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Abstract: The traditional way for determination of molecular groups structure in crystals is the
X-Ray diffraction analysis and it is based on an estimation of the interatomic distances. Here, we
report the analysis of structural units in Y2O2SO4 using density functional theory calculations of
electronic properties, lattice dynamics and experimental vibrational spectroscopy. The Y2O2SO4

powder was successfully synthesized by decomposition of Y2(SO4)3 at high temperature. According
to the electronic band structure calculations, yttrium oxysulfate is a dielectric material. The difference
between the oxygen–sulfur and oxygen–yttrium bond nature in Y2O2OS4 was shown based on partial
density of states calculations. Vibrational modes of sulfur ions and [Y2O2

2+] chains were obtained
theoretically and corresponding spectral lines observed in experimental Infrared and Raman spectra.
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1. Introduction

The rising in experimental and theoretical studies of rare-earth-activated phosphors
over the past decades is primarily associated with their applications in lighting, electronic
displays, temperature sensing, etc. [1]. A large variety of rare-earth doped inorganic
compounds have been synthesized, such as molybdates [2–4], tungstates [5–7], phos-
phates [8–10], aluminates [11–13] and silicates [14–16].

Since the chemical formula contains trivalent rare-earth (Re3+) ions, the common
way for doping is a partial substitution of Re3+ with Ln3+ (Ln3+ = Ce, Pr, Nd, Sm, Eu, Tb,
Dy, Ho, Er, Tm, Yb, Lu) ions. Recently, Re2O2SO4 oxysulfate was studied as a host for
optical materials and it has been shown that the luminescent efficiency of Re2O2SO4:Ln3+

phosphorous depends on the size and shape of particles [17], for example, the Eu3+ doped
nanosized Y2O2SO4 samples (18–89 nm, C2/c) show the quantum efficiencies ranging
from η = 44–70% [18]. The 2–3 µm in diameter Y2O2SO4:Eu3+ was synthesized using
a urea-based homogeneous precipitation technique based on a urea-ammonium sulfate
system [19]. The Y2O2SO4:Tb3+ microflakes were prepared via an electrospinning process
followed by calcination treatment [20]. The biomolecule-assisted hydrothermal route
followed by calcination was used for the production of yttrium oxysulfate hollow spheres
doped with Yb3+ and Eu3+ or Er3+ [21].

Traditionally, the search of nonlinear optical (NLO) materials focused on borate sys-
tems [22], on the other hand, several NLO sulfate crystals were synthesized in recent
years [23–27]. As to the Re2O2SO4 oxysulfates, the crystal structure of Nd2O2SO4 [28]
was solved in the non-centrosymmetric (I222) space group and thus this class of com-
pounds can be a candidate for NLO materials. On the other hand, the crystal structure of
Sm2O2SO4 [29] and Eu2O2SO4 [30] was solved in the centrosymmetric (C2/c) space group.
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Determination of non-centrosymmetric or centrosymmetric space groups in
Re2O2SO4:Ln3+ can be easily done with Infrared spectroscopy as has been shown in
work by Yu.G. Denisenko [30]. The focus of such study must be pointed to the presence of
the peak related to the symmetric stretching vibration of SO4 tetrahedra in case of the C2/c
space group. However, it should be noted that while the interpretation of the spectral peaks
related to vibrations of sulfate groups is beyond doubt, vibrations of rare-earth ions were
explained as just Y-O vibrations and detailed description of these vibrations is completely
absent in the literature. The spectral bands at 1220, 1130, 1060, 1000, 880, 660 and 610
cm−1 were observed in Infrared spectra of Y2O2SO4:Eu3+ and attributed to vibrations
of SO4

2− ions, while the peak at 530 cm−1 was described as Y-O bond vibration [19]. In
nanometer-sized Y2O2SO4:Eu3+, the Y-O bond peak was found at 560 cm−1 [31]. In Infrared
spectra of Y2O2SO4 doped with Tb3+ ions, characteristic spectral bands related to sulfate
vibrations and the Y-O stretching (at 539 cm−1) were observed [20]. Spectral peak related
to the stretching vibrations of O-Y was found at 545 cm−1 in Y2O2SO4 [32]. The spectral
bands in Y2O2SO4 nanoparticles at 1064, 1122, 133 and 664 have been attributed to SO4

2-

ions while bands at 621 and 534 to Y-O vibrations [33]. There is no information at all about
Raman spectra.

In this paper, we report the synthesis of Y2O2SO4, results of DFT (Density Functional
Theory) calculations of electronic and vibrational properties and we demonstrated that
spectral lines in Infrared and Raman spectra of Y2O2SO4 were associated with [SO4]2− and
[Y2O2

2+] structural units.

2. Materials and Methods
2.1. Synthesis and Experimental Details

Yttrium oxysulfate was obtained by decomposition of yttrium sulfate Y2(SO4)3 (99.99%,
Novosibirsk Rare Metals Plant, Novosibirsk, Russia) in an argon atmosphere at a tem-
perature of 700 ◦C. A schematic of an installation for carrying out high temperature
decomposition processes is shown in Figure 1. Argon of high purity 99.9999% was used
to create an inert atmosphere. Temperature control and regulation was carried out using
a microprocessor controller (“Thermokeramika”, Moscow, Russia). Temperature in the
reaction zone was measured with a chromel-alumel thermocouple. A weighed portion of
dry Y2(SO4)3 was placed in a quartz reactor and purged with argon for 30 min at a rate
of 6 L/h. After that, the reactor was placed in a heated vertical furnace and held for 10 h.
After the completion of the reduction process, the reactor was removed from the furnace
and cooled to room temperature. The decomposition recovery process is described by
the equation:

Y2(SO4)3 → Y2O2SO4 + 2SO2 + O2
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Fourier-transformed Infrared spectroscopy (IR) was carried out with the use of a
Fourier Transform Infrared Spectrometer FSM 1201, (Infraspec Ltd., Borovliany, Minsk
district, Belarus). The sample for the investigation was prepared in a tablet form with
addition of annealed KBr. IR spectrum was recorded with spectral resolution 4 cm−1.
Raman spectrum was recorded using an i-Raman Plus spectrometer at a laser excitation
wavelength of 785 nm and the spectral resolution was about 4 cm−1. The Infrared as well
as the Raman spectrum was obtained at room temperature.

2.2. Calculation Details

All the density functional theory calculations [34,35] were performed with the CASTEP
code (version 19.1.1) [36]. The 4s24p64d15s2, 3s23p4 and 2s22p4 valence electron config-
urations were used for Y, S and O, respectively. The local density approximation (LDA)
based on the Perdew and Zunger parametrization [37] of the numerical results of Ceperley
and Alder [38], and nonlocal exchange-correlation HSE06 functional [39] were used for
calculation of electronic properties. The on-the-fly-generated norm-conserving pseudopo-
tentials were used and the cutoff energy for the plane basis was chosen as 1150 eV. The
convergence criteria for geometry optimization were set to 5.0 × 10−4 eV/Å for maximal
force and 0.01 GPa for maximal stress. The density functional perturbation theory (DFPT)
(linear response method) [40] was used to perform the calculation of vibrational properties.
Different k-point density [41] was checked for Monkhorst–Pack sampling [42] and it was
found that the 6 × 6 × 3 k-point set is enough.

3. Results and Discussion

Figure 2 presents the crystal structure of Y2O2SO4. Investigated sulfate presents a
monoclinic structure with the C2/c space group (#15). As can be seen from Figure 2, the
crystal structure consists of SO4 layers and layers formed with Y and O ions. Calculated
values of lattice parameters and atomic coordinates are presented in Table 1 and compared
with experimental data from ICDD PDF 53-0168.

The Brillouin zone (BZ) of Y2O2SO4 and electronic band structure obtained using
the local density approximation are shown in Figure 3. The path along high symmetry
points of BZ was selected as: Γ–C|C2–Y2–Γ–M2–D|D2–A–Γ|L2–Γ–V2. Coordinates of
these points are: Γ(0, 0, 0), C(−0.276, 0.276, 0), C2(−0.724, −0.276, 0), Y2(−0.5, −0.5, 0),
M2(−0.5, −0.5, 0.5), D(−0.737, −0.263, 0.5), D2(−0.263, 0.263, 0), A(0, 0, 0.5), L2(−0.5, 0,
0.5), V2(−0.5, 0, 0) (Figure 3a). The conduction band minimum (CBM) is located at the
Γ point, while the valence band maximum (VBM) is located between M2 and D k-point,
thus making the Y2O2SO4 an indirect band gap material, the Eg

i = 5.32 eV (Figure 3b).
However, the difference between indirect and direct electronic transition is small, the value
of the calculated direct band gap is 5.37 eV. Taking into account that the experimental
band gap value of Y2O2SO4 has not yet been published and DFT calculations in LDA
approximation generate a band structure which underestimates the gap [43], the electronic
band structure was calculated using the HSE06 hybrid functional. The value of indirect and
direct electronic transition obtained with HSE06 are 7.126 and 7.131 eV correspondingly.
In the meantime, the electronic density of states (DOS) and partial DOS are shown in
Figure 4. It is clearly seen from Figure 4 that the top of valence band is formed by p-
electron of oxygen, while the bottom of the conduction band comprises Y’s d-electrons.
It is interesting to note that partial densities of states are different for oxygen ions in SO4
tetrahedra and O1 ions located between Y layers (see Figure 2) and the VBM is formed with
O1 atoms. Thus, the wide band gap dielectric behaviors (Eg(HSE06) = 7.12 eV) of Y2O2SO4
are connected with the structural layer formed with Y and O1 atoms. The electronic density
of states of O2 and O3 atoms (in SO4 tetrahedra) from−8 to−6 eV has contribution from 2s
and 2p orbitals while the same region is empty in DOS of O1. We suppose that, in this case,
the DOS of O1 in the range of −2.5–0 eV corresponds to the hybrid sp orbital, see Figure 4,
and the OY4 molecule can be distinguished as a separate structural unit, see Figure 5.
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Figure 2. Conventional cell of Y2O2SO4.

Table 1. DFT calculated structural parameters for Y2O2SO4 in comparison to ICDD PDF 53-0168.

Lattice Dimensions, Å a b c

Calc. (this work) 13.1242 4.0956 7.8734
ICDD PDF 53-0168 13.3076 4.1465 8.0204

Lattice Angles, Degrees α, γ β

Calc. (this work) 90 107.292
ICDD PDF 53-0168 90 107.64

Fractional Coordinates x y z

Y 0.17153 0.48979 0.08471
O1 0.24427 0.97988 0.12243
O2 0.9997 0.26714 0.09789
O3 0.09659 0.84802 0.29921
S 0 0.05146 0.25

The Y2O2SO4 belongs to the monoclinic space group with the factor group symmetry
C6

2h. Vibrational representation for the yttrium oxysulfate at the center of the Brillouin
zone can be written as follow: Γvibr = 13Ag + 13Au + 14Bg + 14Bu. The Au + 2Bu are
acoustical translational modes while the remaining Au and Bu modes are Infrared-active,
the Ag and Bg are Raman-active vibrations. In the structure of Y2O2SO4, the SO4 tetrahedra
occupy the positions with C2 symmetry and relation between free [SO4]2− ion with Td
symmetry, its site symmetry and the factor group symmetry of the monoclinic cell are
presented in Table 2. According to Table 2, nine internal vibrations of SO4 should be
observed in Raman as in Infrared spectra. The Infrared and Raman spectra of Y2O2SO4 are
presented in Figure 6. The total set of observed spectral lines, DFT calculated wavenumbers
and mode assignments are presented in Table 3.
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Table 2. Correlation between internal vibrations of SO4 tetrahedra in Y2O2SO4.

Wavenumber, cm−1 [44] Td C2 C2h

983 A1 (ν1) A Ag + Au
450 E (ν2) 2A 2Ag + 2Au

1105 F2 (ν3) A+2B Ag + Au + 2Bg + 2Bu
611 F2 (ν4) A+2B Ag + Au + 2Bg + 2BuMaterials 2021, 14, x FOR PEER REVIEW 6 of 9 
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Table 3. Calculated and experimental phonon wavenumbers (cm−1) of Y2O2SO4 with proposed assignments. Notations:
Irreps.—irreducible representations, str.—stretching, tr.—translation, rot.—rotation, def.—deformation.

Infrared Raman

Irreps. Calc Exp Assignment Irreps. Calc Exp Assignment

Bu 1155.6 1219
ν3 SO4

Bg 1154.3 1180
ν3 SO4Au 1095.9 1133 Bg 1123.3 1142

Bu 1030.4 1063 Ag 1096.3 1118
Au 969.0 1002 ν1 SO4 Ag 980.0 1009 ν1 SO4
Bu 636.0 666

ν4 SO4

Bg 632.0 651
ν4 SO4Bu 592.1 621 Bg 629.3 648

Au 581.9 608 Ag 584.3 604
Au 546.7 ν2 SO4 + O1-O1 str. Bg 533.1 500 O1-O1 str.
Bu 499.1 532 O1 tr. Ag 505.3 480 O1 tr.
Au 481.7 ν2 SO4 + O1-O1 str. Bg 492.9 448 O1-O1 str.
Au 461.9 ν2 SO4 Ag 492.6 448 ν2 SO4
Au 429.2 O1 tr. Ag 476.2 432 ν2 SO4
Bu 416.3 O1 tr. Ag 453.6 416 ν2 SO4 + O1-O1 str.
Bu 378.8 O1 tr. Bg 383.2 374 O1-O1 tr.
Au 334.3 O1 tr. Ag 352.5 344 O1-O1 tr.
Au 260.3 Y tr. Bg 275.5 SO4 def.
Bu 231.2 SO4 rot. Ag 248.3 240 Y tr.
Bu 216.2 SO4 rot. Bg 240.2 Y tr.
Au 191.3 SO4 rot. Bg 207.7 SO4 tr.
Bu 187.4 SO4 tr. Bg 203.1 SO4 tr.
Bu 157.7 SO4 tr. Ag 202.1 195 SO4 rot.
Au 151.6 SO4 def. Ag 188.8 SO4 tr.
Bu 131.6 SO4 tr. Bg 184.7 SO4 rot. + tr.
Au 96.7 Y tr. Ag 172.5 172 Y tr.

Bg 161.2 168 SO4 tr.
Ag 151.9 Y tr.
Bg 120.0 SO4 tr. + [Y2O2

2+] tr.

The weak spectral band at 969 cm−1 in the Infrared spectrum and strongest band at
1009 cm−1 in the Raman spectrum are associated with ν1 symmetric stretching vibrations
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of SO4 groups. Spectral bands above 1000 cm−1 are antisymmetric stretching vibrations
(ν3). Bands at 650 and 604 cm−1 in Raman spectrum are ν4 antisymmetric bending of SO4
tetrahedra. The ν4 modes appeared in the Infrared spectrum at 666, 621 and 608 cm−1.
Spectral lines in Raman spectrum at 448 and 432 cm−1 are defined as ν2 symmetric bending
of sulfur ions. The rotational vibration of SO4 appeared in Raman spectrum as the peak
at 195 cm−1. The Raman peak at 168 cm−1 is explained as translations of SO4 in the SO4
structural layer.

Connection of the OY4 tetrahedra (Figure 5) into the chains creates the [Y2O2
2+] layers as

shown in Figure 7 and vibrations of these layers have been found in Raman spectra. Spectral
band at 500 cm−1 is related to O-O stretching, as shown in Figure 8a. The line at 480 cm−1 is
an antiphase translation of O atoms along the layer, Figure 8b. The spectral line at 374 cm−1

is an antiphase vibration of O in [Y2O2
2+] structural units as shown in Figure 8c. The strong

band at 344 cm−1 is an antiphase vibration of O atoms, Figure 8d. The Au mode (Infrared
active) with a calculated wavenumber value equal to 546.7 cm−1 is a combination of ν2
vibrations of SO4 and O-O stretching, as shown in Figure 8e. The Bu mode at 499.1 cm−1

is a translation of O, as shown in Figure 8f. Thus, we can conclude that the wide spectral
band at 532 cm−1 in Infrared spectra is devoted to oxygen vibration in [Y2O2

2+] chains,
but not to Y-O vibrations as was stated earlier [19,20,31–33]. The assignment of remain
vibrational modes is presented in Table 3.
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4. Conclusions

In summary, we have demonstrated that the lines in vibrational spectra of Y2O2SO4
should be interpreted in terms of vibrations of SO4 tetrahedra and layers composed of
[Y2O2

2+] structural units. Calculated partial density of states shows different electron
distribution for s and p orbitals in case of oxygen atoms in [SO4]2− and in case of [Y2O2

2+].
The formation of hybrid sp orbital in yttrium–oxygen chains is supposed. The electronic
structure and band gap value of yttrium oxysulfate was presented for the first time.
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