые параметры представлены в табл. 2, а основные длины связей — в табл. 3. Структура TbGaGe₂O₇ показана на рис. 2. Сопоставление наших результатов по структуре TbGaGe₂O₇ с данными работы [4] (a = 7.12(1) Å, b = 6.53(1) Å, c = 12.72(1) Å, $\beta = 117.4(2)^\circ$, d = 6.15 g/sm³) показывает их удовлетворительное согласие между собой.

На рис. 3 показан спектр люминесценции нерезонансно возбуждаемого германата TbGaGe₂O₇. Для сравнения

Рис. 1. Разностная рентгенограмма уточнения Ритвельда TbGaGe₂O₇.

Рис. 2. Кристаллическая структура TbGaGe₂O₇.

Таблица 1. Основные параметри	ы съемки и уточнения струк-
туры кристалла TbGaGe ₂ O ₇ (пр. г	p. $P2_1/c)$

Параметр	Значение	
<i>a</i> , Å	7.1342(1)	
<i>b</i> , Å	6.5451(1)	
<i>c</i> , Å	12.7131(2)	
β , °	117.4824(9)	
$V, Å^3$	526.64(2)	
Ζ	4	
$d, g/sm^3$	6.13	
Интервал углов 2 θ , °	11-120	
$R_{wp}, \%$	2.71	
$R_{p}, \%$	1.90	
$R_{\rm exp}, \%$	1.87	
$\dot{\chi}^2$	1.95	
$R_B, \%$	0.71	

Примечание. а, b, c, β — параметры ячейки; V — объем ячейки; d — рассчитанная плотность; факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_{exp} — ожидаемый, R_B — интегральный; χ^2 — качество подгонки.

Таблица 2. Координаты атомов и изотропные тепловые параметры (*B*_{iso}) структуры TbGaGe₂O₇

Атом	x	у	Z	B_{iso}
Tb	0.7603(4)	0.1477(3)	0.02535(17)	0.72(14)
Ga1	0.7928(5)	0.3981(7)	0.2709(3)	0.43(15)
Ge1	0.7816(6)	0.6528(6)	0.0416(3)	0.40(16)
Ge2	0.3019(6)	0.4111(6)	0.2234(3)	0.52(16)
O1	0.574(3)	0.845(3)	0.0192(12)	0.7(2)
O2	0.772(2)	0.117(3)	0.2125(13)	0.7(2)
O3	0.560(2)	0.387(3)	0.3092(13)	0.7(2)
O4	0.005(3)	0.322(3)	0.4192(13)	0.7(2)
O5	0.732(3)	-0.004(2)	0.4119(14)	0.7(2)
O6	0.796(3)	0.459(2)	0.1399(15)	0.7(2)
07	0.150(3)	0.184(2)	0.1939(15)	0.7(2)

Таблица 3. Основные длины связей (Å) в структуре TbGaGe₂O₇

Длина связи	Значение	Длина связи	Значение
$Tb-O1^{(i)}$	2.365(17)	$Ga1-O4^{(vi)}$	1.836(15)
$Tb-O1^{(ii)}$	2.183(11)	Ga1-O6	1.721(16)
Tb-O2	2.352(14)	$Ga1-O7^{(vii)}$	1.926(16)
$Tb-O3^{(iii)}$	2.454(15)	Ge1-O1	1.864(15)
$Tb-O4^{(iv)}$	2.599(15)	Ge1–O4 ^(vii)	1.756(14)
$Tb-O4^{(v)}$	2.691(12)	Ge1–O5 ⁽ⁱⁱⁱ⁾	1.803(16)
$Tb-O5^{(iii)}$	2.702(15)	Ge1-O6	1.753(16)
Tb-O6	2.446(15)	$Ge2-O2^{(vii)}$	1.777(17)
$Tb-O7^{(vi)}$	2.623(15)	Ge2-O3	1.657(12)
Ga1-O2	1.961(19)	Ge2–O5 ^(vii)	1.714(16)
Ga1-O3	1.938(9)	Ge2–O7	1.772(15)

Примечание. Элементы симметрии: (i) x, y - 1, z; (ii) - x + 1, -y + 1, -z; (iii) x, -y + 1/2, z - 1/2; (iv) - x + 1/2, y - 1/2, -z + 1/2; (v) x + 1, -y + 1/2, z - 1/2; (vi) x + 1, y, z; (vii) - x + 1, y + 1/2, -z + 1/2.

T, K J/(mol · K)	$C_p, J/(\mathrm{mol} \cdot \mathrm{K})$	$H^{\circ}(T) - H^{\circ}(350 \mathrm{K}),$ kJ/mol	$S^{\circ}(T) - S^{\circ}(350 \mathrm{K}),$ J/(mol·K)	$\Phi^{\circ}(T)$,
350	222.4	_	_	-
400	233.9	11.42	30.49	1.93
450	242.5	23.34	58.56	6.69
500	249.3	35.64	84.47	13.19
550	254.7	48.25	108.5	20.77
600	259.6	61.12	130.9	29.03
650	263.8	74.20	151.8	37.68
700	267.6	87.49	171.5	46.54
750	271.1	100.9	190.1	55.50
800	274.3	114.6	207.7	64.47
850	277.4	128.4	224.4	73.39
900	280.3	142.3	240.4	82.23
950	283.1	156.4	255.6	90.95
1000	285.9	170.6	270.2	99.55

Таблица 4. Термодинамические свойства TbGaGe₂O₇

приведён спектр резонансно возбуждаемого кристалла β' -Tb₂(MoO₄)₃ [9]. На обоих спектрах хорошо видны основные люминесцентные переходы иона Tb³⁺. В частности, в исследуемом кристалле TbGaGe₂O₇ наблюдаются переходы ⁵D₄-⁷F₅, ⁵D₄-⁷F₄, ⁵D₄-⁷F₃, ⁵D₄-⁷F₂, ⁵D₄-⁷F₁ и ⁵D₄-⁷F₆, ⁵D₄-⁷F₅, ⁵D₄-⁷F₃, ⁵D₄-⁷F₃, ⁵D₄-⁷F₁, ⁵D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁵D₄-⁷F₃, ⁵D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁵D₄-⁷F₂, ⁵D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₄, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₂, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₄, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₁, ⁶D₄-⁷F₁, ⁶D₄-⁷F₃, ⁶D₄-⁷F₃, ⁶D₄-⁷F₁, ⁶D₄-⁷F₁

Рис. 3. Спектр люминесценции нерезонансно возбуждаемого германата TbGaGe₂O₇ (*1*) в сравнении со спектром резонансно возбуждаемого кристалла β' -Tb₂(MoO₄)₃ (*2*).

время признаков люминесценции на переходе ${}^5D_4 - {}^7F_6$ не наблюдается. Поскольку данный переход иона тербия является гиперчувствительным, следует полагать, что ион тербия в кристаллической решетке TbGaGe₂O₇ находится в локальном окружении, близком к окружению с центром инверсии. Кроме того, следует отметить, что максимальная интенсивность люминесценции наблюдается на переходах ${}^5D_4 - {}^7F_4$ и ${}^5D_4 - {}^7F_3$, полосы которых имеют примерно одинаковую интенсивность и сливаются в одну общую полосу, тогда как зачастую доминирующим является переход ${}^5D_4 - {}^7F_5$ [9]. Это указывает на дополнительные возможности управления параметрами интенсивности Джадда–Офельта, реализующимися в материалах исследуемого в работе класса галлогерманатов.

На рис. 4 показано влияние температуры на теплоемкость TbGaGe₂O₇. Видно, что при росте температуры от 350 до 1000 К значения C_p закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет различного рода экстремумов. Это позволяет считать, что у TbGaGe₂O₇ в этой области температур нет полиморфных превращений. Полученные данные могут быть описаны уравнением Майера–Келли [10]:

$$C_p = a + bT - cT^{-2}, (1)$$

которое для $TbGaGe_2O_7$ имеет следующий вид $(J/(mol \cdot K))$:

$$C_p = (246.80 \pm 0.76) + (43.91 \pm 0.80) \cdot 10^{-3}T$$
$$- (48.78 \pm 0.83) \cdot 10^5 T^{-2}. \tag{2}$$

Коэффициент корреляции для уравнения (2) равен 0.9992, а максимальное отклонение экспериментальных точек от сглаживающей кривой — 0.67%.

Поскольку в литературе данных о теплоемкости $TbGaGe_2O_7$ нет, то для сравнения на рис. 4 приведены

Рис. 4. Температурные зависимости молярной теплоемкости $Tb_2Ge_2O_7$ (1) и $TbGaGe_2O_7$ (2).

результаты измерений теплоемкости $Tb_2Ge_2O_7$ [11]. Видно, что для этих соединений значения C_p имеют близкие значения. В то же время при низких температурах они выше для $TbGaGe_2O_7$, тогда как при высоких температурах для этого германата они ниже.

С использованием уравнения (2) по известным термодинамическим соотношениям рассчитаны термодинамические свойства TbGaGe₂O₇. Эти результаты приведены в табл. 4. Из этих данных следует, что полученные нами значения C_p при T > 800 К превышают классический предел Дюлонга-Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице оксидного соединения (s = 11).

4. Заключение

Методом твердофазной реакции получено оксидное соединение TbGaGe₂O₇. Уточнена его кристаллическая структура и измерены спектры люминесценции. На основании экспериментальных результатов по высокотемпературной теплоемкости рассчитаны термодинамические свойства германата.

Благодарности

Авторы выражают благодарность Красноярскому региональному центру коллективного пользования ФИЦ КНЦ СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E.A. Juarez-Arellano, J. Campa-Molina, S. Ulloa-Godinez, L. Bucio, E. Orozco. Mater. Res. Soc. Symp. Proc. 848, FF6.15.1 (2005).
- [2] Л.Н. Демьянец, А.Н. Лобачев, Е.А. Емельченко. Германаты редкоземельных элементов. Наука, М. (1980). 152 с.
- [3] A.A. Kaminskii, H. Rhee, O. Lux, A. Kaltenbach, H.J. Eichler, J. Hanuza, S.N. Bagayev, H. Uonea, A. Shirakawa, K. Ueda. Laser. Phys. Lett. 10, 075803-1 (2013).
- [4] A.A. Kaminskii, B.V. Mill, A.V. Butashin, E.L. Belokoneva, K. Rurbanov. Phys. Status Solidi A 103, 575 (1987).
- [5] V.W. Becker, J. Felsche. J. Less-Commun. Met. **128**, 269 (1987).
- [6] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы 53, 1, 71 (2017).
- [7] T.V. Drokina, G.A. Perakovskii, D.A. Velikanov, M.S. Molokeev. Phys. Solid State 56, 6, 1131 (2014).
- [8] Bruker AXS TOPAC V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany (2008).
- [9] V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, A.S. Krylov, M.S. Molokeev, B.G. Bazarov, J.G. Bazarova, Z. Xia. Opt. Mater. 36, 10, 1631 (2014).
- [10] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 8, 3243 (1932).
- [11] Л.Т. Денисова, Ю.Ф. Каргин, Н.В. Белоусова, Л.А. Иртюго, В.М. Денисов, В.В. Белецкий. Неорган. материалы. 55, 9, 1007 (2019).

Редактор Т.Н. Василевская