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Abstract: Sentinel-1 is currently the only synthetic-aperture radar, which radar measurements of the
earth’s surface to be carried out, regardless of weather conditions, with high resolution up to 5–40 m
and high periodicity from several to 12 days. Sentinel-1 creates a technological platform for the
development of new globally remote sensing algorithms of soil moisture, not only for hydrological
and climatic model applications, but also on a single field scale for individual farms in precision
farming systems used. In this paper, the potential of soil moisture remote sensing using polarimetric
Sentinel-1B backscattering observations was studied. As a test site, the fallow agricultural field with
bare soil near the Minino village (56.0865◦N, 92.6772◦E), Krasnoyarsk region, the Russian Federation,
was chosen. The relationship between the cross-polarized ratio, reflectivity, and the soil surface
roughness established Oh used as a basis for developing the algorithm of soil moisture retrieval with
neural networks (NNs) computational model. Two NNs is used as a universal regression technique
to establish the relationship between scattering anisotropy, entropy and backscattering coefficients
measured by the Sentinel-1B on the one hand and reflectivity on the other. Finally, the soil moisture
was found from the soil reflectivity in solving the inverse problem using the Mironov dielectric
model. During the field campaign from 21 May to 25 August 2020, it was shown that the proposed
approach allows us to predict soil moisture values in the layer thickness of 0.00–0.05 m with the
root-mean-square error and determination coefficient not worse than 3% and 0.726, respectively. The
validity of the proposed approach needs additional verification on a wider dataset using soils of
different textures, a wide range of variations in soil surface roughness, and moisture.

Keywords: microwave remote sensing; Sentinel-1; bare soil; soil moisture; soil permittivity

1. Introduction

The roughness and moisture of bare agriculture soil are key parameters that influence
backscattering signatures measured by the Sentinel-1 at a frequency of 5.4 GHz at a fixed
viewing angle. Soil moisture retrieved using the well-known Oh, Dubois, and integral
equation (IEM) backscattering models, as a rule, lead to a significant mismatch compared
to soil moisture values, measured at the sub-satellite test sites [1,2]. For bare soil, the main
reason for this is the multi-scale spatial variety of the heights of soil surface roughness,
which changes dynamically with time. According to [3], the standard deviation, the
correlation length, and the autocorrelation function of the heights of soil surface roughness
depend not only on roughness but also on the size of the data collection profile (0.5–25 m).
This fact leads to the practical inexpediency of the ground-based measurements of soil
surface roughness statistical characteristics as input parameters of existing scattering
models and the development on their basis of global multi-scale radar remote sensing soil
moisture algorithms. However, to take into account the specific local characteristics of soil
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surface roughness in articles [4,5], correlation length was proposed to calibrate depending
on the root mean square (RMS) heights of soil surface roughness and viewing angles. Such
calibrated models are widely used for training artificial neural networks (NNs) [6–8]. The
trained NN on physical-based scattering models [6–8] is more adaptive compared to simply
training the NN with Sentinel-1 backscattering and ancillary soil moisture values [9–12].

In this paper, the relationship between the cross-polarized ratio, reflectivity, and the
soil surface roughness, established in [13], was proposed to use as a basis for the soil
moisture retrieval algorithm from Sentinel-1 radar data. Compared to IEM, Advanced
IEM, and Dubois models, the Oh model [13] shows the best fitting between its predictions
and representative experimental radar dataset over bare soils [1]. In contrast to existing
physical-based approaches [6,7], in this paper, the well-known linear relationship between
root-mean-square (RMS) heights of soil surface roughness and scattering anisotropy [14–17]
was used to predict soil reflectivity based on NN and Oh models [13]. As a result, only
satellite data and in situ soil moisture values on the key test site were needed to calibrate the
NN, but the ground measurements of soil surface roughness could be excluded. It should
be noted that the linear relationship between RMS heights of soil surface roughness and
scattering anisotropy was observed over a wide frequency range [17] from 1.5 to 18 GHz,
which include C-band radar of Sentinel-1.

2. Test Site, Remote Sensing, and In Situ Data

The fallow agricultural field of 100 × 100 m, located near the Minino village, Krasno-
yarsk region, the Russian Federation was chosen as a test site (Figure 1).
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Figure 1. Location of the test field.

The center of the agriculture field locates in coordinate (56.0865◦N, 92.6772◦E). In days
of Sentinel-1B passage (from 21 May to 25 August of 2020 every twelve days) soil moisture
was measured in the 0.00–0.05-m top layer at 23–27 small local plots (~8–10 × 8–10 m)
evenly scattered within the agricultural field and separated from each other by a distance
of ~10–12 m. Soil moisture was measured in 40–80 separate points evenly distributed in
each small local plots. After that, they were averaged. As a result, for each day of Sentinel-
1B observations, sets of geospatial soil moisture data were obtained for 23–27 small local
plots within the agricultural field. The center of each small local plot was assigned a GPS
coordinate. Volumetric soil moisture was measured by EC-5 sensor (Decagon, Pullman,
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WA, USA). The sensor was vertically immersed into the soil to the length of the entire rods
(0.05 m). The sensor was equipped with a NEO-M8N GPS receiver providing positioning
in the horizontal plane with an error of ~2 m. The sensor was calibrated in laboratory
conditions using soil samples collected on the test field. After calibration, RMS error (RMSE)
of volumetric soil moisture measurements by EC-5 did not exceed 2% (with determination
coefficient R2 = 0.99) in the soil moisture range from 6 to 50%. (High moisture values were
obtained with additional moisturized of soil samples). The soil cover of the agriculture
field is represented by the Haplic Chernozems soils [18]. Average dry bulk density and
clay content in the topsoil thickness of about 0.05 m were 0.93–1.16·103 kg m−3 and about
26% (by weight), respectively.

The Sentinel-1B radar data were available in interferometric wide (IW) swath mode
(10-m special resolution) on vertical–vertical (VV) and vertical–horizontal (VH) polariza-
tions. Single look complex (SLC) and ground range-detected (GRD) images were processed
by the European Space Agency (ESA) Sentinel Application Platform (SNAP). Standard
processing of the Sentinel-1 radar data consisted of: precision orbits applied, calibration,
and speckle noise filtering (Gamma map filter with a window size of 3 × 3 pixels), range-
Doppler terrain correction (SRTM 1Sec HGT). As a result, for the agriculture field, spatial
maps of backscattering coefficients σVV, σVH, alpha angle, scattering anisotropy A, and
entropy H [14] were obtained. The incidence angle of wave was about 37◦. Due to the
mismatch between the coordinates of Sentinel-1B pixels and small local plots, the backscat-
tering coefficients corresponding to the center of each small local plots were calculated
using the spatial linear interpolation of Sentinel-1B image. As a result, from 21 May to
25 August 2020, the total amount of joint observations data of backscattering coefficients
and soil moisture was 159.

During the experiments, the agriculture field was harrowed several times (the distance
between the harrows and their heights were about 0.2–0.3 m and about 0.07–0.12 m,
respectively). Even though the agriculture field was in the same place and was harrowed
several times, the surface roughness and moisture content of soil were different for each
day of Sentinel-1B observations due to natural moisturization by rain, drying and wind
erosion. This statement is supported by the carried out polarimetric analysis based on the
H-α decomposition [14] using complex images of the test field at two polarizations VH
and VV (Figure 2).

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 9 
 

 

small local plots within the agricultural field. The center of each small local plot was as-
signed a GPS coordinate. Volumetric soil moisture was measured by EC-5 sensor (Deca-
gon, Pullman, WA, USA). The sensor was vertically immersed into the soil to the length 
of the entire rods (0.05 m). The sensor was equipped with a NEO-M8N GPS receiver 
providing positioning in the horizontal plane with an error of ~2 m. The sensor was cali-
brated in laboratory conditions using soil samples collected on the test field. After calibra-
tion, RMS error (RMSE) of volumetric soil moisture measurements by EC-5 did not exceed 
2% (with determination coefficient R2 = 0.99) in the soil moisture range from 6 to 50%. 
(High moisture values were obtained with additional moisturized of soil samples). The 
soil cover of the agriculture field is represented by the Haplic Chernozems soils [18]. Av-
erage dry bulk density and clay content in the topsoil thickness of about 0.05 m were 0.93–
1.16·103 kg m−3 and about 26% (by weight), respectively. 

The Sentinel-1B radar data were available in interferometric wide (IW) swath mode 
(10-m special resolution) on vertical–vertical (VV) and vertical–horizontal (VH) polariza-
tions. Single look complex (SLC) and ground range-detected (GRD) images were pro-
cessed by the European Space Agency (ESA) Sentinel Application Platform (SNAP). 
Standard processing of the Sentinel-1 radar data consisted of: precision orbits applied, 
calibration, and speckle noise filtering (Gamma map filter with a window size of 3 × 3 
pixels), range-Doppler terrain correction (SRTM 1Sec HGT). As a result, for the agriculture 
field, spatial maps of backscattering coefficients 𝜎୚୚, 𝜎୚ୌ, alpha angle, scattering anisot-
ropy A, and entropy H [14] were obtained. The incidence angle of wave was about 37°. 
Due to the mismatch between the coordinates of Sentinel-1B pixels and small local plots, 
the backscattering coefficients corresponding to the center of each small local plots were 
calculated using the spatial linear interpolation of Sentinel-1B image. As a result, from 21 
May to 25 August 2020, the total amount of joint observations data of backscattering coef-
ficients and soil moisture was 159. 

During the experiments, the agriculture field was harrowed several times (the dis-
tance between the harrows and their heights were about 0.2–0.3 m and about 0.07–0.12 m, 
respectively). Even though the agriculture field was in the same place and was harrowed 
several times, the surface roughness and moisture content of soil were different for each 
day of Sentinel-1B observations due to natural moisturization by rain, drying and wind 
erosion. This statement is supported by the carried out polarimetric analysis based on the 
H-α decomposition [14] using complex images of the test field at two polarizations VH 
and VV (Figure 2). 

 
Figure 2. Characterization of the small local plots based on H-α-decomposition. The solid line marks 
the boundary of physically significant results of H-α decomposition in accordance with [14]. 
Figure 2. Characterization of the small local plots based on H-α-decomposition. The solid line marks
the boundary of physically significant results of H-α decomposition in accordance with [14].

Despite the close high soil moisture values on June 2 and August 25 (Table 1), H-α
decomposition shows that the points corresponding to observations on August 25 are
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scattered sufficiently higher than those on June 2 (Figure 2) because after ploughing of the
soil surface roughness increased (Table 1).

Table 1. Test field moisture and tillage statistics averaged overall small local plots.

Date
Soil Moisture [%]

1 Ploughed
Mean Min Max

21 May 9.6 7.4 12.8 No 2

2 June 22.3 15.6 24.7 No
14 June 17.1 15.4 18.7 No
26 June 10.9 7.6 16.5 Yes
8 July 11.8 9.4 18.6 No

20 July 11.2 7.7 13.2 Yes
25 August 22.6 17.3 26.8 Yes

1 Whether the field was ploughed again before the date of measurements. 2 Unlike other days, ploughing of the
test field took place until 21 May (more than 12 days earlier).

On 21 May, the soil showed the lowest degree of roughness (since ploughing was
more than 12 days earlier) and was driest for the entire observation period (Table 1),
determining the position of scattered points near the origin in the H-α diagram. In the H-α
diagram (Figure 2), the scattered points corresponding to 26 June, 8 July, and 20 July lie
higher than those were for 21 May, although these soil moisture values were close (Table 1).
This could be explained by the significant change of the soil surface roughness as the
test field was several times ploughed in this period (Table 1). Data in Figure 2 evidence
that the scattered waves undergo a single-diffuse scattering by the soil surface of varying
degrees of roughness and moisture, as the variations of alpha angle and scattering entropy
were significant.

3. Soil Moisture Retrieval Method Using NNs and Polarimetric Sentinel-1B Data

In accordance with well-known radar scattering models, in the general case, the
backscattering coefficient can be represented as the product of two functions, one of
which depends on soil moisture, the other on the surface roughness parameters (RMS
height and correlation length) [12]. In the case of the semi-empirical backscattering model
(Equation (4) [13]), the cross-polarized ratio q = σVH/σVV normalized on Fresnel reflectiv-
ity of the surface at nadir-viewing Γ0(ε(W)) depends on the RMS height of soil surface
roughness hr exponentially:

q
0.23

√
Γ0(ε(W))

= (1 − exp(−k0hr)), (1)

where ε(W) is the complex permittivity of soil with volumetric moisture of W, k0 is the free
space wavenumber, k0hr is a dimensionless quantity characterizing the RMS height of soil
surface roughness in wavenumbers of free space, σVH and σVV are backscattering coefficient
at VH and VV polarizations. The semi-empirical backscattering model (Equation (4) [13])
was created based on polarimetric radar measurements, which were conducted for bare
soil surfaces under a very wide range of roughness from hr = 0.004 m to hr = 0.0302 m (from
k0hr = 0.10 to k0hr = 6.01), correlation length, l, from k0l = 2.6 to k0l = 17.5, and volumetric
moisture from 9% to 31% (soil surface), and it combined frequencies in L (1.5 GHz), C
(4.75 GHz), and X (9.5 GHz) bands at incidence angles ranging from 10 to 70◦. Note that
the roughness of the soil surface was collected over ten 1-m and two 3-m profiles for
each surface. The articles [14–17] show that the scattering anisotropy A was insensitive to
the variation of soil permittivity and the angle of observation at k0hr < 1, and the linear
relationship between A and k0hr (at hr = 0.004 m and ranges of frequencies from 1.5 to
18.5 GHz) was observed. Note that in [19], based on the RADARSAT-2 experimental data, it
was shown that A has a linear dependence on hr only in the range of k0hr < 1.2 (hr < 0.011 m
at a frequency of 5.4 GHz).
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The right and left sides of Equation (1) can be calculated using: (1) q values (measured
by Sentinel-1B from 21 May to 25 August 2020 at the agriculture field for different small
local plots); (2) reflectivity Γ0(ε(W)), calculated based on the dielectric model [20] and
experimental soil moisture values, measured at the small local plots within the agriculture
field; (3) assuming [17]:

k0hr ∼ 1 − A. (2)

There is a robust linear relationship (coefficient of determination R2 = 0.597) between
the left and right sides of Equation (1), but there are significant random deviations from it
(Figure 3).
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These random deviations are explained by the limited ability of the scatter model (1)
and relation (2) to describe the surface roughness caused by different scale topography.
In addition, that discrepancy can be explained by the influence of speckle noises on the
measured values of the backscattering coefficient σVH, σVV and the anisotropy A. Based
on the above analysis, we will introduce two NNs to retrieve soil moisture (Figure 4).
The simplest feed-forward NNs, consisting of from one to two hidden layers, were used.
NN modeling was performed in the Matlab 2013 software environment (Mathworks, MA,
USA). The first neuron network NN1 implemented the connection between the anisotropy
A and some functional ζout

1 (hr) = qΓ−p
0 that, according to model (1), depends only on the

soil surface roughness. As a result, the estimate of soil reflectivity ΓNN1
0 =

(
q/ζout

1
)1/p

(with the weakened influence of soil roughness) could be obtained on the basis of the ζout
1 ,

value predicted by the first neural network NN1. However, due to the fact that the simple
model (1) and the assumption of (2) do not fully describe the relationship between cross-
polarized ratio q, Fresnel reflectivity, and soil surface roughness (Figure 3), the second NN2

was used (Figure 4) to predict the reflectivity ζout
2 = ΓNN2

0 with using the extra parameter
of scattering entropy H (ζin

2 = H), which carried additional information about roughness
and moisture of soil [17].
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Figure 4. Feedforward network NN1 and NN2 with N hidden layers and k neurons in each, where k = 1, . . . , n.

In our case of bare soil, scattering entropy H and angle alpha were unambiguously
related, so we chose only H. (On the entropy/alpha plane (Figure 2), the data points
located along the azimuthal symmetry line in ninth and sixth zones.) As a result, as input
parameters of NNs were used {1 − A,

(
q/ζout

1
)2/3, H}. The value Γ0(ε(W)) was used

as an output parameter. To train NNs, we used reflectivities Γ0(ε(W)), calculated based
on a dielectric model [20] and soil moisture, measured in the 0.00–0.05 m layer at the
small local plots within the agriculture field from 21 May to 25 August 2020 every twelve
days (at the time of Sentinel-1B passages). The NNs were trained on 60% of the dataset,
which corresponded to 95 small local plots randomly selected from all datasets. During
the training of NNs, the inverse problem to determine the optimal parameter p using
Levenberg-Marquardt algorithm [21] was also solved. In the first Lk

1 and second Lk
2 hidden

layers, the number of neurons, k, varied from 1 to n = 120 and from 1 to n = 30, respectively
(Figure 5a). Both NNs were the same and consisted of an equal number of hidden layers
and neurons. Numerical experiments have shown that it is sufficient to use only one
hidden layer Lk

1 in each neural network with more than k = 40 neurons and extent p equal
1.5 to achieve R2 ~ 0.89 (at RMSE less than 0.105) between predicted NNs and calculated
(based on experimental soil moisture data) reflectivity values Γ0(ε(W)) (Figure 5b). As
can be seen from Figure 5b, it was at p near 1.5 that a maximum of R2 was observed (this
maximum was observed for the different variants of neural networks structures: Lk
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1L10

2 ,
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In the course of further numerical analysis, one hidden layer with 40 neurons L40
1 was

used in each neural network. At the last step, the inverse problem of soil moisture determi-
nation from predicted reflectivity by NNs was solved using the permittivity model [20]
and Levenberg–Marquardt algorithm [21].

4. Results and Discussion

The described process of soil moisture retrieval was applied to validate the created
methodology based on the total amount of data (the joint observations of backscattering co-
efficients and soil moisture) that took and did not take part in training NNs. The correlation
between predicted and measured soil moisture values at the small local plots on the agri-
cultural field from 21 May to 25 August 2020 is depicted in Figure 6. Two NNs (NN1

(
L40

1
)

with input parameter 1 − A and NN2
(

L40
1
)

with input parameters ΓNN1
0 ≡

(
q/ζout

1
)2/3 and

H (Figure 4) predicted soil moisture values with RMSE = 3% and R2 = 0.726, relative to
ground trough measurements (Figure 6). (These estimates were derived using all datasets).
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Figure 6. Predicted NNs soil moisture from Sentinel-1B observations versus soil moisture, measured
at the small local plots from 21 May to 25 August 2020. The 159 circle symbols refer to 159 small local
plots of the test field, on which soil moisture was measured in days of Sentinel-1 passes. Green ellipse
is associated with small local plots that did not participate in NNs training and related to 25 August.

The dispersion (Figure 6, green ellipse) was associated with small local plots that
did not participate in NNs training and related to 25 August (statistically atypical day
during the field campaign, when the soil surface was strongly wetted by rains the day after
ploughing). For example, Figure 7a shows the map of the retrieved soil moisture values
from Sentinel-1B using the proposed approach for the test field on 26 June 2020. The RMSE
and R2 between the retrieved and measured soil moisture values on 26 June 2020 over
the entire test area were 2% and 0.819, respectively (Figure 7). In this case, the maximum
absolute deviations of the retrieved from the measured soil moisture values reached −6%
and +3% (Figure 7b).
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Figure 7. Predicted NNs soil moisture from Sentinel-1B observations (a), the difference between predicted NNs and
measured in situ soil moisture values (b) on 26 June 2020 at the test field. In situ measurements of soil moisture at the small
local plots within agriculture field depicts as points on panel (b). In the legends, the absolute values of soil moisture and the
difference values of soil moisture are given in %. These maps were obtained from retrieved by NNs and measured in local
plots soil moisture values using inverse distance weighted interpolation on the square grid with approximately 10 m.

It should be noted that in this particular case, there was a tendency to overesti-
mate/underestimate the retrieved soil moisture values for more wet/dry areas of the
test field.

5. Conclusions

The case study showed the promise of using neural networks to retrieve surface mois-
ture of bare soil from Sentinel-1B observations. At this, NNs can be used to build adaptive
physical-based relationships between soil surface roughness parameter (in our case, the
soil surface roughness determined based on the Oh model), reflectivity, and polarimetric
scattering characteristics such as anisotropy and entropy. At the same time, in contrast
to the physical-based methods [2,6,7], there is no need for ground-based information on
soil surface roughness. Applying such a combined approach, only ground-based measure-
ments of soil moisture to calibrate the scattering model using NNs were required. One
of the disadvantages of the proposed method is the neglect of satellite observation angle.
However, according to [13], the angular dependences of backscattering coefficient from
bare soil weakly depend on the observation angle in the range from 25 to 50◦. The impact
of this factor has to be studied for test fields located at significant distances from each
other. It should be noted that the proposed method was tested on one kind of soil, and it is
needed additional verification in various landscape with different soils texture, roughness
and moisture conditions.
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