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Abstract. The review discusses the emergence of the spin-
fermion model of cuprates and the formation of the spin-polaron
concept of the electronic structure of hole-doped cuprate super-
conductors. This concept has allowed describing the properties
of cuprates in the normal phase as well as the features of super-
conducting pairing in the unified approach. The derivation of
the spin-fermion model from the Emery model in the regime of
strong electronic correlations is described, demonstrating the
appearance of strong coupling between the spins of copper ions
and holes on oxygen ions. Such a strong interaction against the
background of the singlet state of the spin subsystem of copper
ions (quantum spin liquid) leads to the formation of special
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Fermi quasiparticles —nonlocal spin polarons. Under doping,
the spin-polaron ensemble exhibits instability with respect to
superconducting d-wave pairing, whereas superconducting s-
wave pairing is not implemented. At the optimal doping, the
transition to the superconducting phase occurs at temperatures
corresponding to experimental data. It is shown that the super-
conducting d-wave pairing of spin-polaron quasiparticles is
not suppressed by the Coulomb repulsion of holes located on
neighboring oxygen ions. It is emphasized that, when the spec-
tral characteristics of spin-polaron quasiparticles are taken into
account, the calculated temperature and doping dependences of
the London penetration depth are in good agreement with
experimental data.

Keywords: strongly correlated electron systems, high-temperature
superconductivity, spin polarons, intersite Coulomb interaction,
London penetration depth

1. Introduction

Recent experimental and theoretical studies of cuprate super-
conductors have been aimed at clarifying the features of their
electronic structure and testing the earlier-proposed mechan-
isms of superconducting pairing. To obtain data on the
electronic properties of these materials, spectral character-
istics of Fermi excitations in the normal phase of hole-doped
cuprates have been actively investigated [1-3], and the
behavior of quasiparticles in the pseudogap state have been
analyzed [4-8]. In addition, the thermodynamic features of
physical quantities under optimal doping have been discussed
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[9], and the properties of cuprate superconductors in the
intermediate state, induced by an external magnetic field,
have been considered [10]. Studies related to the manifesta-
tion of charge fluctuations [11], structural disordering [12,
13], and charge density waves [14, 15] have been also carried
out.

The accumulated results allowed a theoretical description
of cuprate high-temperature superconductors (HTSCs) in the
normal and superconducting phase within a unified concept.
It is based on considering basic and well-established chemical
and crystallographic principles of material structure. These
include, in particular, data on covalence effects between the
states of copper and oxygen ions, as well as on relations
between the energy parameters that determine the regime of
strong electronic correlation (SEC) in cuprate superconduc-
tors.

A factor of primary importance playing the main role in
the formation of all physical properties of the materials
mentioned above is associated with the strong spin-fermion
coupling between the localized subsystem of spin moments
of copper ions and holes moving over the oxygen ions that
arises as a result of covalent mixing [16—19]. Such coupling is
formed when SEC is taken into account and is characteristic
of many superconductors with high critical temperatures. The
presence of pronounced quasi-two-dimensionality in cuprate
superconductors increases the role of fluctuations caused by
the spin-fermion coupling. The circumstances mentioned
above determine the specific features of the low-temperature
properties of cuprate HTSCs in both the normal and super-
conducting phases [20].

Within the Emery model [22] reflecting the real structure
of the CuO, plane of an HTSC, the authors of Ref. [21]
showed that the additional hole arising in the plane under
doping forms a state strongly bound with the spin moment
localized on the copper ion. This circumstance gave reason to
believe that the properties of cuprate HTSCs can be described
within simpler effective low-energy models, such as the
t—J model [23]. However, the price for the relative simplicity
of these models was the fact that a number of important
features of the cuprate electronic structure were neglected. In
particular, the real structure of the CuO, plane, whose unit
cell includes two oxygen ions and one copper ion, was
ignored, and the spatial separation of spin moments of
copper and oxygen ions was not taken into account.

The above drawbacks are not inherent in the model
proposed in Refs [24-30], which was later called the spin-
fermion model [31]. However, in the present review, we will
call this model the spin-fermion model of cuprates (SFMC)
(see discussion in Section 3.3). The SFMC directly follows
from the Emery model, if we consider the effects of covalent
mixing of copper and oxygen orbitals using the perturbation
theory with the real relations between the parameters of the
initial Hamiltonian taken into account. The main advantage
of the SFMC is the possibility of correctly describing strong
spin-charge coupling caused by the strong exchange interac-
tion between the spin moments of copper ions and the spins of
holes on oxygen ions. This relation leads, in particular, to
spin-correlated hopping accompanied by spin-flip processes.
It was within the SFMC framework that the spin-polaron
concept was developed [32-36] to describe the spectral
properties of cuprate HTSCs in the normal phase.

From the point of view of the concept of a spin polaron,
within the SFMC, the splitting of the lower band of the
local polaron was investigated [37], which allowed, e.g., a

description of the sharp decrease in the intensity of spectral
peaks in experiments on angle-resolved photoemission
spectroscopy (ARPES) upon changing the quasimomentum
from (n/2,m/2) to (m,m) or (0,0), as well as the possible
existence of a ‘shadow band’ [38]. The authors of Refs [39, 40]
have shown that, in the case of the SFMC considered within
the spin polaron concept, it is sufficient to use only one fitting
parameter, the hopping integral for holes, to describe the
modification of the energy spectrum and Fermi surface of a
cuprate superconductor, whereas the strong-coupling models
involve a large number of doping-dependent fitting para-
meters.

Until recently, the spin-polaron concept success was
limited to the description of cuprate properties in the normal
state. The situation considerably changed when it was
shown that the Cooper instability in HTSCs develops in the
subsystem of spin-polaron quasiparticles rather than bare
fermions [41, 42].

The efficacy of the spin-polaron approach to the HTSC
problem appeared most obvious after solving the problem of
neutralizing the negative influence of Coulomb repulsion of
fermions, located at the nearest-neighbor lattice sites, on the
implementation of the superconducting phase [43] —a long-
standing problem known from the times of early theoretical
papers on high-temperature superconductivity in cuprates.
The point was that, at distances equal to the lattice parameter,
potential screening did not work, and the real values of the
Coulomb interaction were such that, e.g., in the most popular
t—Jmodel, the superconductivity was completely suppressed.
Taking into account the real structure of the CuO, plane in
the ensemble of spin-polaron quasiparticles, it turned out that
the Fourier transform of the intersite Coulomb interaction of
holes, located on the nearest-neighbor oxygen ions, falls out
from the equation for Cooper pairing of spin polarons in the
d-wave channel and, therefore, does not affect the super-
conducting d-wave pairing [43]. In this case, a substantial role
was played by considering the strong spin-fermion coupling,
which resulted in a transformation of the bare interaction
between the oxygen holes into interaction between the spin-
polaron quasiparticles.

Further development of this direction of investigation has
shown that the superconducting phase with s-wave symmetry
of the order parameter is not implemented for any realistic
values of the system parameters [44].

It is worth noting that the formation of a complex Fermi
quasiparticle can occur not only by coupling an electron to
localized spins, but also as a result of electron motion
correlated with the phonon subsystem. For HTSCs this can
be important, since, near the critical temperature, the lattice
vibrations are significant and the number of phonons is large.

Papers on the theoretical studies of the influence of the
electron—phonon interaction on the critical temperature,
spectral properties of Fermi quasiparticles, and kinetic
characteristics of cuprate superconductors have been written
in several directions. In one of them, it was assumed that
in the strongly correlated systems considered, the electron—
phonon interaction is also strong. Based on this assump-
tion, the authors of Refs [45-47] proposed variants of
solving the problem of considering the above strong interac-
tions simultaneously.

Another line of studies was based on assuming not only
strong electron—phonon coupling, but also a high density of
correlated fermions. In this case, it turned out that large
bipolarons and delocalized carriers are formed in the system.
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In this approach, it appeared possible to explain high-energy
anomalies in the ARPES spectra [48], as well as charge
ordering [49].

In systems with strong electron—phonon coupling, it
seems relevant to develop Eliashberg’s theory [50] beyond
the framework of the adiabatic approximation [51].

In the present review, the effects of electron—phonon
coupling are not taken into account when discussing the
spin-polaron concept of electronic structure of hole-doped
cuprates. The solution to the problem of a Fermi quasipar-
ticle formed with both electron—phonon and spin-fermion
interaction taken into account is an issue for the nearest
future. To date, the application field for the spin-polaron
approach has been extended towards the development of the
theory of electromagnetic phenomena occurring in cuprates
[52].

The aim of this review is to present the concept of the spin
polaron and the totality of results of studying the properties
of cuprate superconductors within this concept. In Section 2,
we consider the basic models for describing the physical
properties of cuprates (the Hubbard model, multiband p—d
models, the r—J model, and the Kondo lattice model). In the
course of consideration, the premises for the origin of the
SFMC are revealed. Section 3 provides a detailed derivation
of the SFMC from the Emery model in the SEC regime and a
discussion of the general properties and fundamental differ-
ences between the SFMC and other effective models, taking
into account the strong spin-fermion coupling in cuprates.
Section 4 presents the concept of the spin-polaron nature of
Fermi quasiparticles in cuprate superconductors. In Section
5, we consider the properties of the normal phase of spin-
polaron quasiparticles, i.e., the energy structure, spectral
characteristics, and Fermi surface modification under dop-
ing. Section 6 describes results on the superconducting phase
of spin polarons. In particular, we analyze the stability of
superconducting d-wave pairing with respect to considering
the Coulomb repulsion of holes located on the neighboring
oxygen ions. We also consider the problem of calculating the
London penetration depth of a magnetic field into a cuprate
superconductor, in which the charge carriers are spin-polaron
quasiparticles. In the conclusion (Section 7), the obtained
results are discussed.

2. Basic multielectron models
of cuprate superconductors

2.1 Search for a theoretical model

It is well known that the microscopic theory of super-
conductivity, created in 1957 by Bardeen, Cooper, and
Schrieffer (BCS) [53], is based on the Cooper hypothesis of
the instability of the ground state of electron gas with
arbitrarily weak attraction between the particles with respect
to the formation of bound states (the BCS model). The
attraction of electrons exceeding the Coulomb repulsion is
mainly due to the interaction of electrons with crystal lattice
vibrations, leading to the formation of a region of excessive
positive charge surrounding the electron.

As early as 1964, Little [54] and Ginzburg [55] hypothe-
sized the possible existence of HTSCs. Little was the first to
pose the question of why the critical temperature of super-
conductors known at that time was not high. Little proposed
a possible way to increase the critical temperature 7, of the
superconducting transition to higher values by replacing the

electron—phonon interaction, leading to superconductivity in
the BCS model, with the interaction of conductivity electrons
with bound electrons (excitons), the energy of which is much
higher than that of phonons. In 1986, Bednorz and Miiller
[56] found superconductivity in the lanthanum-—barium—
copper oxide (La,_,Ba,CuQOy) with the critical transition
temperature 7. ~ 30 K, record-breaking for that time.

This discovery attracted considerable attention to
HTSCs, and both the intensity of research and the number
of publications in the field reached unprecedented levels. The
number of publications on HTSCs that appeared after 1986
substantially exceeds the total number of all earlier publica-
tions on superconductivity, starting from its discovery by
Kamerlingh Onnes in 1911. Moreover, after the discovery
of superconductivity in yttrium copper-oxide compounds
YBa,Cu30¢,, by Wu et al. [57] with T, ~90 K and in
mercury compounds [58, 59] with T, ~ 135—160 K, the
HTSC problem has turned from purely scientific to practi-
cally significant because of the possibility of applying the
HTSC phenomenon in technical devices.

From a theoretical point of view, it is relatively easy to
explain superconductivity in doped La,CuO,4 (LSCO) based
on the usual phonon mechanism with the transition tempera-
ture T, ~ 30 K. At the same time, phonon mechanisms can
hardly be applied to a description of the superconducting
phase in mercury and bismuth HTSCs, where the critical
temperatures exceed 90 K. This fact stimulated many
researchers to start looking for an alternative pairing
mechanism and gave rise to a vivid discussion on the choice
of an efficient theoretical model intended to describe the
HTSC physical properties.

2.2 Hubbard model

The first model used to describe the properties of cuprate
superconductors was the one proposed by Hubbard [60] in
1963, which is one of fundamental models of condensed
matter physics. The Hubbard model is a particular case of
the general model of interacting electrons, whose band
structure is described within the strong coupling method [61,
62]. In the Hubbard model, it is assumed that, on each ion,
only one orbitally nondegenerate energy level is relevant for
the physical problem under study and taken into considera-
tion. The existence of other quantum states is ignored based
on the assumption of their energy remoteness. The quantum
transitions between the ions taken into account leads to the
formation of the strong-coupling band.

The Hamiltonian of the Hubbard model contains two
major parameters, namely, the matrix element 7 of hopping
between the nearest-neighbor sites and the parameter U of the
Coulomb repulsion of electrons with opposite spins at one
site. In the second quantization representation, the Hamilton-
ian is expressed as

H=Y (e~ i+ Y tintans + U Y i, (1)
fo

fma A

where a;-a(afg) is the operator of creation (annihilation) of an
electron with the spin projection ¢ = +1/2 at site f, ¢ is the
single-site energy of the electron, u is the chemical potential of
the system, and 7i;; = aflaﬁ, is the particle number operator at
site f.

This model is characterized by one more important
parameter, the concentration of electrons n (the number of
electrons at a lattice site), which varies from 0 to 2. The case of
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half-occupation (n = 1) is special since, with a certain relation
between the parameters 7 and U, an insulator state with long-
range magnetic order can arise. At large values of U, the
appearance of two electrons at one lattice site becomes energy
unfavorable and the initial band splits into two Hubbard
subbands with a gap in the center of the band. Thus, at half-
occupation, the Fermi level finds itself in the energy gap, and
the ground state becomes insulator. Electrons localize at the
lattice sites and behave like magnetic moments with spin
S = 1/2; therefore, the system becomes an antiferromagnetic
(AFM) insulator [63].

The Hubbard model can describe both localized (U > 1)
and collective (U < ¢) electronic states. In the intermediate
case U= t, the system combines opposite tendencies of
localization and delocalization of states. Electric and mag-
netic properties of the systems described by the Hubbard
model depend on the fine balance of these competing
tendencies [64]. According to Mott [65], the predominance
of one tendency over the other is what determines the final
result: the predominance of hopping parameter ¢ makes the
system a metal, whereas the predominance of the Coulomb
repulsion parameter U, on the contrary, makes it an insulator.
Therefore, a metal-insulator transition depending on the ratio
t/U is called the Mott—Hubbard transition.

It is well known that, besides the metal-insulator phase
transition, the Hubbard model includes paramagnetic—
ferromagnetic and paramagnetic—antiferromagnetic transi-
tions [66, 67]. In the case of large U values, the model
adequately allows for SECs that can give rise not only to a
magnetic order, but also to a superconducting one. In 1987,
Anderson [23] hypothesized that the Hubbard model can be a
key to understanding the unusual behavior of HTSC mater-
ials. In his paper, the subsystem of ionic spin moments was
considered following the scenario of ‘resonating valence
bonds’, and the ensemble of charge excitations that appears
under doping was interpreted as a Fermi subsystem manifest-
ing Cooper instability. The mechanism of superconducting
phase formation arising in such an approach had an
electronic nature and led to high values of 7.

In the analysis of nonphonon mechanisms of super-
conductivity in the Hubbard model, the researchers used the
possibility of constructing the perturbation theory in two
limiting cases: (1) the Born approximation of weak coupling,
U < W (W = 2zt, where z is the number of nearest neighbors)
and arbitrary density of charge carriers; (2) the approxima-
tion of strong coupling, U > W, and small density of carriers.
One of the first papers [68] studied the conditions for
implementing the Kohn—Luttinger superconducting mechan-
ism [69] that implies the emergence of Cooper instability in
systems with purely repulsive interaction [69—-76] in the weak
coupling limit of the two-dimensional Hubbard model at a
low density of electrons. The weak coupling limit U < W
in the two-dimensional (2D) and three-dimensional (3D)
Hubbard models near half-occupation was analyzed in
Refs [77-82]. As a result of these studies, a phase diagram
was constructed for the 2D Hubbard model at small and
intermediate occupation numbers, reflecting the result of
competition between different symmetry species of the order
parameter. The phase diagram obtained in the first two orders
of the perturbation theory showed that, in the region of small
concentration of charge carriers, 0 <n <0.52, d,,-wave
superconducting pairing is implemented. For intermediate
densities, 0.52 < n < 0.58, the ground state corresponds to a
superconducting phase with the p-wave symmetry of the

order parameter, and at n > 0.58, d,»_,2-wave supercon-
ductivity arises. The phase diagram for the 2D Hubbard
model in the opposite limit of strong coupling, U > W, and
small density of charge carriers is constructed in Refs [83,
84].

Another solution to the superconducting pairing problem
with high T, was proposed in Ref. [85], where it was shown
that the ensemble of fermions described by the Hubbard
model in the SEC limit regime (U — oo) in the region of
low concentration of holes exhibits Cooper instability in
the s-wave channel. The new scenario of superconducting
pairing is based on kinematic interaction, which is initiated in
an ensemble of Hubbard fermions due to quasi-Fermi
anticommutation relations between the Hubbard operators
[86]. The kinematic mechanism of Cooper instability also had
an electronic nature and provided high critical temperatures.
Considering the intersite Coulomb interaction among fer-
mions within the Shubin—Vonsovsky model [87-89] decreased
the superconducting transition temperature [90-92] (see Sec-
tion 6.2 and dashed curves in Fig. 13) and led to temperatures
corresponding to experimental data.

The state of theoretical studies within the Hubbard model
is most thoroughly reflected in the books by Izyumov [93-95]
and reviews [96-99].

In attempts to describe the physical properties of
HTSCs, researchers faced a difficulty associated with the
necessity of considering two sorts of ions, Cu** (configura-
tion 3d®) and O~ (configuration 2p®). Hence, the model that
would adequately describe the electronic structure of cuprates
must include the parameters allowing for the energies of
copper d-electrons and oxygen p-electrons, the overlap of d
and p wave functions of electrons at neighboring lattice sites,
the energies of single-site repulsion of copper and oxygen
electrons, as well as the energy of their intersite Coulomb
repulsion. As a result, it became necessary to formulate a
more realistic theoretical model, as opposed to the Hubbard
model, to describe the physics of copper—oxygen planes.

2.3 Multiband p—d models

After analyzing the crystal structure and phase diagram of
cuprates, the center of gravity of research shifted to studying
model Hamiltonians describing the motion of electrons in
CuO; planes [22]. Such a simplification was confirmed by the
presence of strong copper—oxygen bonds [100-103]. It was
clear that some features of the phase diagram (e.g., the
existence of a finite Néel temperature) could be explained
only by taking into account the coupling between the planes.
However, it was expected that such details could be studied
already after understanding the basic features of electronic
properties related to the 2D character of fermion motion.

It was revealed that, even with such a simplification, the
study of fermion ensembles for individual CuO, planes
remains a complicated problem, since copper ions Cu’*
possess nine electrons on five d-orbitals, and oxygen ions
0?2~ possess three filled p-orbitals. In all HTSC structures,
the degeneracy of d-orbitals due to the symmetry of isolated
atoms with respect to rotations in the 3D space is lifted
because of the breaking of this symmetry in the lattice.
Calculations in [100, 102] have shown that the orbitals of
copper and oxygen are separated in energy (Fig. 1). The
maximum energy belongs to the d,._,.-orbital, and in the
absence of doping it has one hole. Other orbitals with lower
energies are completely occupied and can be ignored in the
first approximation when constructing a Hamiltonian.
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Figure 1. Relation between a Cu?* ion and two O2~ ions. Only d-electrons
of copper and p,- and p,-orbitals of oxygen are considered. The numbers
in parentheses indicate the population of levels in an undoped structure
[104].

Using these arguments, Emery proposed in 1987 a three-
band model, describing a system of holes in copper—oxygen
planes. At present, it is known as the p—d Emery model [22].
Based on the importance of taking into account processes
with charge transfer, Varma et al. [105] formulated a similar
approach. In the representation of secondary quantization
operators, the Hamiltonian of the Emery model can be
written as follows:

H = Hy + Hin, (2)
Ho = (ean! + Usifiiiy)) + Y _epitf + Y Voaiifiif 5, (3)
S ! /e
I:Iint - Up + Tpp + I}vpp + Tpd 5 (4)
pd—tpdzﬁ fal’f+og+hc)
foo
Top = Z top (NP piae

Mo

o AP AP

U, =U, Zn”nu,
/

Vop =D

(A"

Vopll — 1]

Here, the operator Hy describes the system of holes located on
the copper and oxygen ions. H, includes terms allowing for
the Coulomb interaction between two holes, located on one
copper ion. The energy of such an interaction is denoted by
Uy. The last term in H, takes into account the interaction
between the holes located at the nearest-neighbor copper and
oxygen ions. The parameter V4 determines the intensity of
such an interaction.

The operator H,, describes the processes of covalent
mixing (Tpd), direct hopping of holes between nearest-
neighbor oxygen ions (7,y), the Hubbard repulsion of two
holes on one oxygen ion (U ), as well as intersite Coulomb
repulsion of holes located on oxygen 1ons (V p)-

In expression (2), da(dfg) and pla@/a) are creation
(annihilation) operators of d- and p-holes with the spin
projection ¢ = +1/2 on a copper ion, whose position is
numbered by subscript f, and an oxygen ion, located at the
lattice site /, respectively. By 6 we denote the magnitude of
one of four vectors, connecting the copper ion number f
and the oxygen ion number /=f+ ¢ in the CuO, plane:

Figure 2. Structure of the CuO, plane. V; is the Coulomb interaction of
holes located on the nearest-neighbor oxygen ions, V> and V} are the
Coulomb repulsions of holes located on the next-nearest-neighbor oxygen
ions. Black (white) areas correspond to the positive (negative) sign of the
orbital lobe.

0 ={%x/2,+y/2}, where x = (4,0) and y = (0, a), a being
the unit cell parameter (Fig. 2). The operators of the particle
number on copper and oxygen ions are defined by the
expressions =300 =3, d 'di, and AP =3 Al =
Yoo p/Upla, respectively, and &d and &p are the bare single-site
energies of holes on copper and oxygen ions. Parameters U,
and V;,, correspond to the energies of Coulomb repulsion of
holes on one oxygen ion and on different oxygen ions,
respectively; fpq is the integral of hole hopping from an
oxygen ion to a copper one. The function ¥(J) allows for the
influence of phases of copper and oxygen orbitals on the
hybridization processes. For orbital profiles shown in Fig. 2,
the function ¥(9) takes the following values upon varying §:
¥(0) = F1 for 6 = £x/2 or 6 = £y/2. The integral of hole
hopping between the nearest oxygen orbitals is determined as
top(4) = tp(4). Its sign is determined by the function p(4),
where 4 is the magnitude of the vector connecting the nearest-
neighbor oxygen ions. For the chosen sequence of phases of
oxygen orbitals, p(4) = 1 for4 = +£(x +y)/2and p(4) = —1
for4 =+(x—-y)/2.

The Emery Hamiltonian is a Hamiltonian of the multi-
band theory of metals in the strong-coupling representation.
At large values of the Hubbard repulsion parameters, it
describes a system with SEC. Hence, the Emery model is
sometimes referred to as a three-band or extended Hubbard
model.

An important parameter of the model is the difference
between the energies of holes on the copper and oxygen ions,
Apa = &, — 4. If A,q > 0, then, in the nondoped case, when a
single hole corresponds to each cell, the d-orbital of a copper
ion at #,q = 0 is occupied, while the p-orbitals of oxygen ions
are empty. Upon doping, new holes will occupy the oxygen
orbitals, if Ug > Apq. This completely agrees with the
experimental results of the electron energy loss spectroscopy
(EELS) [106].

The values of the Emery model energy parameters were
extracted from band structure calculations by several teams
[107-109]. At present, the following values of the parameters
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Figure 3. Clusters used for exact diagonalization of the Emery Hamilto-
nian. The number of atomsis N, = 8,9, 12, 16 for clusters A, B, C, and D,
respectively. Dark dots— Cu atoms, circles— O atoms [114].

are most frequently used [107, 110] (in [eV]):

Apa =36, tpa=13, tp =065,

(5)

Ug=105, Uy=4, V=12,

Because of Coulomb interactions, the Emery model is
difficult for theoretical analysis. The presence of four bare
vertices significantly limits the possibilities of applying
various forms of perturbation theory to considering the
model in the general case. The absence of exact solutions of
the Emery model and the difficulties arising when trying to
reasonably simplify it stimulated the use of computer analysis
methods. Numerical calculations were mainly carried out
using the Monte Carlo method and the method of exact
diagonalization of finite clusters. The Monte Carlo method
[111, 112] allowed studying relatively large clusters of N, =
50—100 atoms [113], but the precision of calculations sharply
fell with a decrease in temperature. Therefore, the most
interesting case of T'< T, =~ 100 K turned out to be beyond
consideration [114]. The method of exact diagonalization of
finite clusters [115, 116] is free of this drawback and allows
studying both the ground (7 = 0) and the excited states of the
system. A disadvantage of this method is the cluster size
limitation, imposed by computer memory and operating
speed. Nevertheless, this method is quite acceptable for
qualitatively understanding the properties of systems with
SEC. Figure 3 shows copper—oxygen clusters, whose ground
states were studied in a number of papers for various values of
the Emery Hamiltonian parameters: A [115, 117], B, D [116],
C[118,119], A, B, C, D [120]. Among these four clusters, only
one (C) with N, = 12 possesses the symmetry of the CuO,
plane and allows periodic boundary conditions. The cluster of
maximal size for which the exact diagonalization of the three-
band p—d model has been carried out is CusOy; (cluster D).

Later, as a result of considering the electronic structure of
copper oxides, with the specific features of their chemical
bond and SEC taken into account [121-123], it was noted
that, besides the 3d,._ .-orbitals of copper and 2p,- and
2p,-orbitals of oxygen, which are considered in the three-
band p—d model, it is also necessary to allow for other copper
orbitals (see Fig. 1). A considerable (10-15%) population of

the 3d;.»_,.-orbitals of copper in all p-wave HTSCs was
revealed by EELS experiments [124, 125] and experiments
using polarized X-ray absorption spectroscopy (XAS) [126,
127].

The authors of Ref. [108] theoretically demonstrated the
importance of the 3ds.._,.-orbitals of copper. Having
estimated the values of the p—d model parameters, they
calculated the states of a CuQOy cluster, considering all
12 p-orbitals and 5 d-orbitals, and compared the results with
experimental data. It was found that the orbitals 3ds.2_,»,
3dy,, 3d,, and 3d,. noticeably contribute to the formation of
electronic states. The authors of Ref. [108] noted that the
3ds.._,2-orbitals are the most important, because they are
stabilized by bonds with apical oxygen atoms [128].

A number of superconductivity mechanisms have been
proposed in which the 3d;.»_,.-orbital plays an essential role.
In Refs [129, 130], an electronic mechanism of pairing is
formulated — the Gaididei-Loktev—Weber exciton mechan-
ism [64]. Paper [131] shows that the combined effect of Hund
pairing and superexchange interaction between holes in the
3d,>_,»-orbital leads to efficient attraction between quasipar-
ticles that appear in the 3ds.._,.-orbital upon doping.

Later on, experimental evidence appeared that apical
oxygen plays an important role in the electronic structure of
cuprates and can affect their superconducting properties. For
example, in some structures, a significant isotopic effect for
the apical oxygen was found [132, 133], as was an obvious
correlation between the maximum temperature 7. of various
cuprates and their Cu—O; bond [134]. This fact led some
researchers to the conclusion that, for an even more realistic
description of the electronic structure, it is also necessary to
consider the 2p.-orbital of the apical oxygen. As a result, a
conclusion was made that the minimal model of copper—
oxygen planes is the five-band p—d model [129, 135] that
includes two d-orbitals, 3d,>_,> and 3ds.>_,2, as well as 2p,-
and 2p -orbitals on each oxygen ion, and the 2p.-orbital on
the apical oxygen [61].

2.4 t—J model

Since multiband p—d models include several parameters,
which complicates their theoretical analysis, attempts have
been made to reduce them to simpler models. Zhang and Rice
[21] were the first to succeed in this regard, following the
considerations presented below.

Consider a copper ion surrounded by four oxygen ions (a
CuOy cluster). The hole added upon doping appears on the
oxygen ion in a symmetric or antisymmetric state with respect
to the central hole on copper. Thus, the hole on oxygen can
form a strong bond with the hole on copper and form a singlet
or a triplet spin state. The authors of Ref. [21] showed that
near the atomic limit in the second order of perturbation
theory the spin singlet has a lower (by 3—4 eV) energy than the
rest possible double-hole states. When doped, holes fall into
this singlet state (Zhang—Rice singlet), and it would seem that
one can work in the singlet subspace without violating the
physics of the problem. As a result, the hole moves over the
square lattice of copper ions, whereas oxygen ions are no
longer present in the effective model explicitly. Zhang and
Rice in [21] concluded that an effective Hamiltonian describ-
ing the physics of the three-band model is the Hamiltonian of
the so-called r—J model [63], which is an effective low-energy
version of the Hubbard model in the limit ¢/ U < 1[136, 137].
The Hamiltonian of this model without three-center terms
(see below) in the secondary quantization representation is
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expressed as

H Z &— nf + Z tfm nfﬂ' aframrr(l - ﬁ/nr?)
fmao
in
+ Z Jfin (stm - f4 m) , (6)
Jm
where 7iy = ) _ i, is the operator of the number of electrons

with spin ¢ = +1/2 on site f, t5 is the hopping matrix
element, aT ' (ar;) is the creation (annihilation) operator for
an electron w1th spin ¢ at site f, Jp, = Zme/U is the effective
exchange integral, U is the parameter of the Hubbard
repulsion of electrons, and S, is the operator of spin
S =1/2 at site f. The factors 1 — 7iy; forbids an electron
with spin ¢ to be located at site f already containing an
electron with spin ¢ = —g. Thus, the r—J model describes
the motion of electrons over the nonoccupied lattice sites.
The elimination of states with a pair of electrons on a site
is equivalent to the appearance of an effective exchange
interaction of electrons at neighboring sites with the
exchange integral of the AFM sign.

It should be noted that, in the derivation of the r—J model
Hamiltonian (6) from the Hubbard model (1) in the SEC
regime, in addition to exchange terms, so-called three-center
terms arise [41, 138—144] with the same order of smallness as
the exchange terms and describing spin-correlated hopping.
With these terms taken into account, the corresponding
model is referred to as the t—J* model. The three-center
terms play an essential role in the description of the super-
conducting d-wave phase in cuprates [41, 140-144]. It should
also be noted that the r—J model can be generalized at the
expense of both single-site and intersite Coulomb interactions
within the tr—J— U and t—J— U— V'models, respectively [145—
148].

The t—J model acquired exclusive popularity after the
appearance of Anderson’s idea [23] that the electronic
properties of HTSCs can be described by Hamiltonian (6). A
review of theoretical studies of normal and superconducting
properties of cuprates within the /—J model is presented in
Refs [7, 63, 67, 110]. The issue of complete and consistent
derivation of an effective single-band model from a three-
band model and multiband p—d models was thoroughly
considered in Refs [149-158] using the cluster form of
perturbation theory.

2.5 Kondo lattice model

As one more variant of an effective low-energy Hamiltonian
of a three-band p—d model in studies of cuprate super-
conducting properties, the Kondo lattice Hamiltonian, or
s—d(f) exchange model [94, 95, 161-163], is often used [32—
36, 41, 159, 160]:

HK = Z tfmcﬂ e JZ (,ﬂﬁa/gcﬂfsf + = Z[fme S, . (7)
Jfmo fop fm

It takes into account not only the exchange interaction J
between fermions and localized spins, but also the Heisen-
berg AFM interaction between localized spins with the
exchange constant /j;,. In Hamiltonian (7), cha(cy-“) are the
creation (annihilation) operators of a quasiparticle at site f
with the spin projection o, t5, is the integral of fermion
hopping from site f to site m, Sy is the operator of localized
spin S=1/2 at site f, and 6= (0\,0,,0.) is a vector
composed of Pauli matrices.

The limit cases of the Kondo lattice model correspond to
other theoretical models, frequently used in the physics of
systems with SEC [164]. In the absence of doping, the Kondo
lattice model is reduced to the Heisenberg AFM model with
spin S = 1/2 (sometimes in the literature, the Kondo lattice
model is referred to as the Kondo—Heisenberg lattice model),
which is capable of describing the physics of undoped
cuprates [165-170]. For large J, the formation of Zhang—
Rice singlets takes place (see Section 2.3), and the low-energy
dynamics of the generalized Kondo lattice model can be
reflected by the r—J model [21]. In the presence of oxygen—
oxygen hopping, the Kondo lattice model can be reduced to
the generalized 1—J model, including the hopping of fermions
to the second and third coordination spheres of a square
lattice, as well as the hopping accompanied by a spin flip
[171]. For Heisenberg interaction close to zero, the Kondo
lattice model is equivalent to the common Kondo model
[172].

In Section 3, it is shown that the Hamiltonian of the
Kondo lattice model (7) can be consistently derived from the
Emery model Hamiltonian [173]. However, for this purpose,
it is necessary to ignore the effective spin-correlated hopping,
playing an important role in the formation of a spin-fermion
quasiparticle, meaning that, to describe the properties of hole-
doped cuprate superconductors adequately, Hamiltonian (7)
should be substantially extended.

3. Spin-fermion model of cuprates

3.1 Drawbacks of single-band models

In spite of the considerable success achieved in the description
of the physical properties of cuprate superconductors within
the Hubbard model and r—J model [7, 63, 67, 110], the
justification of reducing the Emery model to them remained
an open and controversial question. Emery and Reiter [174]
showed that, in a three-band model, the Zhang—Rice singlet
overlaps with a triplet at the boundaries of the Brillouin zone.
This gives rise to elementary excitations possessing charge
and spin, in contrast to singlets formed in the effective single-
band ¢—J model. The authors of Ref. [174] presented
arguments in favor of the important role played by oxygen
ions in the formation of the hole ensemble properties in CuO,
planes, due to which they should not be excluded from explicit
consideration. The result by Emery and Reiter was based
on an analysis of the exact solution against the back-
ground of ferromagnetic interaction, and the conclusion
was that the 7—J model does not fully reflect the physics of
the three-band p—d model. Zhang and Rice [175] and
Emery and Reiter [176] continued the exchange of ideas
on this issue, but never reached an agreement, although
further cluster calculations [177] within the three-band
p—d model seemed to confirm that the Zhang—Rice singlet
is well separated in energy from the remaining higher-
energy two-hole states.

The authors of Ref. [178] have shown that the charge
degrees of freedom give rise to new physical effects, when the
Coulomb interaction between holes on copper and oxygen
ions is comparable in magnitude with the energy of hybridiza-
tion and the energy difference between copper and oxygen
levels 4,4. In this case, the presence of two sorts of ions is a
key factor; therefore, the three-band model cannot be reduced
to an effective single-band one. In Ref. [178], it was noted that
one of the main features of the three-band model is the
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existence of collective excitations (resonances of charge
transfer) and intra-unit-cell instabilities that can determine
the HTSC mechanism.

Actually, having rigorously demonstrated in Ref. [21] a
significant advantage in the bonding orbital energy, Zhang
and Rice further substantiated the equivalence of the r—J and
p—d models only by means of qualitative considerations. The
papers cited above [149-158], claiming to be rigorous in the
proof of this statement, actually use a number of approxima-
tions related to either ignoring long-range interactions or
disregarding a considerable part of unit-cell states. However,
it is worth noting that in the rigorous derivation of the Emery
model Hamiltonian in the SEC regime, the constant of spin-
fermion coupling and spin-correlated hopping turns out to
be the largest parameter of the effective model. Due to this
fact, further interpretation of these interactions within the
common perturbative approaches used by the authors of
Refs [149-158] seems unfounded.

The spin polaron concept [32-36], on the contrary, is
based on the fact that the strong spin-fermion coupling
arising in the Emery model effective Hamiltonian should be
considered exactly. Section 3.2 is devoted to a detailed
derivation of the Emery model effective Hamiltonian — the
spin-fermion model of cuprates (SFMC)—and analysis of
spin-fermion interactions arising in the second order with
respect to the p—d hybridization parameter.

3.2 Effective Hamiltonian of the Emery model

in the strong correlation regime

As already mentioned, in the undoped case at low tempera-
tures, cuprates are AFM insulators. This phase corresponds
to the ground state of the Emery Hamiltonian (2) if the energy
parameters satisfy the condition

|74 (9)] <l |74 (9)|

Apg >0,
P Apd Ud — Apd —2Vpa

<1. (8

The positive value of the gap with charge transfer Apq =
&, — &4 provides the localization of holes presumably on
copper ions implementing the states with spin S = 1/2. The
second inequality establishes a weak intensity of the processes
of covalent mixing of d-states on copper ions and p-states
on oxygen ions.

If the third inequality in (8) is valid, the SEC regime is
implemented, in which the localization of two holes at one
copper ion becomes energy unfavorable. Therefore, in the
absence of doping, the insulator Mott—Hubbard phase is
formed, and upon doping an additional hole appears at
the p-orbital of an oxygen ion. However, due to hybridization
of this orbital with the d-orbital of the nearest copper ion,
virtual transitions of the additional hole to high-energy states
of copper ions with two holes occur. Such transitions give rise
to the effective interaction of an oxygen hole with the spins
localized on copper ions, which destroys the long-range
magnetic order. These processes can be correctly taken into
account by constructing an effective Hamiltonian.

Inequalities (8) allow considering the processes of cova-
lent mixing of p-orbitals of oxygen ions and d-orbitals of
copper ions within the perturbation theory. A regular way to
implement this procedure consists in constructing an effective
Hamiltonian I:[eff with further development of the theory of
cuprate superconductors on this basis. The feasibility of
introducing H.sr is related to the fact that in this Hamiltonian
the abovementioned processes of p—d hybridization accom-

panied by transitions of copper ions to two-hole states, as well
as to states of these ions without holes, manifest themselves
via the appearance of effective interactions. In this case, it
is important that for the subsystem of copper ions the
Hamiltonian Heyr act only on the class of homeopolar states
identified by the values of spin projection. Such a reduction of
the Hilbert space allows not only simplifying subsequent
calculations but also a clear understanding of the key
features of the low-energy spectrum of elementary excitations
based on the physical interpretation of arising effective
interactions.

To find H.g, the Schrieffer—Wolff method of unitary
transformations [179] or the operator form of perturbation
theory is used [180, 181]. When using the second approach,
the calculations are relatively simple in the atomic representa-
tion. For this purpose, let us introduce four basis states of a
copper ion at site f: |f;0), the state without a hole, | f;a) =
dj, f 2|£30), the state with one hole having the spin projection o,
and |f:2) =d} de 0), the state with two holes.

The Hubbard operators in the basis of these states are
defined as usual:

Xp=1fip) g 1, ©)

where p and ¢ are the indices of single-ion states. Applying the
well-known representation of the second quantization opera-
tors in terms of the Hubbard operators

o 1
dﬁ:X_/Q“"i'ZO‘Xﬂ: O‘:izy o

—o, (10)

we present the Emery Hamiltonian (2) in a form convenient
for using the operator form of the perturbation theory. In the
atomic representation, the operator Hy (3) is expressed as

stY““r Z (26a+ Ua) X772 + st Al Aty )

+m§Xz; )@W (1)

In the interaction operator (4), only the term Tpd will change
form:

Toa =Y ta?(9)(

foo

X} + 20X7") pres.a +hoc. (12)

Using conditions (8) and applying the operator form of
perturbation theory, we arrive at a formal representation of
the effective Hamiltonian in the form of a power series in the
parameter fp,q:

Hg=PHP+H? + A® + H® 4| (13)

where the projection operator

P=T10" +x1) (14)
.

is defined through the diagonal Hubbard operdtors
= | f;)(x; /1| possessing the projective property (X ‘“)
X‘“ Operator P is seen to implement projection on the
subspace from which the states with two holes or no holes
on copper ions are excluded.
The term of zero order in #,q(J) describes the system of
oxygen holes, which in this approximation is isolated from the
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subsystem of holes on copper ions,

PHP = Nea + > ity + Uy + Vip + Tp (15)
lo

The term Neg appears due to the fact that the operator 7if
becomes a unit operator in the class of homeopolar states of
copper ions. Here, N denotes the number of unit cells in the
CuO; plane. The energy renormalization for an oxygen hole,
&, = &p + 2Vpq, occurs because of the interaction of this hole
located on an oxygen ion with two holes that form homeo-
polar states of the two nearest-neighbor copper ions.

The operator H® containing only terms quadratic in
tpa(0) is determined by the expression

H® = —PToa(Hy — Ey) ' TpaP. (16)
Using the algebra of Hubbard operators X" X[ = 5,,7,,X
after simple calculations, we get an explicit form of H@ in the
tight-binding representation:

. 4Nt?2 .
g _ ___"rd J. 17
PR (17)

The first term on the right-hand side of Eqn (17) determines
the contribution of covalent effects to the binding energy of
an undoped system. The second term,

. T
T==

D )" prls P (18)

18570

describes the motion of holes leading to the broadening of the
energy levels of the oxygen orbitals. In this case, the width of
the arising band is given by

t2 A

pd pd
T=—I|1-—|]. 19

Apd( Ud—Apd—2Vpd> (19)

The third term in Eqn (17) is responsible for the exchange
coupling between the subsystem of localized spins and oxygen
holes,

o J
T=7 > 0000 ) pfys Srouspran.s (20)
13573
where the exchange operator is
4¢2 A
J=-— (1 + —p"> : 21
Apd Ugq — Apd — 2Vpd ( )

The operator J describes both the spin-correlated hopping of
holes between oxygen ions and the exchange interaction of a
hole located on an oxygen ion with spins on the nearest-
neighbor copper ions. Here, S, is the vector spin operator
localized at site f, and the vector operator ¢ is composed of
Pauli matrices, 6 = (6¥,07,07).

The third-order perturbation theory terms in the effective
Hamiltonian are usually not taken into account, since they
possess additional smallness with respect to both the con-
centration of oxygen holes and the parameter of covalent
mixing. Therefore, in the low-doping region, the contribution
of such terms can be disregarded.

Among the contributions of the fourth order, of major
importance are the terms of zeroth power with respect to the

concentration of oxygen carriers. These contributions are
known to give rise to the formation of AFM-type exchange
interaction in the subsystem of localized spins. Simple
calculations yield an operator describing the Heisenberg
exchange interaction,

. T
I=5 > SiSpi, (22)
Jo
in which the exchange integral is expressed as
S Y (L N L) (23)
(dpa + Vpa)* \Ua  4pa/
p p

To obtain a physically simpler form of operators % and J,
we move to the quasimomentum representation. Taking into
account that there are two orbitals (p, and p,) per unit cell of
the CuO, plane, we write down the Fourier transform as

el
\/lﬁzk: exp [ik <fj: %)} biy -

Then, the combination of second quantization operators
entering the definition of operators 7 and J takes the form

Prex/2,0 = Afex)2,.0 =

(24)

Pry/2,a = breypna =

> 0(O)prisa = Apenprn + breyr — Appu — bpya
5

_ %v S exp (ikf)2i (mw sin %Jr by sin %) . (29)
k

Collecting the terms (13) together, we arrive at the SFMC
Hamiltonian [24-31]:
H=Hy+J+1+Uy+Vyp, (26)

I:]h = Z [ékxa/i[ocaktx + f/Qrblztxcblcoc + tk(a/iacbkoc + b/Zaakoc)} )
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1= Zsfsfﬂ(h
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+= E {[Vé exp (qu) + 7 exp( lql )} p q, ocalj+q ﬁakﬁaqa
pk.q
«p

+ [V exp (igy) + Va2 exp (—igy)] bp+q " bk o bk/;bqa} )

In Hamiltonian (26), the operator Hj in the chemical
potential representation describes free holes on oxygen ions,
the operator J allows for the interaction of these holes with
spins of copper ions, the operator I corresponds to the
exchange interaction between the localized spins of copper
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ions. In these expressions, the following functions are used:

Chyyy = &0+ 2Vpa +1(1 —cosky)) — p, (27)

k k,
th = (21—4t)sin7xsin—},

5 (28)

where p is the chemical potential of the system. The function
tr describes both the hybridization processes in the second-
order perturbation theory (parameter 7) and the direct
hopping of holes between oxygen ions (here, the parameter
tpp 1n the initial Emery model (2) is denoted by ¢ for brevity).

We emphasize that in the SFMC the coupling between the
subsystem of localized spins and the subsystem of holes on
oxygen is described by the operator J with the real structure of
the CuO, plane taken into account. This means that orbitals
p. and p,, are taken into account in each unit cell. Formally,
this circumstance is reflected by the fact that the operators uy,
entering J are written as superpositions

o4

. (29)

Uky = Aky SIN % + biy SIN

Operator (]p describes the Hubbard repulsion of holes
on oxygen ions. The last term of the SFMC Hamiltonian
corresponds to the intersite Coulomb interaction. Here, the
term with the parameter ¥} describes the repulsion of holes
located on the nearest-neighbor oxygen ions. Because of the
specific structure of the CuO; plane, the interaction of a hole
located at site number / with another hole located at next-
nearest-neighbor site number /’ depends on both the position
of site / and the direction of vector r; (see Fig. 2). The
presence of two parameters, V> and V}, in the operator Vpp is
due to this fact.

A characteristic feature of Hamiltonian (26) is the SU(2)-
invariant form of the operator of spin-fermion interaction J.
It is in this form that the operator J was written in one of
the seminal papers by Emery and Reiter [174]. The SFMC
Hamiltonian in the momentum representation had been
considered earlier in Ref. [182] when studying the spectrum
of Fermi quasiparticles in Sr,CuO,Cl, within the self-
consistent Born approximation. In the cited papers, how-
ever, the operators of Coulomb interaction U, and ¥, were
not taken into account.

3.3 General properties and fundamental distinctions of the
spin-fermion model of cuprates and other effective models
As mentioned in Section 3.2, the SFMC was formulated
almost immediately after the discovery of cuprate HTSCs
and has found wide application in the description of their
physical properties [24—-30]. Note that at that time this model
had no special name; however, in 1998, in Ref. [31], the model
with Hamiltonian (26) was first called spin-fermion.

On the other hand, in the early 1990s, in Refs [183-185],
a semiphenomenological approach was developed, which
allowed an explanation of the high values of the critical
temperature of d-wave superconductivity based on the spin-
fluctuation mechanism of Cooper pairing. This mechanism
was discussed in detail in Ref. [186] based on the model with
the Hamiltonian

. 1

H=>" e 0 + ﬁzﬁg(q)dwra&q%wkﬁ- (30)

ko kqa,

When analyzing the properties of the system within
Hamiltonian (30), it was assumed that the statistical proper-
ties of the spin-fluctuating operator S are specified by the

spin-spin correlation function (the tensor of dynamic suscept-
ibility y;;(¢, )) [184].

The model with Hamiltonian (30) was called a spin-
fermion model (SFM) in 1996 in Ref. [187]. During further
development of the theory within this model [188-196], the
effective Hamiltonian allowing for the low-energy excitations
and exchange interaction between spin moments was used:

H=" op(k = ke)ef,ci + ) 10 ()5S
ko q
Jriz C;Jrq_“qx/gckﬁS,q . (3])
\/quotﬂ ’

This model describes fermions in the so-called hot points,
arising at the intersection of the Fermi surface with the
boundary of the AFM Brillouin zone and interacting via the
exchange magnetic fluctuations that have a maximum at the
point Q = (n, ).

Thus, at the end of the 20th century, in the theory of
strongly correlated systems, a situation arose, in which at
least two models were independently referred to as spin-
fermion models. For this reason, in the present review, we
will refer to the model with Hamiltonian (26) as the SFMC,
and use the abbreviation SFM for model (31). In the present
section, we consider the general properties of these models
and indicate their fundamental differences.

As noted by the authors of Refs [188—-192, 194-196], one
of the ways to derive the SFM is based on using the
Stratonovich—-Hubbard transformation in order to trans-
form the four-fermion interaction in a Hubbard-type Hamil-
tonian. The spin-fermion coupling arising as a result of such a
procedure leads to an effective interaction between fermions
in the second order with respect to the coupling constant.

To formulate the model, the authors of Refs [188-192,
194-196] relied on the experimental fact that the AFM
instability in a system of interacting fermions is mainly
caused by fermions whose energy is comparable to the width
of the fermion band W. On the other hand, the Cooper
pairing is induced by fermions from the vicinity of the Fermi
surface, if the temperature of Cooper instability Ti,s < W.
This separation of scales allows studying the Cooper
instability within the effective low-energy model, in which
high-energy Fermi degrees of freedom (responsible for
antiferromagnetism) are already integrated.

Thus, the parameters of model (31) are the Fermi velocity
vE, the spin-fermion coupling constant g (which at half-filling
is of the order of the Hubbard parameter U), as well as the
spin correlation length ¢ defined by the static spin suscept-
ibility 7o(q) = 7o&>/[1 + (q — Q)*¢?] that has a peak at point
Q of the Brillouin zone (the dynamic part of spin suscept-
ibility is assumed to be due to the interaction with low-energy
fermions and, therefore, is not included in the model).

From the above, it follows that in both the SFMC and
SFM an ensemble of fermions on a 2D lattice is considered,
which interact with the spin subsystem. This is a common
property of both models. However, in the rest the difference
between them is significant.

Since the key role in the difference between the two models
is played by the operators Hy, and J, let us consider them in
more detail. For this purpose, let us write down the SFM
exchange coupling operator in the Wannier representation:

Je=gY ¢l Sropey. (32)
I
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It is seen that in the SFM the exchange coupling between the
subsystem of localized spins and collective fermions is taken
into account only if the spin and the hole are in the same cell.
In fact, this is the interaction that determines the well-known
s — d(f) exchange Vonsovsky model.

To simplify further a comparison of the SFMC and SFM,
we exclude direct hopping of holes between oxygen ions from
the former. In addition, let us begin by ignoring the Coulomb
interaction in the subsystem of oxygen holes. The effective
Hamiltonian of the Emery model in the form not taking into
account the Coulomb interactions Vyq, Uy, and V,,, was used
in the study of properties of the cuprate superconductors in
Refs [26, 27, 159, 160].

Performing the canonical transformation

Pro, = Vi, Ak + v/c‘.b/cx 5

(33)
ka = —Vk, ks + Vie, bkot 5
in which
sin (ky/2) sin (ky/2)
vk\» Y Vk‘ = 5
' Vie ' Vie (34)
Ve = \/1 B cosk, +cosk, 7
2
we arrive at the diagonal form of the operator:
Hy =Y el Vi, + Y wol0- (35)

ko ko

It is seen that the mixing of the initial hole states gives rise to
two types of fermions. For one of them, the energy spectrum
remains free of dispersion, and for the other, it is given by the
expression

T = 7(2 — cosky, —cosky) . (36)
Operator J in the new representation takes the form of
exchange coupling between localized spins and only that
subsystem of collective fermions which is described by the
states go,j“\O) (¢p-states),

5 J .

J‘ﬂ = N Z exp [lf(q - k)] vkqu)ljzsfc@‘ﬁ(pqﬂ . (37)

frqap

Moving to the Wannier representation for bonding ¢-
orbitals and nonbonding y,,-orbitals,

1
L, =—= ) exp(—ik ,
Py \/N; Xp ( f)q)fa

Vi = VLNZ exp (—ikf s
f

(38)

we obtain the following structure of the operator j(p:

To=20v(0)> Sys;+27> vi.Sysy
S SA!

+ JV(O) Z Vg (@/’Tocs.f'(’“/f@f"ﬁ + h.C.)
pary

HT Y v v 0] ,Sr 005 - (39)

fore

The form of the first term on the right-hand side of Eqn (39)
coincides with the SFM interaction (32). However, in the
SFMC this interaction is strong and requires an approach in
which single-site correlations should be rigorously taken into
account. To demonstrate this circumstance, let us calculate
the energy of exchange splitting between the triplet and singlet
states, formed when, in a cell with number f, there is a
fermion in the state go;-a\O). R

From the expression for J,, it follows that the exchange
coupling within one unit-cell is defined as

J,(0) = 2Jv*(0)Ss, (40)
where S is the vector operator of localized spin S = 1/2, s is
the vector operator of hole spin, and v(0) is the value of unit-
cell renormalization

v(0) :%ka =0.96. (41)
k

Using the values of parameters of the Emery model (5), we get

AE; =2Jv?(0) = 5.38 eV. (42)
Such a large value of exchange splitting testifies to the
presence of strong spin-fermion coupling, which is one of
the distinctive features of the SFMC. Therefore, when using
the SFMC, a problem of primary importance is how to take
this coupling into account correctly. The solution to this
problem is implemented by a transition to quasiparticles, in
which the spin-fermion correlations of spins with the nearest
environment of oxygen holes is considered exactly. This leads
to the formation of spin-polaron quasiparticles, which
determine the properties of the normal phase of cuprates
(see Section 5) and also substantially affect the mechanism of
Cooper instability and the symmetry properties of the
superconducting state (see Section 6).

The second term on the right-hand side of Eqn (39) takes
into account the exchange interaction of localized spins and
spins of holes located in different unit cells.

Worth special attention is the third term of Eqn (39),
reflecting the processes of hole transfer from site f’ to site f
in which this hole strongly correlates with the localized spin
described by the operator S;. As a result, so-called spin-
correlated hopping occurs [159, 173, 197-199], in the course
of which the spin of the transferred hole either changes or
does not change its projection, in rigorous correspondence
with the change or lack of change of the localized spin
projection. Importantly, the matrix element of the spin-
correlated hopping between the nearest sites is not small and
has a value of ~ 0.2 eV. It is because of this fact that the spin-
correlated hopping plays a substantial role in the formation of
a correct spectrum dependence of Fermi excitations.

The last term in Eqn (39) describes such spin-correlated
hopping, for which all three operators correspond to different
cells.

In the expression presented, the rate of decrease in the
intensity of effective interactions is determined by the depend-
ence of the function vy = (1/N) Y, exp [ik(f — f’)]vk on the
distance between the cells f/ and /. In this connection, note
that, although the value vy = 0.96 is substantially greater
than v, = —0.14, this fact by no means indicates a fast
decrease in parameters vg upon increasing R. In fact, after a
rapid decrease in vg at the first step, a deceleration of the rate
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Figure 4. Dependences S(Ns) on the number of the coordination sphere,
up to which the summation of coefficients v(R) is performed.

of decrease begins to manifest itself. Since with increasing
number of the coordination sphere the number of its sites also
increases, the justification for deliberately ignoring the
hopping between sites from distant coordination spheres is
not obvious. This can be verified by using the exact ‘sum rule’

ZVR:v0+ZvR:O. (43)
R R£0
Let us introduce the quantity
Ry,
S(N) = v, (44)
RA0

which denotes a sum of coefficients vg for coordination
spheres, starting from the first one to the coordination sphere
with the number Nj inclusive. From definition (44) and sum
rule (43), it follows that, at Ny — oo, the sum S(N;) —
—vy = —0.96.

Figure 4 illustrates the behavior of the function S(Ny)
upon varying the number of coordination sphere from Ny = 1
to Ny = 15. Ttis seen that, after the sum initially quickly tends
to its asymptotic value, a transition to its slow decrease
occurs. Hence, with the increase in R, the contribution of
distant coordination spheres remains noticeable.

Thus, direct calculations confirm that proceeding to the
single-band description is achieved at the expense of using a
Hamiltonian, in which it is necessary to take into account the
spin-correlated hopping between the sites located at large
interatomic distances. As a result of comparing the two
models, the following conclusions can be drawn.

First, in the SFMC, the exchange interaction between the
spins of copper ions and holes on oxygen ions is strong.
Therefore, correctly considering this strong coupling becomes
a question of primary importance. The solution to this
problem is found by moving to quasiparticles, in which the
spin-fermion correlations of spins with the nearest-neighbor
holes on oxygen ions is taken into account rigorously. This
gives rise to the formation of spin-polaron quasiparticles, for
which the Cooper pairing is then considered. The energy
spectrum characteristics are determined in terms of the initial
parameters of the Emery model. On the contrary, in the
SFM, the spin-fermion interaction is considered in the weak
coupling regime, and the Fermi spectrum is modeled based on
a comparison with experimental data.

Second, a substantial difference between the two models is
related to the fact that in the SFMC the terms that describe
spin-correlated hopping are present. It is established in [159,
173, 197-199] that the spin-correlated hopping has a long-
range character and just taking these processes into account
plays an important role in the description of the experimen-
tally observed minimum at the point (n/2,7m/2) of the
Brillouin zone for the quasimomentum dependence of the
spectrum of Fermi excitations in the normal phase. In this
case, the correct energy spectrum is obtained as a result of
using the same parameters of the initial Emery model, rather
than introducing additional model parameters affecting the
spectrum form.

Third, the difference between the models becomes even
more substantial if the direct hopping of holes between the
oxygen ions and the Coulomb interaction are taken into
account. In this case, the transition to a single-band descrip-
tion becomes problematic because, when direct hopping is
taken into account, the Fermi degrees of freedom in the
second band come into play. However, an even stronger
argument in favor of the inadequacy of the single-band
description is related to the Coulomb interaction of holes
located at the nearest-neighbor oxygen sites. The fact is that,
as shown in Section 6.2, when using the SFMC to describe the
superconducting phase, an important effect arises, manifest-
ing itself in the fact that the above Coulomb interaction does
not suppress the superconducting d-wave pairing. It turns out
that this effect is of a symmetry nature; therefore, it is
important to take into account the real structure of the
CuO; plane, with two oxygen ions and one copper ion in a
unit cell. When trying to proceed to a single-band description,
the real structure of the lattice does not work, which results in
a distortion of the effective Coulomb interaction. Therefore,
the important effect of the neutralization of the negative
influence of Coulomb interaction is missing, and super-
conductivity becomes suppressed.

Thus, in spite of the formal resemblance between the
SFMC and SFM, there are substantial differences between
them. This discrepancy arises because the SFMC takes
specific features of the crystallographic structure of CuO,
planes into account and the arising effective interactions are
rigorously derived based on the small parameters in the SEC
regime with the major interactions of the original Emery
model taken into account.

3.4 Reduced forms of the spin-fermion model of cuprates

From the form (39) of the operator jq, in the tight-binding
representation, it follows that the SFMC can be consid-
ered a generalization of the Kondo lattice model with the
Hamiltonian Hx (7). The extension of the Kondo lattice
model is specified by taking into account the spin-fermion
interactions with distant coordination spheres (in Hx, this
interaction is local), as well as spin-correlated hopping.

Although the Kondo lattice model includes the spin-
fermion coupling in an extremely simple form, in a number
of papers [164, 185, 200-205], the Kondo lattice was also
referred to as a spin-fermion model. Many studies using the
notion of the spin polaron as a ‘correct’ quasiparticle
(including the case of cuprate HTSCs) rely just on the model
with Hamiltonian (7) [32-36, 41].

We emphasize again that the Kondo lattice, as well as the
t—J model, turns out to be insufficient for an adequate
description of the low-temperature properties of hole-doped
cuprate superconductors. The main difference from the
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SFMC arises due to the unjustified omitting of the long-range
spin-correlated hopping in the Hamiltonian Hy (7). Another
essential difference is due to the absence of Coulomb
interactions in Hy: considering these interactions in the
derivation of the SFMC in the tight-binding representation
gives rise to additional long-range terms [155, 206]. The
addition of the Coulomb interaction operator to the Hamil-
tonian of the Kondo lattice model (7) is associated with this
circumstance [41].

4. Spin polaron concept

4.1 Spin-polaron nature of Fermi quasiparticles in cuprates
It seems impossible to ascertain the mechanism of Cooper
instability without understanding the structure of quasiparti-
cles and the nature of their interactions in the normal phase.
Important information about the properties of quasiparticles is
obtained by studying the topology and evolution of the Fermi
surface upon doping HTSCs [20, 39]. The ARPES data
unambiguously indicate the rigid-band model inapplicability
to the description of the observed modification of the Fermi
surface with an increase in the concentration of holes in the
system [1, 207-210]. The differences between the energy spectra
of optimally doped cuprates and the spectra of undoped
compounds lead to a conclusion that a description of Fermi
excitation dynamics in HTSCs cannot be considered adequate,
if it allows no correct reflection of the evolution of the spectral
density of quasiparticles 4(k, w), observed upon doping.

To date, the results of ARPES studies of undoped mater-
ials [1, 211-215] have indicated the realization of an isotropic
bottom of the band in the vicinity of the point N = (n/2,7/2)
in the quasimomentum space. In optimally doped cuprates, a
flat band region having the shape of a saddle prolate in the
direction (0,7/2) — (0,n) of the Brillouin zone was found
[207, 216-221] (at low and intermediate doping, the flat band
region is also observed in the direction (0,w) — (%n/2, 7)), as
were a large Fermi surface centered at M = (, ) and the so-
called ‘shadow band’ [38] (shadow Fermi surface, resembling
the main Fermi surface, but displaced by the AFM vector
Q = (n,m)). Moreover, under intermediate doping, a pseudo-
gap behavior is observed near the points X = {(=,0), (0,7)}
with an energy of ~ 0.1 eV [212, 222-224].

In Ref. [39], itis shown that many ARPES results in a wide
doping interval can be naturally explained within the spin
polaron concept [32].

The initial idea of this concept is that an elementary
excitation in a doped 2D antiferromagnet can be presented
as a ‘bare’ particle (an electron or a hole) surrounded by a
certain deformation of the spin insulator substrate [33].
Dressing a fermion in a ‘coat’ of spin excitations — para-
magnons — occurs due to the interaction of spin and charge
degrees of freedom: the exchange interaction of fermions with
a separate spin subsystem, as in the Kondo lattice model and
SFMC, or between the spins of fermions from the same
subsystem, e.g., in the t—J model. Depending on the
magnitude of the spin-fermion interaction, two regimes of
spin-polaron quasiparticle formation can be specified: the
strong coupling regime and the weak coupling one. Let us
dwell on these regimes in more detail.

4.2 Spin polaron in the weak coupling regime
Early papers on spin-polaron theory were based on the r—J
model and s—d(f) model described above, as well as their

modifications. The main difference between them is that the
t—J model is single-band, i.e., the same particles possess both
Fermi and spin degrees of freedom. The s—d(f) model
consists of two subsystems: the conduction electrons induce
the Fermi dynamics, whereas the localized electrons deter-
mine the magnetic properties. In both models, the main
parameters are the hopping integral ¢, determining the band
width W, and the exchange integral J. The weak coupling
regime is characterized by a small magnitude of the exchange
interaction, as compared to the kinetic energy of a quasipar-
ticle: J < t. Correspondingly, in the weak coupling regime,
the exchange interaction is considered a perturbation, and the
corrections to the self-energy of a spin-polaron quasiparticle
are constructed by powers of J.

The simplest implementation of the spin polaron concept
in the considered weak coupling regime is proposed in
Refs [26, 160] within the Kondo lattice model with Hamilto-
nian (7). The approach is based on the Holstein—Primakoff
representation for spin operators with subsequent diagonali-
zation by the Bogoliubov transformation method. The Néel
state was considered a ground state of the system in Refs [26,
160], and the properties of the resulting effective Hamiltonian
were investigated using standard field theory methods.

In recent paper [225], a similar idea, associated with
introducing magnon Bose operators within the Kondo
lattice model, is implemented based on a diagram analysis of
effective electron—electron interactions via spin fluctuations
(with a maximum at vector Q = (r,7)). Since in the second
order these interactions have a standard form arising in the
description of coupling of a charge carrier with Bose-type
excitations, the effective Hamiltonian of the Kondo lattice
model in [225] was written in the form

[:1 = kz ékcllackoz—"_ g kz:(b:; + b“!)cliocck+q+Q,a+ Q Z b:;bq ’
' q (45)

where & is the Fourier transform of the hopping integral ¢,
g is a certain effective coupling constant, Q is the resonance
frequency of spin wave excitations in the vicinity of the wave
vector Q, and bji(b q) are the creation (annihilation) operators
of spin wave excitations with the wave vector q. Based on
Hamiltonian (45) in the momentum average approximation
[226], in Ref. [225], the pseudogap behavior and transition
from a large-radius to a small-radius polaron were analyzed.

A specific feature of the description of spin-polaron
quasiparticles within the —J model, as noted in Section 2, is
due to the fact that, in this model, the same fermions cause
both charge and spin degrees of freedom. For this reason, the
exchange interaction in the —J model describes the coupling
directly between the charge carriers (electrons or holes). In
addition, of great importance in the ¢—J model is the
kinematic interaction, determined by the SEC [62, 85, 92,
227, 228].

The general idea of theoretical approaches being devel-
oped to describe the spectral properties of cuprates within the
t—J model is based on representing the Hubbard operators
X% =al (1—f,;) obeying complicated commutation rela-
tions as a product of two usual Fermi and Bose second-
quantization operators. In this case, the spin index relates to
only one of these operators, and just this operator describes
the spin degrees of freedom. The second ‘spinless’ operator,
corresponding to slave particles, describes the charge degrees
of freedom. If the spinless operator is a Bose one, then the
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representation is called slave-boson, and if it is a Fermi
operator, it is called slave-fermion.

The slave-boson representation was used to study the
spectral properties within the 1—J model in Refs [229-234],
and the slave-fermion one in Refs [63, 235-239].

The class of slave-fermion representations also includes
the representation in which, instead of the Bose operator, a
spin operator is used [240-243]. The spin-fermion representa-
tion explicitly implements the idea of spin-charge separation
in systems with SEC. In review [63], the method of slave
particles is thoroughly described, and some results obtained
by applying this method to the z—J model are discussed.

The formalism of slave particles used in the above papers
to describe spectral properties of cuprate superconductors
with the magnetoactive ion spin S = 1/2 can be generalized
over a system with a more complex structure of the Hamilton-
ian. Thus, in the recent study [224] of the photoemission
spectrum features in Ca,RuQ4 within the spin-polaron
approach, the spin-fermion representation was applied to
the Hamiltonian of the r—J model with strong anisotropic
interaction between the ruthenium spins S = 1.

A considerable difficulty in using the slave particle
method is related to the necessity of considering the so-called
constraint, i.e., the condition that eliminates nonphysical
states, which inevitably arise in this approach. The constraint
is used to limit the basis of the Hilbert space of states at each
lattice site. However, practically, it is considered only on
average over the entire crystal, which seems a rather rough
approximation.

It should be noted that, in an overwhelming majority of
papers on the spin-polaron topic, carried out within the slave
particle method, the state with long-range AFM order is
chosen as the ground state. This is fully justified, especially for
systems which in the degree of doping are close to the AFM
region of the phase T—x diagram, where the AFM fluctua-
tions are strong enough. At a significant doping degree, the
magnetic subsystem is in the quantum spin liquid state, and
against the background of just this strongly correlated state
one should construct the Fermi spin-polaron excitations.

4.3 Spin polaron in the strong coupling regime

The strong coupling regime corresponds to the relation J > ¢
between the exchange integral and the hopping parameter.
For systems described within the s—d(f) exchange model or
the Kondo lattice model, this means that the local exchange
coupling between current carriers and localized spins should
be described rigorously, and the hopping of carriers should
be considered as a perturbation. Such an approach to the
formation of the local magnetic polaron is well known in the
theory of magnetic semiconductors [245], although the idea as
such was developed much earlier in Ref. [246].

In application to cuprate HTSCs, the concept of the spin
polaron based on the strong spin-fermion coupling was
developed within both the Kondo lattice model [32-36, 41]
and the SFMC [39, 40, 42-44, 52, 197]. In these papers, it was
assumed that the magnetic subsystem of the spin moments of
copper ions in the CuO, plane can be described based on the
2D AFM-frustrated Heisenberg model with S = 1/2. From
experiments on Raman [247-251] and neutron [252] scatter-
ing, it is known that the AFM interaction between the
nearest-neighbor spins of copper ions in the LSCO equals
I~ 0.13 eV, which considerably exceeds the magnitude of
interlayer exchange. However, even at relatively weak hole
doping, the long-range AFM order vanishes in the entire

range of temperatures. Such a behavior is modeled well
enough by introducing the frustration [253]. The cluster
calculations indicate the presence of a sufficiently large
frustration parameter, even for an undoped LSCO [254].
The quantitative consideration of the spin subsystem in
Refs [39, 197] was performed within the spherically sym-
metric self-consistent approach [255-257]. It is necessary to
note that at any finite temperature and sufficient frustration
in the spin subsystem, it is the spherically symmetric (SU(2)
invariant) state that is most realistic.

In principle, the characteristics of a local spin polaron can
be determined by solving the cluster problem [34, 35]. After
choosing the lowest-energy states of a small cluster, it is
possible to describe the motion of the local spin polaron
against the background of AFM ordering.

However, a more efficient approach to the description of
spectral characteristics of spin-polaron quasiparticles, pro-
posed in Refs [39, 197], is based on the Zwanzig-Mori
projection technique [19, 258-262]. The strong spin-charge
correlations within this approach are taken into account by
extending the basis set of Fermi operators into which, in
addition to the initial operators of hole creation and annihila-
tion in the p,,-orbitals of oxygen ions (see Eqn (26)), the
multiplicative operators are included, defined as the product
of spin and Fermi operators related to neighboring sites.
Constructing the equations of motion for the introduced set
of basis operators with subsequent application of the projec-
tion technique allows a rigorous consideration of short-range
spin-fermion correlations, since for the basis multiplicative
operators no uncoupling procedure is used. As a result, the
spectrum of Fermi excitations becomes dependent on the
spin-fermion correlations, which substantially affect the
concentration dependence of the Fermi contour.

At zero temperature, the motion of a local spin polaron
must depend on the presence or absence of long-range order
in the spin subsystem. This means that the next important step
in the development of the considered concept is taking into
account the interaction of a local spin polaron with spin
waves having the quasimomentum Q = (m, ). Therefore, it
becomes necessary to introduce the so-called composite spin
polaron [33]. The composite spin polaron is a local polaron
moving against the background of AFM ordering, sur-
rounded by a cloud of spin fluctuations with a quasimomen-
tum close to Q [36]. The structure of the low-lying spectrum of
a composite spin polaron is determined by the splitting of the
lower band of the local polaron.

The correctness of the projection method for a Green’s
function used in the spin-polaron concept can be demon-
strated by comparing the results at zero temperature [263]
with the spectral function of a bare hole 4y (k,®), obtained
within the self-consistent Born approximation for a local
spin polaron [31]. It can be seen that the lower band of the
composite polaron in the projection method approximation
successfully reproduces the quasiparticle peak and its inten-
sity obtained within this approximation. As to the upper
bands, corresponding to the excited states, they effectively
describe the incoherent part of Ay (k, ®).

To finalize the section, note that the spin polaron concept
can also be implemented in the framework of the diagram
technique with strong coupling [264], based on cumulant
decomposition of the Green’s functions. Based on this
approach, spin-polaron excitations were studied in the
single-band Hubbard model [265], the t—t'—t"— U model
[266], and the Emery model (at #,, = 0) [267]. Moreover,
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recently, one more version of the diagram technique has
been proposed [268] to describe spin-polaron quasiparti-
cles within the SFMC, referred to as the ‘bundle’
technique by the authors.

5. Spin-polaron quasiparticles in the normal phase
of cuprate high-temperature superconductors

Investigating the Fermi state arising under the hole doping of
cuprates is one of the main problems in HTSC physics. These
properties determine the normal phase features and affect the
mechanism of high-temperature superconductivity.

In Sections 5.1 and 5.2, we discuss the nature of the
formation of spin-polaron states in hole-doped cuprates and
the modification of the Fermi surface in the ensemble of spin-
polaron quasiparticles upon an increase in the concentration
of holes. The solution to the spin polaron problem and the
study of the statistical properties of the ensemble of such
quasiparticles is performed within the SFMC (26).

5.1 Fermionic states in the strong coupling regime

To justify the spin-polaron nature of Fermi quasiparticles
arising in the CuO, plane under weak doping, in Ref. [42], the
solution to the Schrodinger equation for a single hole was
considered, based on the variation method. According to the
Mermin—Wagner theorem [269], in the absence of doping, the
2D subsystem of localized spin moments at arbitrarily low
temperature is in the ground state |G) without long-range
magnetic order. For an AFM-type exchange interaction, this
state is characterized by the properties [270]

S&lG) =0G), (G|S/7|G) =0, S =) _Ss;. (46)
f

The assumption of the singlet state character of the
considered 2D system at a finite temperature is related to
the result of Ref. [271]. In this paper, it was shown with
mathematical rigor that the ground state of a system of an
arbitrarily large but finite number of localized spins, located
at square lattice sites and AFM-interacting with each other, is
a singlet (Marshall’s theorem).

Keeping in mind the Hamiltonian symmetry properties,
we conclude that, for each irreducible representation k of the
group of translations, the single-hole state |y},,,) with the spin
projection o can be expressed in the form

|lpko¢> = Z %/kAkaa|G> ) (47)

where AIT,W denotes both the usual operators of hole creation
in the subsystem of oxygen ions and combinations of
products of hole creation operators and operators related to
the localized subsystem (see below).

From the condition of the energy functional stationarity
under the additional condition (Yy,|V:,) =1, using the
Lagrange method, it is shown in [42] that the energies of
excitations ¢ = Ex — E¢ (here, Ej and Eg are the energies of
the states |,,) and |G), respectively) and the coefficients
#jc are determined by the homogeneous system of linear
equations

> [Dijlk) = aKij(k)] e = 0,

J

(48)

where
Dij(k) = (G{[Ais H], A}, }1G). (49)
Kij(k) = (G|{Aja 4}, }|G) . (50)

Because of the strong spin-fermion coupling, a hole that
appears in the CuO, plane is significantly affected by the
subsystem of localized spins. This circumstance requires a
correct description of spin-fermion correlations and leads to
the extension of the set of basis operators that adequately
describe spin-polaron quasiparticles. Numerical calculations
[42] have shown that a description of the states of the single
hole sector, optimal from the point of view of reaching the
minimum energy with a minimal set of basis operators, can be
achieved restricting the set to three operators:

Alkoc = Uiy A2koc = bkoc )

1 ..
Asiy = Liy = Nz exp [if(q — k)] Sroupugp. (51)
Jap

As shown below, the main role in basis (51) is played by the
third operator, which couples the spin and Fermi subsystems.
Operators (51) for each k and o determine three states
,|G) (J=1,2,3). The orthogonality of these states is
easy to prove, taking into account conditions (46):
(Gl A,, 41,0 |G) = 818k, K (k).
Having calculated matrix elements (49) and (50), let us
define via their ratio the following functions (K;; = 8;;K;):

_ Du(k) _ Dn(k)

Al

é«“()’) - Kn(k) ~ Kan(k) = ék\'(,l‘) ?
ke ok
tr = Dia(k) = Dyi (k) = (27 — 41) sin 5 sin -,
Dy(2),3(k) .k
Jiy) = K (k) = Jsin >
D
k) = (k) =G —pu—2+=—J

(= Cry + C3psi)

+ [ (t = 20)(=Crypp + Cayy) +

2
JC (1 + 4 _
+l(fm—IC1(ylk+4) Kkl, (52)
3
Ki(k) =Kn(k) =1, Ki=Ks(k)= i Ciige s

where y;, are the square lattice invariants,

cosky + cosk,

M=V = €08 kycosk,,

cos 2k, + cos 2k,
y3k = 2 - -

When calculating matrix elements (49) and (50), it was
taken into account that the subsystem of spins localized on
copper ions is in the state of a quantum spin liquid, which
possesses a spherical symmetry in the spin space [255-257]. In
this case, the spin correlation functions C; = (SyS,,) that
appear in Eqn (52) satisfy the relations

Gy = 3(5357) = 3(S3S)) = 3(S5S3) (53)
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Figure 5. Dependences of the energies of single-hole states on the quasi-
momentum along the main diagonal of the Brillouin zone for the set of
parameterst = 0.11,J = 2.86,¢1 = 0.1, 7 = 0.02 (all in [eV]) and the values
of spin correlators C; = —0.255, C, = 0.075, C3 = 0.064. (a) Energy
spectrum ¢;(k) obtained considering two operators: ay, and by,.
(b) Energies of single-hole states ¢j calculated in the basis of three
operators (51) (solid curves) and in the basis of eight operators (54)
(dashed curves). The lower branches of the spectrum, coincident for both
bases, (51) and (54), correspond to spin-polaron states [42].

where r; is the coordinate of a copper ion in the coordination
sphere with the number j. In this case, (Sf) = (S}) =
(S7) = 0. The dependences of the correlators C; on the
doping level were found together within the spherically
symmetric self-consistent approach for a frustrated antiferro-
magnet [270]. The choice of values for correlators C; is
discussed in Section 5.2 in more detail.

The calculation results presented in Figs 5 and 6
demonstrate the importance of considering the interac-
tion between the spin and charge degrees of freedom, as
well as the spin-polaron character of the lower branch of
the spectrum of single-hole states. Figure 5a shows the
quasimomentum dependence (along the principal axis of
the Brillouin zone) of the energy spectrum of single-hole
states, arising when using only two operators, ay, and by,.
In fact, these branches describe the spectrum of holes that
do not interact with the subsystem of spin moments of
copper ions.

Adding the third operator, Lyg,, to the variation procedure
leads to important qualitative changes, the main one being
related to the appearance of a split branch with the minimum
at a point close to (n/2,n/2). This is seen from the spectrum
of single-hole states, obtained in the basis of three operators
and shown in Fig. 5b by solid curves. The decrease in the
energy of such single-hole states is due to the term ~ J in
the Hamiltonian, describing both the exchange interaction
between a hole and the nearest copper ion and spin-
correlated hopping. It is including the operators explicitly
allowing for this strong spin-fermion correlation into the
basis that provides the significant gain in energy. In this case,
the renormalization of two bare branches of the spectrum also
occurs.

The physical reason for the origin of spin-polaron states is
similar to the appearance of the states of a spin polaron in the
exactly solvable problem of a single electron with a flipped
spin in a ferromagnetic matrix with the AFM type of s—d
exchange coupling between the electron spin and the localized
spin moment [272].

1.0
Pk
0.8 P3 Py
/ [ —————1
0.6
0.4
Py Py Py
0.2
Py
0
I M X X X

Figure 6. Partial contributions of basis states to the single-hole state,
corresponding to the lower branch of the spectrum in Fig. 5b. The values
of the model parameters are the same as in Fig. 5. Here, the Brillouin zone
points are ' = (0,0), M = (n,n), X = (0, %), X' = (=, 0) [42].

When the quasimomentum varies in other directions of
the Brillouin zone, the above qualitative modifications of the
spectrum of single-hole states are preserved. It is important to
note that the effect of lower spin-polaron band splitting is
preserved when increasing the number of basis operators. To
demonstrate this fact, Fig. 5b presents the results of the
variation calculation of the Fermi spectrum within a basis
consisting of eight operators,

- 1 -
Aj = —=Y_exp(—ikf) Ay, j=1,...,8, (54)
VN4

where
A10)5 = Crrgy 20 A3y = Srerg /2
As)r = Sr¢r—g. /2 A18) 7 =SSt e /2 -

The first two operators of this basis coincide with the
corresponding operators of basis (51). Each of the four
operators Ay with j = 3,...,6 describes the correlation of a
localized spin with a hole, localized on one of four oxygen
ions, nearest to this spin. The last two operators, A7, and Agy,
describe the correlation of a hole on an oxygen ion with two
spins at once on the nearest-neighbor copper ions. The
calculated eight branches of the Fermi spectrum are pre-
sented in Fig. 5b by dashed lines. It is essential that the
dispersion dependence for the lower branch of the spin-
polaron spectrum be virtually unchanged. Thus, the basis of
three operators (51) is sufficient to describe the low-energy
part of the spectrum of Fermi quasiparticles with high
accuracy. This spectrum is determined by the solutions of
the dispersion equation

detk(w) = (CL) - éx)(w - é})(w - éL) - 2Jnylek
— (0 = &K, — (0 — E)T K — (0 — &)t = 0. (55)

The lower branch ¢y is significantly separated from the two
upper bands ¢y, and ¢3;; therefore, at low doping levels x, the
dynamics of holes on oxygen ions is determined exclusively by
the band ¢yy.

With the characteristic values of SFMC energy para-
meters, it is possible to obtain an approximate analytical
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Figure 7. Dependences of spin polaron energies on the quasimomentum
€1 and ¢4 (k) along the main diagonal of the Brillouin zone, obtained as a
result of the exact solution of dispersion equation (55) (solid curve) and a
result of using Eqn (56) (dashed curve). The parameter values are the same
asin Fig. 5.

expression for the spectrum of a spin-polaron quasiparticle:

2
cplh) = + /Zlk/Kk B \/(Tk - /ik/Kk)

+16J2Kv2 ,  (56)

in which the energy and renormalization functions of
quasimomentum are defined by expressions (34) and (36), as
well as

A =J(=34+ Cr +8Cryy) + Wi — IC (4 + 1)

+i| —5+4Cyy — 2C2V2k> )

N W

1
Wi=——4Cyy + Cayy + 3 Gy - (57)

15
8
Figure 7 shows the quasimomentum dependences of the spin-
polaron spectrum ¢y, found from dispersion equation (55),
and ¢, (k), determined by expression (56). The dependences
are seen to coincide with good accuracy.

The weight contributions Pj; and Py of the bare hole
states a,L|G) and bzd|G> are defined by the expressions
P = |%1x|*, Pax = |%a|?. For the weight contribution Pj;
of the spin-polaron basis state we obtain Ps; = Kk\x3k|2.
Figure 6 shows the results of calculations [42] for the values
of the introduced partial contributions for quasimomenta in
four directions of the Brillouin zone. It is seen that the values
of P exceed those of Py and Py, by several times. This
proves the spin-polaron nature of the single-hole state,
corresponding to the lower split branch of the energy
spectrum.

5.2 Modification of Fermi surfaces

in LSCO under hole doping

In Ref. [40], based on the SFMC, the efficiency of the spin-
polaron approach is demonstrated by an example of describ-
ing the ARPES results and Fermi surface modification upon
doping in the LSCO [210]. In particular, the authors of
Ref. [40] investigated the region of concentrations from
x = 0.03, at which the LSCO is an undoped insulator, to
x = 0.3, at which the LSCO becomes a normal metal. It was

shown in [40] that the spin-polaron concept allows reprodu-
cing fine peculiarities of the LSCO Fermi surface evolution in
the nodal direction upon varying the doping level x. In this
case, the key role was played by the spin-correlated hopping
of carriers and the change in the inverse magnetic correlation
length with doping.

The fitting of strong-coupling models to the experimental
data is known to require many fitting parameters. For
example, to achieve satisfactory agreement between the
Fermi surface calculated in the mean field approximation and
the one reconstructed from experimental data, the authors of
Ref. [210] for each concentration of holes had to choose its
own set of four parameters, namely, three hopping integrals,
t1, b, t3, and the energy shift value &,. Refs [40, 197] show
that, within the concept of the spin polaron in the SFMC,
the modification of the energy spectrum and Fermi surface
is determined only by the strong correlation between the
subsystem of localized spins on copper ions, being in the state
of a quantum spin liquid, and the subsystem of oxygen holes,
as well as by the change in the correlation characteristics of
this liquid upon doping. In particular, in Ref. [40] only one
fitting parameter was used, the hole hopping integral ¢, which
was chosen based on a comparison with the LSCO experi-
ment data [210].

In Ref. [42], taking into account the strong coupling
between the subsystem of localized spins of copper ions and
the spin of an oxygen hole, the Fermi quasiparticle spectrum
is constructed based on the variation method. In fact, only
one hole was considered. In the case of a finite number of
holes, it is convenient to calculate the spectrum of Fermi
excitations using the Zwanzig—Mori projection technique [19,
258-262], which, in combination with the formalism of
retarded Green’s functions, allows calculating the necessary
thermodynamic averages, as well as describing superconduct-
ing pairing in the ensemble of spin polarons, as shown in
Section 6.

Within the projection technique, the minimal basis of
operators A;; (j = 1,...,n) is chosen, which is assumed to be
sufficient for an adequate description of quasiparticle excita-
tion in the system. Then, the two-time retarded Green’s
functions are introduced:

Gk, 1) = (A (1)] 4} (0))) = =i0() ([ (1), 4} (0)]),
ij=1,...,n, (58)
where the operator Aj is a Fourier transform of the operator
Ajr. The equations of motion for the Fourier transforms of
the introduced Green’s functions have the form

(Al 4})) = Ki(k) + (Pucl 4])),, (59)
where @, = [A;k,lfl], Kij(k) = ({A,-k,A;k}). Then, each term
on the right-hand side of Eqns (59) should be projected on the
subspace, which is a linear shell, formed by the set of basis
operators. In other words, the process of decomposing the
operator @ is reduced to calculating the projection compo-
nent according to the following algorithm:

Dy, Al
Dy — Y M Ag . (60)
T ({Ai, Ay })
As shown in Section 5.1, to take into account the strong
spin-charge coupling in the system correctly, it is a matter of
principle to introduce into the basis set the operator Ly,
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Figure 8. (Color online.) Energy structure (a) and density of states (DS) (b)
of the spin-fermion model in the normal phase, calculated for the
set of parameters fpg = 1.3, 4pq = 3.6, Ug = 10.5, Vg =12, Uy = V) =
V, =0,t=0.12(all parameters in [eV]) and the doping level x = 0.12. The
lower branch ¢ corresponds to spin-polaron excitations. The red line
shows the position of chemical potential p.

alongside operators ay, and by,. After introducing Fourier
transforms of the Green’s functions G;; (j = 1,2, 3),

Gu = ((axtlal,)),, Gu={(bula))),, Gu=({Llaf)),
(61)

the closed system of equations, obtained within the projection
technique, can be written in the form

(0 = &,)Gyj = 81j + txGoyj + J+ Gy,
(0 = &)Gy = by + 1xG1j + J,Gy,
(0 = &1)Gyj = 83K + (J1Gj + J,Gy) K

(62)

The Green’s functions G and Gz (i=1,2 3) are defined
similarly, with the only d1fference being that a,T is replaced
with operators bm and LM’ respectively.

When writing down system of equations (62), the func-
tions (52) are used. Note that in expressions (59) and (60)
the angle brackets denote thermodynamic averaging over
the Gibbs ensemble, whereas in definitions (49) and (50)
of similar matrices, the averaging is carried out over the
ground state |G) of the system. Nevertheless, it turns out
that in the low-density regime the results of calculations
using both methods coincide and are given by expressions
(52).

The energy spectrum of quasiparticles determined by the
poles of the Green’s function

z (k)

3
(i,)) -
Giilk,w) = g —= L, j=1,2,3, 63
i(k, ) 2t — J (63)

where z(; (k) are the residues of the Green’s function, and
can be calculated from the dispersion equation (55), i
presented in Fig. 8. As noted in Section 5.1, for cuprate
HTSCs only the lower polaron band with the dispersion ¢ is
relevant, because the chemical potential u lies in this band,
and the two other bands with ¢y; and ¢3; are separated from
€1, by a considerable energy gap.

Studies of density modification of Fermi states [273]
caused by a change in the value of the hopping integral for
holes on oxygen ions have shown that a decrease in 7 gives rise

Table. Values of doping level x and the corresponding values of frustration
parameter p and spin correlation functions [40, 270].

X P C[ Cz C3
0.03 0.15 —0.287 0.124 0.0950
0.07 0.21 —0.255 0.075 0.0640
0.15 0.25 —0.231 0.036 0.0510
0.22 0.275 —0.214 0.009 0.0450
0.30 0.30 —0.194 —0.0222 0.0457

to a shift of the van Hove singularity of the spin-polaron
band, presented in Fig. 8. This, in particular, causes a shift of
the maximum of the concentration dependence of the super-
conducting critical temperature towards a smaller density of
holes (see Section 6).

An essential feature of the approach used is that the
correlation functions Cy, C,, and C; that enter the functions
(52), as well as the gap 4q(p) in the spectrum of magnetic
excitations in the vicinity of point Q = (m, ) of the Brillouin
zone, are found together within the spherically symmetric
self-consistent approach for a frustrated antiferromagnet
[255-257, 270]. In this case, dq is linearly related to the
inverse magnetic correlation length £ ~'. On the other hand,
according to data on neutron scattering and nuclear magnetic
resonance (see, e.g., [274, 275]), the quantity ¢! is deter-
mined by the doping level x and for the LSCO increases
several-fold with x increasing in the interval x = 0.03—0.3.
Accordingly, the accepted values of frustration (see table)
correspond to the case when the spin gap increases 2.5-fold
with the growth of the frustration parameter from p = 0.15 to
p = 0.3. The table also presents spin correlators calculated by
the above technique for five values of the parameter p, which
correlate with five values of the doping level x.

For the LSCO, the Fermi energy can be determined
from the equality of the number of bare holes n, and the
doping level x. The number ny, at small values of x, which is
interesting for us, equals the spectral density integrated over
the Brillouin zone and summed over the spin o: ny (k) =

2, li: ) + 24 (k).
igure 9 presents the spectral density distribution over the
Brillouin zone. At the point I = (0, 0), n, , (k) = 0, but, as we
move off this point, the spectral weight rapidly increases,
and when approaching the antinodal X—X line, becomes
saturated.

To demonstrate the formation of the flat band region in
the vicinity of X-points of the k-space, Fig. 10 presents a
contour plot ¢, = const of the lower spin-polaron band,
calculated at x = 0.15. The existence of a flat band in this
region has been established in many papers [207, 216-221], in
particular, in Ref. [210] at x < 0.15. The results of calcula-
tions presented in Fig. 10 allow estimating the effective mass
of spin-polaron quasiparticles, which, as seen from the figure,
is highly anisotropic. Thus, in the nodal direction (I'—M), the
calculations yield the mass value of mpr_y = 1.25m,, where
me is the mass of a free electron. In the antinodal (X—X)
direction, the effective mass is mx_x = 9.4m..

The contours ny, (k) = const and ¢, = const presented
in Figs 9 and 10 were calculated at the value of the direct
oxygen—oxygen hopping parameter of ¢ = 0.094 eV. This
single fitting parameter was chosen based on the requirement
of agreement between the Fermi surface topology and the
ARPES data [210]. It is important to note that the same value
of # was used to describe the Fermi surface at all five levels of
doping x presented in the table. The Fermi surfaces calculated
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Figure 9. Bare-hole constant spectral density lines np, ,(k) for the lower
polaron band in the first quadrant of the quasimomentum space at the
doping level x = 0.15. Numbers indicate the values of ny (k) [40].

r ky X

Figure 10. Constant energy lines in the lower polaron band ¢; (k) = const
in the first quadrant of k-space at the doping level x = 0.15. The numbers
indicate the values of ¢, (k) in [eV] [40].

together with spin correlators for the above five values of x
are presented in Fig. 11. It is seen that, at a doping level of
x = 0.16, the electron type of the Brillouin zone topology
becomes changed for the hole type, which agrees with the
experimental data [210]. To characterize the Fermi surface,
the authors of Ref. [210] introduced the Fermi momentum kp,
equal to the distance from the point I" = (0, 0) of the Brillouin
zone to the point of intersection of the Fermi surface with the
nodal line. They determined the dependence of kr on the
doping level and demonstrated a transformation of the Fermi
surface electronic topology into the hole one upon a
transition over the critical value of the doping level.

A comparison of the concentration dependences of kg,
theoretically calculated and measured in Ref. [210], is
presented in Fig. 12. It is seen that the weak experimental
dependence kg(x) is well reproduced within the spin-polaron
approach: the maximum discrepancy between the experimen-
tal and theoretical values of kg does not exceed 4%.

X M

r ky X

Figure 11. Fermi surfaces in the first quadrant of the Brillouin zone for five
values of doping level x, indicated on the corresponding Fermi contours
[40].
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Figure 12. Fermi momentum kg versus doping level x. The solid line
connects the values of kr calculated within the spin-polaron approach.
Circles denote the experimental values of kg [40] presented in [210].

6. Superconducting phase
of spin-polaron quasiparticles

6.1 Cooper instability of spin polarons

Success in applying the spin polaron concept to the descrip-
tion of properties of the normal state of cuprates made it
urgent to answer the question of implementing the super-
conducting phase under conditions where the Cooper
instability develops in the subsystem of spin polarons, rather
than for bare fermions [276]. Ref. [41] has shown that the
ensemble of spin-polaron quasiparticles arising in the
simplest model of cuprate superconductors—the 2D
Kondo lattice in the SEC regime— possesses Cooper
instability with the d,._,.-wave symmetry of the order
parameter. The role of the Cooper pairing constant was
played by the integral of exchange interaction between the
localized spins. It was shown that three-center interactions in
the spin-polaron ensemble in the spin liquid phase of the
subsystem of localized spins, in contrast to interactions in the
t—J* model [140, 141], facilitate Cooper pairing and provide
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the realization of the superconducting phase with high critical
temperatures.

Later, in Ref. [42], the theory of superconductivity in an
ensemble of spin polarons was developed in SFMC, which
was an important stage in the progress of the spin polaron
concept. To analyze the superconducting phase, the basis set
of three operators (51) was completed with three more
operators (& = —a):

aik& 5 btk& ) Lik& : (64)
Consideration of these three operators allowed us to intro-
duce anomalous thermodynamic averages. It was demon-
strated that a strong spin-fermion coupling arising due to
hybridization mixing of the states of copper and oxygen ions
in the original Emery model not only affects the formation of
spin-polaron quasiparticles but also provides an effective
attraction between them through the exchange interaction.
This induces the Cooper instability with d-wave pairing in the
system of spin polarons. Within such an approach, the phase
T—x diagram was constructed [42], correlating well with the
experimental data on cuprate superconductors (see curve / in
Fig. 15 of Section 6.2).

It is necessary to note that in Ref. [42] the superconduc-
tivity theory was constructed without considering the
influence of intersite Coulomb interactions of fermions. The
problem of allowing for these interactions, having primary
importance for a realistic description of superconducting
pairing in cuprate superconductors, is considered within the
spin-polaron concept in Section 6.2.

6.2 Problem of intersite Coulomb interaction

Alongside the necessity to correctly describe the strong
spin-charge coupling in cuprates, an even more important
problem has manifested itself, related to considering the
intersite Coulomb repulsion of holes on oxygen. The fact
is that the Cooper instability, considered in the Hubbard
model [85], t—J model [19, 63, 186], or t—J* model [139—
141], experiences strong suppression as soon as one takes
into account the intersite Coulomb repulsion between
particles located at the nearest-neighbor sites of a square
lattice.

For the superconducting phase with s-wave symmetry of
the order parameter, induced by the relatively strong Zaitsev
kinematic mechanism [85, 90-92], Cooper pairing is preserved
even upon switching on a sufficiently large 7, as shown in
Fig. 13. The self-consistency equation that determines the
superconducting transition temperature in this case has the
form

1
1+ V qu:(cos gy + cos qJ,)zd)q

1
= 41, NZ(COS gx +cosq,)P,, (65)

q

where @, = [1/(2E,)]tanh [E,/(2T;)]. However, the super-
conducting s-wave pairing in cuprates is not observed
experimentally.

For the superconducting phase with d-wave symmetry of
the order parameter, which is actually realized in cuprates
[279-282], with the intersite repulsion of fermions taken into
account, the situation is even more dramatic. Since the
parameter V7 of Coulomb repulsion additively enters the
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Figure 13. (Color online.) Dependences of the temperature of a transition
to the superconducting s-wave phase on the concentration of electrons n in
the — V"' model, obtained for two values of V" taking into account (red solid
curves) and not taking into account (blue dashed curves) the effects of
inducing the band of fluctuation states [277], caused by the effect of strong
intersite Coulomb correlations [278].
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Figure 14. (Color online.) Dependences of the superconducting phase
transition temperature on the concentration of electrons in the —J model
atJ = 2|t;|/U = 0.24, obtained for three values of V.

coupling constant in the equation for T,

J—V
[——

N (66)

(cos gy — cosq,)’ P, ,
q

for complete suppression of superconductivity, as seen from
Fig. 14, a relatively weak V is sufficient. As a result, to
compensate the strong repulsive contribution caused by the
intersite interaction of holes, it was necessary to additionally
allow for the contributions related to electron—phonon, spin-
fluctuation, and charge-fluctuation processes [228, 283-285].
Note that, in the above papers, the magnitude of Coulomb
interaction between holes in different cells is V' =0.2 eV,
which is much smaller than the magnitude of spin-fluctuation
coupling at the expense of kinematic interaction g = 1.5¢V,
and only because of this fact the superconducting d-wave
phase was preserved.

Thus, the superconducting d-wave phase, necessary for
explaining the experiment, was significantly suppressed by
the Coulomb repulsion of holes located at the nearest-
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neighbor sites. We should note that the sometimes-used
argumentation, related to screening of the Coulomb interac-
tion, in this case seems unconvincing, since it was about the
repulsion of holes, located at nearest distances [286]. The low
efficiency of screening in HTSCs was noted also in Ref. [105]
and was associated with the low concentration of holes on
oxygen ions.

The problem of neutralization of the Coulomb repulsion
of holes on oxygen requires a revision of the theory of Cooper
instability in HTSCs. In this connection, note that a similar
problem in its time existed in the theory of classical super-
conductors. Its solution became possible after it was shown in
[287, 288] that the electron—phonon interaction in a certain
domain of the momentum space initiates effective attraction
between fermions that can compensate the bare repulsion.

An important result obtained in the course of developing
the superconductivity theory within the spin-polaron concept
[42] was just the solution of the problem of intersite Coulomb
interaction V; of holes on the nearest-neighbor oxygen ions.
In Ref. [42], it was shown that in cuprate HTSCs the
neutralization of the negative influence of the intersite
Coulomb interaction of holes on the Cooper instability in
the d-wave channel occurs due to the effect of two factors. The
first of them is related to considering the real crystallographic
structure of the CuO; plane, for which the Fourier transform
of the intersite interaction has the form V, = 4V cos (¢./2) x
cos (¢,/2) and corresponds to the symmetry of the oxygen
sublattice [186]. The second factor is due to the strong
coupling between localized spins of copper ions and holes on
oxygen ions. As noted in Section 6.1, this factor leads to the
development of Cooper instability in the ensemble of spin-
polaron quasiparticles [42]. In this case, the Coulomb
repulsion between bare holes with the Fourier transform V,,
is renormalized into the interaction between spin-polaron
quasiparticles in such a way that the momentum dependence
of this effective interaction comes to correspond to the
structure of the sublattice of copper ions rather than oxygen
ions. As a result, a situation arises in which the effective
repulsion between spin polarons is eliminated from the kernel
of the integral equation for the superconducting order para-
meter with the d..» —y2-wave symmetry.

In Ref. [43] and its advanced version [289], when calculat-
ing the energy structure and analyzing the conditions for
the development of Cooper instability in SFMC, the well-
established values of parameters (5) of the Emery model [107,
110] were used. Using this set, for the magnitude of the
exchange coupling between the localized spins of copper and
spins of holes on oxygen ions, the relation J = 3.38 eV >
72 0.10 eV was achieved. For the integral of hole hopping
between oxygen ions, the value 1 = 0.12 eV was used, and the
constant of exchange interaction between the spins of copper
ions was chosen to be 7= 0.136 eV, which agrees with the
experimental data on cuprate superconductors. The para-
meters of Coulomb repulsion of holes located on the nearest-
neighbor and next-nearest-neighbor oxygen ions were chosen
tobe IV} =1-2eV[290]and V> = V] = 0.5—1¢eV [289, 291],
respectively.

The closed system of equations for normal, G;; (61), and
anomalous, F;;, Green’s functions (j = 1,2, 3)

Fll = <<aikl|a11}>>w’
Py = <<btki|agT>>w )
F31 = <<Lik1‘a1&>>w7

(67)

obtained within the projection method, has the form [289]
(0 = )Gy = 81 + tkGoj + J Gy + Ay b + Aoy

(0 = &,)Gy = Oy + 145Gy + J, Gy + A3 Fyy + Awc Py

m
(0 —&1)Gy = 83Kk + (JxGyj + JyGoy) K + K—SIA Fs;,
; . . (68)
(0 + &) F1j = A1,Gyj + A5Gy — by + i Fy;,

(0 + &)y = A5Gy + A3 Gy — tFy + T, Fyy

A*
(0+ &) F3 = KS: Gy + (JoF1j + JypFo) Ky

For Fp and Fj (i = 1,2, 3), the same second-index notations
are taken as for normal Green’s functions (61). In the
formulation of the system of Eqns (68), functions (52) were
used.

The components of the superconducting order parameter
are related to the anomalous averages as follows:

A”‘:__Z[ L+ Vsycos (ky — q,) + Vhcos (ky — qx)

X (aqra—q)) ,

4V1
Zd)k q aqu*(Il>

4V1
A3 = Z¢k g{bgra—g)

Aop =

A4k:——2[ —L + Vs cos (ky — qx) + Vjcos (k, —q})}
X {bgrb—q1)

1
Asp = NZ [lqu(@ﬂbm — Ci(ugiu—q))) +8IC <“qT“*ql>}
q

L Z{ 20, qTL,,u>+(%—4cl>vl,c)<unufql>}
ty Z
2y

ZK"— st )

3 C
n (§ _ 7' cos ky> (qubfqlﬁ

V 3
N ; {(Z = 2Cy + C2“/2k) Sq,xSq,y

€(qx)sq,x + 145, J)(aqTL—qi>

<(qy)sq,y + 1g8q, V) (bgrL—q1)

+ Casinkysin (66, | (yrb) + (bga.)
1
_ NZ{ V2(Cy cosky, — Cayy) €OS gy
q

+V; {—% + Cj cos ky C2 cos (2k, )] cos qx} (agra_q))
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1
_ NZ{ Vo(Cycosky — Cayap) €OS gy
_3
8

+ Cicosk, — % cos (21@)} cos qy}(bﬂb,qw .
(69)

Here, I = 41ly); and the functions s; , = sin (ky/2), s, =
sin (ky/2), ¢, = cos (ky/2) cos (k,/2) are introduced.

Since it is the regime of weak doping that is relevant for
cuprates, the contributions to expressions (69) resulting from
the decoupling of averages and proportional to density-
density correlators are not considered here.

To analyze the conditions for Cooper instability, in
Ref. [289] the necessary anomalous Green’s functions were
expressed in terms of the parameters 4}, (/= 1,...,5). Then,
using the spectral theorem [292], expressions were found for
the anomalous averages, and a closed system of homogeneous
integral equations for the components of the superconducting
order parameter was found. This system of equations was
used to find the critical temperature of the transition of an
ensemble of spin polarons to the superconducting state with
given symmetry of the order parameter. From the system, it
followed that the kernels of the integral equations have a split
form and its solution should be sought in the form

A = By + Biacosk, + Bizcosk,,

Aok = Bo1y + Boosk,x Sk, »

Azk = B31dy + B3osk, x Sk,y 5

Agre = B4y + Bapcosky + Bazcosk,,

Asi = Bsy + Bsycosky + Bszcosk,
+ Bs4coskycosk, 4 Bsssink, sink,
+ Bsg cos (2ky) + Bsy cos (2k,)

where 17 B amplitudes determine the contribution of the
corresponding basis functions to the decomposition of the
order parameter components. After substituting Eqn (70)
into the system of equations for the components of the
superconducting order parameter and equating the coeffi-
cients at the corresponding trigonometric functions, a system
of 17 algebraic equations for the B amplitudes was obtained
[289]. Solving this system together with the equation for the
chemical potential y yielded the dependence of the tempera-
ture T, on the doping level x for various symmetries of the
order parameter. The results of the numerical solution are
presented in Fig. 15. Curve / shows the dependence of the
critical temperature of superconducting d,»_,.-wave pairing
on the doping level at U, =V =V, =0. This curve,
obtained earlier in Ref. [42], agrees well with the experi-
mental data both in the absolute value of 7, and in the doping
interval in which the Cooper instability develops.

An important aspect of the developed approach is that, as
mentioned above, allowing for the Coulomb interaction ¥ of
fermions located on the nearest oxygen ions does not affect
the dependence T¢(x) for the superconducting d,._ .-wave
pairing: curve / in Fig. 15 does not change [43]. In the doping
region, where this type of pairing is realized at 7 < T, the
solutions to the algebraic system for amplitudes B showed
that only four of them, Bs;, Bs3, B2y, B3, are nonzero; in this
case, B52= —B53, Bzzz —B32, and |B52|/|Bzz| ~ 103 This
means that the quasimomentum dependence of the super-
conducting gap is mainly determined by the fifth component

150
T., K

100

50 -

0 0.1 0.2 . 0.3 0.4

Figure 15. Dependences of the critical temperature of a transition to the
superconducting phase for d,»_,.-wave pairing on the doping level x,
obtained for the model parameters J = 3.38,7 =0.10,7=0.12, = 0.136
at Uy =V, =0 (curve /), U, =0, V, =02 (curve 2), U, =3, 1, =0
(curve 3), Up =3, V2 =0.2 (curve 4), U, =0, V, =0.8 (curve ), and
U, = 3, V2 = 0.5 (curve 6) (all parameters in [eV]) [295].

of the order parameter 4s;, which has the form

As(/f) = Bsy(cosky —cosk,) . (71)
For the superconducting d,»_,.-wave pairing at
U, =V, =0, the amplitudes Bs, and Bs; in the equation for
Asy are determined exclusively by the exchange constant 7,
rather than the parameter V). Therefore, the intersite
Coulomb repulsion of holes on the nearest-neighbor oxygen
ions does not suppress the Cooper instability in the d-wave
channel [43].

For U, =V, =0, instead of 17 equations, only one
equation can be derived and solved for 7. (as in Refs [42,
273, 279]), which has the form

I
1= (cosqe — cosq,)* (M33(q, 19) — CiMu(q, €14))

N q
(72)
where the functions
Mu(q) = —s; Mn(q) — s, ,Mn(q)

— 5q,x 5q,v (M21(9) + Mlz(‘])) )

Manlg) = gl St ()
Su(k,w) = =0k, —0)0,(k, »),
Si(k,w) = =0, (k, —0)0«(k, w), (73)
So1(k, ) = Sia(k, —w) ,
Sn(k, ) = —0x(k, )0« (k, ),
523(1‘ w) = Quy(k, =)0y (k, »)
(ko) = (o Cxo))f ) T )
Qw (k,0) = (0 = &)@ = &) — 1}

are introduced.

From Eqn (72), in particular, it follows that the mechan-
ism giving rise to superconducting pairing is the exchange
interaction between the spin moments of copper ions, which,
as mentioned above, transforms into the effective attraction
as a result of strong spin-charge coupling. The results of
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solving Eqn (72) and the system of 17 equations for B
amplitudes for d-wave pairing at U, = V, = 0 apparently
coincide and correspond to curve / in Fig. 15.

In contrast to the intersite interaction of holes on the
nearest-neighbor oxygen ions, considering the Coulomb
interaction U, of two holes on one oxygen ion leads to a
suppression of the superconducting d-wave phase [44].
However, as follows from a comparison of curve 3
(Up=3 ¢V and V>, =0) and curve I (U, =V, =0) in
Fig. 15, this suppression is not essential for the realization of
HTSC, since in the region of optimal doping, x ~0.16, the
temperature 7, remains high.

References [289, 291] consider the influence of the
Coulomb repulsion 7, of holes on next-nearest-neighbor
oxygen ions in the CuO; plane on superconducting pairing.
Curve 2 in Fig. 15 corresponds to the dependence T.(x)
obtained for U, =0, V> =02 eV, and curve 5, to the
dependence T¢(x) for U, =0, V', = 0.8 eV. It is seen that, in
contrast to V|, considering V7 leads to a suppression of the
superconducting d,»_,.-wave pairing. This suppression
increases if Up # 0 (curves 3, 4, and 6). But even with
simultaneously taking into account the above Coulomb
interactions, d.»_,>-wave pairing is preserved and can be
suppressed only at unrealistically high values of V5 > 0.5 eV
[289, 291].

Figure 16 presents a modification of the gap in the
spectrum of elementary excitations of spin-polaron quasipar-
ticles at the Fermi contour in the superconducting phase upon
varying the magnitude of Coulomb interactions U, and V>,
calculated in Ref. [294]. From the figure, it is seen that the
quasimomentum dependence of the gap in the first Brillouin
zone is characterized by d,._,.-wave symmetry of the order
parameter. Since the Coulomb interaction ¥} of holes on the
neighboring ions of oxygen does not affect the superconduct-
ing d-wave pairing, the behavior of the superconducting gap
is determined by only three components of the order
parameter, Ay, A4, and Asg, from system (69). The self-
consistent solution to the system of three equations for these
components together with the equation for chemical potential
(now without using the linear approximation in 4;; when
finding necessary anomalous Green’s functions) yields the
dependences 4(k), presented in Fig. 16.

It can be shown [52, 295] that these dependences can be
described analytically due to the low density of current
carriers, as well as the high value of ~ J of the energy gap
between the lower spin-polaron band and the energy level of
holes in p-orbitals of oxygen (see Fig. 2). In this case, the
expression for Ej can be presented in the classical form,

Ey = \/612k+Ai7

where the gap function Ai is expressed in terms of the order
parameter components 4, (j=1,...,5) in an additive way:

(74)

|45
K?

A7 = Ayl + Al + | A3 + | Au]* + (75)

An important consequence of Eqn (75) for the super-
conducting gap is that the function A; for d-wave pairing
cannot be written as a simple difference of cosines,
cosk, —cosk,. The presence of the function K in the
denominator of Eqn (75) will lead to the fact that the quasi-
momentum dependence of the gap will always slightly decline
from the function cos k, — cos k. A detailed discussion of the

350 UP:O, V=0

300 | Up=0,V,=02¢eV
250 L Up=3eV, V2 =0
200

Up=3eV, V5, =02eV

Asc, K

150
100
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Figure 16. Quasimomentum dependence of the superconducting gap Asc
on the Fermi contour at x =0.125, 1 =0.136 eV, T'= 0, and various
magnitudes of Coulomb interaction [294].

issue related to the dispersion of the superconducting gap in
cuprate HTSCs can be found in Refs [296, 297] and references
therein.

The issue of implementing s-wave pairing in an ensemble
of spin polarons was considered in Ref. [44], for simplicity,
without considering the long-range Coulomb interaction,
V> = 0. In this case, from the system of integral equations
for the components of the superconducting order parameter it
follows that the solution corresponding to s-wave pairing
should have the form

A1) =4y =B,
ay) =45 =0,

AL = Bs + 2Bsyyyi + Bsayay

(76)

Calculations show that at all realistic parameters of the model
the system has no nontrivial solution, corresponding to the
superconducting s-wave pairing [44]. Therefore, in the
SFMC, correctly considering the strong coupling of holes on
oxygen ions with the spin moments of copper ions, the
superconducting phase with s-wave symmetry of the order
parameter is not realized.

6.3 London penetration depth

The spin-polaron approach, which has proven successful in
describing the equilibrium properties of hole-doped cuprates
both in the normal and in the superconducting phase, can be
applied to the investigation of the system response to an
electromagnetic perturbation, as well. In particular, it is
highly interesting to study the penetration depth 4 of
magnetic field into a superconductor, since this characteristic
allows clarifying a number of experimentally observed
features of the temperature dependence of the superconduct-
ing current density. A comparison with experimental data
yields important information, not only about the critical
current, but also, e.g., about the mechanism of pseudogap
phase formation in cuprates [298, 299].

A characteristic feature of the temperature dependence of
272 in cuprates is a linear slanted region of the function
272(T) at low temperatures. Such a behavior, according to
Ref. [300], is due to the presence of nodal points at the gap on
the normal-phase Fermi surface. The appearance of nodal
points in cuprates, as is known, is associated with the
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realization of d-wave symmetry of the superconducting order
parameter. In s-wave superconductors, the nodal points are
absent, and the gap reduction in the low-temperature region is
described by an exponential function.

One more important feature of the London depth
temperature dependence in cuprate HTSCs is due to the
presence in a number of compounds of so-called inflection
points (i.e., points where the curvature changes sign) of
the function 22(T), observed at certain doping levels in
La, g3Srg17CuOy4 [301, 302], YBa,Cu307_5 [303, 304], and
Bi2A158r1_85CaCu208+5 [305]

To explain why an inflection point appears, the authors of
Ref. [301] hypothesize that in La; g3Srg17CuQy4 there are two
superconducting gaps, with d-wave and s-wave symmetry of
the order parameter existing simultaneously. However, as
demonstrated in Ref. [52], the above feature in the tempera-
ture dependence of the magnetic field penetration depth in
a cuprate superconductor can be obtained without using
artificial hypotheses. For this purpose, the spin-polaron
concept was invoked, the key feature of which is that the
charge carriers in these compounds are spin-polaron quasi-
particles.

In the local approximation, the relation between the
density of the superconducting current j and the magnetic
field vector potential A is determined by the London equation

€A, (77)

=

where ¢ is the speed of light. To calculate the density of
superconducting current j, the SFMC Hamiltonian (26) is
written in the Wannier representation. Then, using the Peierls
substitution, a term describing the magnetic field is added to
this Hamiltonian. The Peierls substitution leads to renormal-
ization of all hopping integrals by the phase factor

ie ..
exp (E R,’,‘W,A(’I‘:O) ,

where R,,, = R,, — R, is the difference between radius vectors
for sites with the indices m and n, 7 is the Planck constant, e is
the electron charge, and A is a Fourier component of the
vector potential considered in the long-wave limit (see, e.g.,
[306]). For simplicity, the vector potential A is chosen directed
along the x-axis.

The standard procedure of calculating the paramagnetic
and diamagnetic parts of the current consists in extracting
from the Hamiltonian corrections linear and quadratic in the
vector potential Ay, with subsequent variation of these
corrections with respect to A4, [306-309]. When using the
spin polaron concept, it is appropriate to modify the
approach by abandoning the expansion of the phase factors
(78) in powers of 47, i.e., leaving these factors in their initial
form. Then, after moving to the quasimomentum representa-
tion, the only change (due to switching on the magnetic field)
in the operators Hy, and J (26) of the Hamiltonian will be the
appearance of an additional phase «, in the argument of the
trigonometric function s, [52]:

(78)

. (k
Sk.x — Sk.x = Sin (?V — ocx> , (79)
where
egx
B = 2ch At;:() ’ (80)

122, um2
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Figure 17. (Color online.) Temperature dependence of the inverse London
penetration depth A, calculated for various values of the doping level x
with the set of model parameters T = 0.225,J =2.86,1=0.118, t = 0.12,
U, = V> = V} = 0 (all parameters in [eV]) [52].

with g, being the lattice constant along the x-axis. The
function s , remains unchanged, since in the considered
case 4;_ = 0.

Note that the appearance of the quantity o, as a phase in
the argument of the function s , is not unexpected, since the
renormalization (79) corresponds to the known replacement
of the quasimomentum 7k, upon switching on the magnetic
field:

e X
Bl — My == A7y

The variation in the expressions of the operators Hy and J
with respect to the vector potential leads to the following
expression for the superconducting current density:

. eg, k
Jx = %Z COS (7\ - o‘x) [2tsk~x<aliaak“>

ko

+ (2t — d0)si {a) b)) + Ja) Lis)] - (81)

The dependence of j, on the vector potential in the region of
small 4 ;:0 must be linear, and the coefficient that determines
this linear dependence, according to the London equation, is
directly expressed in terms of A72. This coefficient is
calculated numerically [52] based on Eqn (81), and the results
of calculations of the temperature dependence of the
magnetic field penetration depth in an ensemble of spin
polarons at different doping levels are presented in Fig. 17.

Although the model parameters were chosen equal to
those used in the previous papers (see Section 3), rather than
found by a fitting procedure, the curves presented in Fig. 17
demonstrate good enough quantitative agreement with the
experimental data [300-305, 310-312]. At low temperatures,
all curves demonstrate a linear behavior up to the lowest of
the considered temperatures 7 =2 K. Such behavior, as
mentioned above, is a consequence of d-wave symmetry of
the superconducting order parameter.

An important feature of the obtained temperature
dependences of 472 is the existence of inflection points,
which, as mentioned above, are observed in some cuprate
HTSCs. Figure 18 presents the dependence A *(T) at
x = 0.17. The inflection point position of this dependence is
marked by a vertical dashed-dotted straight line. The authors
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Figure 18. Temperature dependence of 2~ at x = 0.17. The model para-
meters J = 2.86 ¢V and I = 0.118 eV are chosen such that the boundary
values of the curve correspond to the experimental data [301, 302, 312].
The remaining parameters are chosen just as in Fig. 17. T; is the inflection
point. The dashed line corresponds to the extrapolation of the function
J72(T) from the region to the right of point T; to the region to the left of
this point.

of Ref. [52] believe that the manifestation of this feature in the
theoretical curves A 2(T) should be considered indirect
confirmation of the spin-polaron nature of Fermi quasipar-
ticles in copper-based superconductors.

In Ref. [52], it is shown that the modification of the spin-
polaron spectrum Ej (74), with a correction due to consider-
ing the magnetic field, in the superconducting phase occurs
additively,

Ek:661k+\/612k+4|2,

where O¢yy is the linear in o, correction to the normal-phase
polaron spectrum ¢j;; the gap function Ai in this case is
expressed in terms of the only component 4s; of the order
parameter,

(82)

(83)

The simplicity of Af, in this case is due to the fact that Ref. [52]
did not take into account the contributions from the
Coulomb interaction Up and Vpp.

To conclude this section, we note that, in spite of the three-
band character of the model, the spectrum of Fermi
excitations of spin polarons in the superconducting phase Ex
is expressed solely through the normal phase lower band
spectrum ¢j;. At small «,, the Bogoliubov quasiparticle
spectrum is renormalized in the same additive way as in the
usual theory of London penetration depth [307, 309]. At the
same time, the quasimomentum dependence of the normal
phase spectrum ¢, (and, therefore, its field-induced correc-
tion d¢ ;) considerably differs from that in the simplest case of
quadratic dispersion and is determined by the structure of the
CuO; plane and strong spin-fermion interactions.

7. Conclusions

The presented review of theoretical papers on the develop-
ment of the spin-fermion model for describing the electronic

properties of hole-doped cuprates in the normal state and the
mechanism of superconducting pairing within the spin-
polaron concept allows the following statements.

(1) The mathematically rigorous procedure of consider-
ing strong correlations in the electronic system of copper and
oxygen ions of the CuO, plane described by the Emery
Hamiltonian leads to the spin-fermion model of cuprates. In
this model, the subsystem of spins localized on copper ions
nonlocally interacts with the subsystem of collective holes.
The characteristic energy of coupling between the localized
spins and collective holes is so large (~ 5 eV) that it
substantially changes the nature of Fermi quasiparticles and
induces a specific mechanism of superconducting pairing.

(2) The strong spin-fermion interaction gives rise to the
formation of nonlocal spin polarons. This fact determines the
nature of the Fermi quasiparticles in the spin-fermion model
of cuprates and allows describing the set of experimental data
on the cuprate properties both in the normal and in the
superconducting state in the framework of a unified concept
using a single fitting parameter of the model — the integral
of direct hopping between oxygen ions ¢. Note that, to
adequately reproduce the mentioned experimental data, the
value of this parameter should be chosen equal to 1 = 0.1 eV,
which considerably differs from the frequently used value
top = 0.65eV.

(3) Physical characteristics of the normal phase of
cuprates are reflected by the statistical properties of an
ensemble of nonlocal spin polarons. In particular, the Fermi
surface modification extracted from experimental data in
cuprate compounds doped with holes is reproduced at a
quantitative level.

(4) For the interval of hole doping values corresponding
to a superconducting area in the phase diagram of cuprates,
the spin-polaron ensemble exhibits Cooper instability with
high values of critical temperature. In this case, the super-
conducting order parameter is characterized by d,._.-wave
symmetry. The effective Cooper pairing potential is propor-
tional to the integral of exchange interaction between the
nearest spins of copper ions. The physical reason for this
effect is that at strong spin-fermion coupling the location of
two spin polarons at nearest-neighbor sites leads to the
exchange energy gain, as compared to the exchange energy
of spatially remote spin polarons. This feature manifests
itself as the mutual attraction of spin polarons and determines
the mechanism of superconducting pairing in the ensemble of
spin-polaron quasiparticles.

(5) In an ensemble of spin polarons, only the super-
conducting phase with d,._,.-wave symmetry of the order
parameter can be implemented. The s-wave superconducting
phase does not satisfy the system of integral self-consistence
equations for any really acceptable levels of hole doping. This
corresponds to the experimental data on the observed
symmetry of the order parameter and serves as an additional
argument in favor of the spin-polaron concept. Note that in
other approaches the superconducting phase with an s-wave
type of pairing not only could be implemented but also
provided higher critical temperatures.

(6) The superconducting phase of the spin-polaron
ensemble is not suppressed by introducing the Coulomb
interaction of holes localized on the nearest-neighbor oxygen
ions. This removes the long-standing problem of neutralizing
the effect of Coulomb repulsion of holes on the implementa-
tion of Cooper instability. In this connection, note that, in
traditional approaches based on the Hubbard model and its
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effective low-energy versions, the superconducting phase was
suppressed upon including into consideration the Coulomb
repulsion of holes localized at the nearest-neighbor lattice
sites. The urgency of the problem was exacerbated by the
impossibility of using the effective Coulomb parameter,
renormalized towards lower values at the expense of the
screening effect at distances of a few angstroms.

The neutralization of the negative effect of the intersite
Coulomb repulsion of neighboring holes on the supercon-
ducting d2_,2-wave pairing occurs under the influence of two
factors. The first is due to taking into account the real
crystallographic structure of the CuO, plane. In this case,
the Coulomb repulsion of fermions in the sublattice of oxygen
ions is described by the Fourier transform of the intersite
Coulomb interaction V, =4V, cos(g./2)cos(g,/2). The
second factor is associated with strong spin-charge coupling.
As a result, the spin-polaron quasiparticles effectively move
over the square lattice. For the superconducting state arising
in such an ensemble, the Coulomb repulsion between non-
renormalized holes with the Fourier transform V, will
transform into the interaction between spin polarons. Since
the coefficient of expansion of ¥, in square lattice invariants
is zero, the effective interaction between spin-polaron quasi-
particles also becomes zero. Therefore, the parameter V| does
not enter the equations for the superconducting order
parameter with d,._,.-wave symmetry and does not affect
the critical temperature.

It is worth noting that the different contribution of the
Coulomb interaction to the conditions of implementing the
superconducting phase with different symmetries of the order
parameter manifested itself earlier, e.g., in the Kohn-
Luttinger superconductivity theory [75, 76]. In Refs [313—
315], it is found that the intersite Coulomb interactions in
lattice models usually contribute only to definite channels of
pairing and do not affect other channels. At the same time,
polarization contributions have components in all the
channels and, as a rule, more than one of them ‘plays’ in
favor of attraction. In such a situation, it turns out that the
intersite interaction either does not affect the main compo-
nents of the effective interaction leading to pairing or
suppresses the major components but does not affect the
minor ones [313-315].

(7) The Hubbard repulsion U, and Coulomb interactions
V> of holes located on next-nearest-neighbor oxygen ions
affect the formation of the superconducting phase with
d-wave symmetry of the order parameter, leading to an
increase in the critical transition temperature. However, this
temperature remains within the values which are observed
experimentally. In this case, the superconducting gap is
formed under the influence of three components of the order
parameter.

(8) The possibility of applying the spin-polaron concept
to the study of the system response to an external electro-
magnetic perturbation is demonstrated. Using the specific
features of the spectrum of spin-polaron quasiparticles made
it possible to explain fine peculiarities in the temperature and
concentration dependences of the London penetration depth.
The obtained dependences are in good agreement with the
experimental data on cuprate superconductors.

Let us briefly dwell on the important areas of further
application of the spin-polaron concept. One of them is
the construction of an effective single-orbital model [316],
operating in the truncated Hilbert space and, in contrast to
the Hubbard and 7—J models, correctly taking into account

both the specific features of the CuO, plane crystallographic
structure and the strong spin-fermion coupling that deter-
mines the formation of spin-polaron quasiparticles. The
creation of such a model seems necessary, since the analysis
of low-temperature properties of cuprate superconductors
within the spin-fermion model and even its simplified version,
the so-called ¢ —d model [273, 293], is still rather cumber-
some. In particular, proceeding to such an effective model
would allow reducing the rank of the self-consistent system of
integral equations for the superconducting phase.

Another interesting area to further use the spin-polaron
concept in is the investigation of conditions for the appear-
ance of spectral intensity modulation at the Fermi contour
[317], as well as the pseudogap state [6] in underdoped cuprate
superconductors. This state manifests itself in experiments on
nuclear magnetic resonance and inelastic neutron scattering,
as well as in ARPES experiments [4], demonstrating strong
anisotropic changes to the spectral density of charge carriers
in a wide range of temperatures in normal and superconduct-
ing phases of cuprates [318]. The nature of the pseudogap
state is still an open question; however, one of most frequently
discussed scenarios for the occurrence of this state is related to
the model of strong scattering of charge carriers by short-
range AFM spin fluctuations [318-320]. This scattering leads
to a substantial non-Fermi-liquid restructuring of the electro-
nic spectrum in certain regions of the quasimomentum space
near the Fermi surface in the vicinity of ‘hot’ points or near
Fermi surface flat areas [321-323].

Moreover, it seems relevant to study kinetic, thermo-
dynamic, and galvanomagnetic characteristics of cuprate
superconductors, in which the charge carriers are spin
polaron quasiparticles [324-329] formed upon taking into
account the real crystallographic features of the CuO, plane.
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