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Lead-free halide double perovskite Cs2AgInCl6 has become the research hotspot in the optoelectronic fields. It is a challenge to
utilize the lattice doping by different lanthanide ions with rich and unique photoluminescence (PL) emissions for emerging
photonic applications. Here, we successfully incorporated Dy3+, Sm3+, and Tb3+ ions into Cs2AgInCl6 nanocrystals (NCs) by the
hot-injection method, bringing diverse PL emissions of yellowish, orange, and green light in Cs2AgInCl6:Ln

3+ (Ln3+ =Dy3+,
Sm3+, Tb3+). Moreover, benefiting from the energy transfer process, Sm3+ and Tb3+ ion-codoped Cs2AgInCl6 NCs achieved
tunable emission from green to yellow orange and a fluorescent pattern from the as-prepared NC-hexane inks by spray coating
was made to show its potential application in fluorescent signs and anticounterfeiting technology. This work indicates that
lanthanide ions could endow Cs2AgInCl6 NCs the unique and tunable PL properties and stimulate the development of lead-free
halide perovskite materials for new optoelectronic applications.

1. Introduction

Lead halide perovskites have become the legend in the his-
tory of material science for emerging optoelectronic applica-
tion due to their tunable emissions, high photoluminescence
quantum yield (PLQY), easy solution processability, and so
on [1–4]. Nevertheless, considering their lead toxicity and
low stability, it is urgent to seek environmentally friendly
semiconductor materials in this database. At this time, lead-
free halide perovskites were discovered with lower toxicity
and higher stability and have attracted great interests [5–9].
There are many choices for the replacement of Pb2+ by other
benign metal ions, including the incorporation of isovalent
Sn2+ ions [10] and substitution of trivalent Bi3+ or Sb3+ ions
forming the similar composition as Cs3Bi2Cl9 [11–13]. How-
ever, those materials are either limited by stability challenges
[14] or with lower electronic mobility because of the lower
symmetry nonperovskite structure [15]. One different way

to address the challenge is to replace two Pb2+ ions with
one monovalent cation (B+ ions) and one trivalent cation
(B3+ ions), forming the three-dimensional (3D) double
perovskite structure [16]. The possible combinations of vari-
ous cations make the diversity of lead-free double perovskites
and make them the most promising alternative for optoelec-
tronic applications [17].

Lead-free halide double perovskites with the general for-
mula A2B

+B3+X6 (A = Cs+; B+ = Cu+, Ag+, Na+; B3+ = Bi3+,
Sb3+, In3+; X = Cl−, Br−, I−) crystallize in a cubic unit cell with
the space group Fm �3 m [18]. Among them, Cs2AgBiX6 and
Cs2NaBiCl6 possess an indirect band gap leading to a low
absorption coefficient and a weak photoluminescence (PL)
emission [19, 20]. In contrast, Cs2AgInCl6, inheriting the rel-
atively good performance of the lead halide perovskites
mainly attributed to the nature of direct band gap, has drawn
increasing attention after the discovery by Giustino et al. [21]
and Zhou et al. [22] and the milestone work as white light
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emitters by Luo et al. [7]. Cs2AgInCl6 is reported to have a
long carrier lifetime, easy solution processability, and a direct
band gap with a parity-forbidden transition that results in a
low PLQY (<0.1%), and a full story on research history of
Cs2AgInCl6 has been summarized recently for the details
[23]. The poor PLQY has been improved by different doping
and alloying strategies [7, 24–26]. Nevertheless, the PL of
Cs2AgInCl6 nanocrystals (NCs) contains a broadband
spectral profile owing to the origin of self-trapped excitons
(STEs) [27]. Therefore, to explore doped Cs2AgInCl6 NCs
with improved PLQY and tunable emission is a main chal-
lenge. Generally, lanthanide (Ln3+) ions would be the most
suitable dopants for their rich and unique PL emissions in
the visible to near-infrared range [28, 29], which could be
utilized to achieve tunable luminescence and increased
PLQY [30]. Moreover, the successful incorporation of rare
earth ions for the lead-based halide perovskites [31, 32]
and the structural similarity between lead-based and
lead-free perovskites (both with the six octahedral coordi-
nation number) have provided the reference and opportu-
nities to conduct the further lanthanide doping study on
Cs2AgInCl6 NCs [33–35].

In this work, different lanthanide ions
(Ln3+ = Dy3+, Sm3+, Tb3+) were successfully incorporated
into Cs2AgInCl6 perovskite NCs through the hot-injection
method developed by our group [26]. Dy3+, Tb3+, and Sm3+

ions were verified to occupy the In3+ site in the Cs2AgInCl6
lattice. The introduction of these rare earth ions endowed
Cs2AgInCl6 with diverse PL emissions in the visible region.
Benefiting from the energy transfer process, Sm3+/Tb3+-
codoped Cs2AgInCl6 NCs achieved tunable emission from
green to yellow orange and a fluorescent pattern from the
as-prepared NC-hexane inks by spray coating was made to
show its potential application in fluorescent signs and anti-
counterfeiting technology. This work expands the PL emis-
sions of lead-free perovskite NCs through lanthanide ion
doping, making them more competitive and will promote a
wider regulation for their optical properties and novel pho-
tonic applications in energy-related materials.

2. Materials and Methods

2.1. Materials. Cesium carbonate (Cs2CO3, 99.9%), indium
chloride (InCl3, 99.99%), dysprosium chloride hexahydrate
(DyCl3∙6H2O, 99.9%), terbium (III) nitrate pentahydrate
(Tb(NO3)3·5H2O, 99.9%), samarium (III) chloride (SmCl3,
99.9%), octadecene (ODE, >90%), oleylamine (OLA, 80-
90%), oleic acid (OA, analytical pure), hexane (C6H14,
≥98%), and ethyl acetate (C4H8O2, analytical pure) were pur-
chased from Aldrich. Silver nitrate (AgNO3, analytical pure)
and hydrochloric acid (HCl, analytical pure) were purchased
from Beijing Chemical Works, China. All the chemicals were
used directly without further purification.

2.2. Synthesis of Cs-Oleate. 0.814 g of Cs2CO3 was loaded into
a mixture of ODE (10mL) and OA (2.5mL), heated to 120°C
and degassed by alternating vacuum and N2 for 1 h. Then, the
reaction mixture was filled with N2 and heated to 150°C.

2.3. Synthesis of Ln3+ (Ln =Dy, Tb, Sm)-Doped Cs2AgInCl6
NCs. Adequate amount of lanthanide raw materials
(DyCl3·6H2O: 0.036mmol, Tb(NO3)3·5H2O: 0.108mmol,
SmCl3: 0.072mmol) was added into the mixture of AgNO3
(0.36mmol), InCl3 (0.36mmol), ODE (14mL), OA (1mL),
OLA (1mL), and HCl (0.28mL). The reaction solution was
heated to 120°C and degassed by alternating vacuum and
N2 for 1 h. Then, the mixture was heated to 260°C under
N2. The as-prepared hot (150°C) Cs-oleate solution
(0.8mL) was quickly injected into the solution. After ~20 s,
the system was transferred to an ice-water bath. The crude
sample was centrifuged at 8000 rpm for 4min, discarding
the supernatant. Next, the precipitate was dispersed in hex-
ane and centrifuged again at 5000 rpm for 4min, leaving
the supernatant. The final NCs were precipitated with ethyl
acetate by centrifugating for 4min at 10000 rpm. For Sm3+-
and Tb3+-codoped samples, different doping concentrations
(5mol%, 10mol%, 20mol%, and 40mol%) of Sm3+ were
added at the fixed concentration of Tb3+ (0.108mmol).

2.4. Characterization. X-ray diffraction (XRD) measure-
ments were carried out on an Aeris X-ray diffractometer
(PANalytical Corporation, Netherlands) equipped with a
50000mW Cu Kα radiation after dropping concentrated
nanocrystal hexane solutions on the silicon substrates.
Transmission electron microscopy (TEM) images and
energy-dispersive X-ray spectroscopy (EDS) analysis were
acquired on a JEM-2010 microscope transmission electron
microscope at the voltage of 120 kV equipped with an
energy-dispersive detector, for which the samples were pre-
pared by dropping dilute nanocrystal hexane solutions on
the ultrathin carbon film-mounted Cu grids. Steady-state
photoluminescence (PL) spectra, photoluminescence excita-
tion (PLE) spectra, and PL decay spectra were recorded using
a FLS920 fluorescence spectrometer (Edinburgh Instruments
Ltd., U.K.) which is equipped with the Xe900 lamp, nF920
flash lamp, and the PMT detector. UV-visible absorption
spectra were collected using a Hitachi UH4150 UV-vis-near
IR spectrophotometer. Elemental contents were determined
by the inductively coupled plasma mass spectroscopy (ICP-
MS) after treating samples with wet digestion method. X-
ray photoelectron spectroscopy (XPS) was carried out on
the ESCALAB 250Xi instrument (Thermo Fisher). The PL
quantum yields were obtained on the Hamamatsu absolute
PL quantum yield spectrometer C11347 Quantaurus_QY.

3. Results

3.1. Structural Analysis of Ln3+ (Ln =Dy, Tb, Sm)-Doped
Cs2AgInCl6 NCs. Ln

3+ ion (Dy3+, Sm3+, Tb3+)-doped Cs2A-
gInCl6 NCs were synthesized by a hot-injection method at
260°C as illustrated in Figure S1. The X-ray diffraction
(XRD) patterns showed that all the doped samples
possessed pure phase (Figure 1(a)) and all peaks of them
were indexed by cubic cell (Fm �3 m) with the parameters
close to Cs2AgInCl6 (Figures 1(b)–1(e)) [21]. This indicated
that the incorporation of Ln3+ ions into Cs2AgInCl6 does
not change the phase structure. To verify the location of
Ln3+ ions, Rietveld refinement was performed using
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TOPAS 4.2 software. The refinements were stable and
showed low R factors (Table S1). The coordinates of atoms
and main bond lengths are given in Tables S2 and S3,
respectively. It was found that cell volumes of compounds
increased with Ln3+ ions doped (Figure 1(f)). All the ion
radii of Ln3+ dopants with 6-coordination (IR ðDy3+Þ =
0:912Å; IR ðSm3+Þ = 0:958Å; IR ðTb3+Þ = 0:923Å) were
smaller than those of Ag+ (IR ðAg+, CN = 6Þ = 1:15Å) and
Cs+ (IR ðCs+, CN = 8Þ = 1:74Å) ions, inconsistent with the
increasing trend of cell volumes. Therefore, it cannot be
explained by the model of Ln3+↔Cs+ or Ln3+↔Ag+ ion
replacements. On the other hand, the ion radii of Ln3+

dopants were larger than those of In3+ ion (IR ðIn3+, CN =
6Þ = 0:8Å), which was in a good agreement with the

increasing trend of cell volumes. Hence, Ln3+ ions are
proposed to occupy the sites of In3+ ions, as shown in the
inset of Figure 1(f). The actual doping concentrations
detected by inductively coupled plasma (ICP) measurement
were 5% for Dy3+ ions, 12% for Sm3+ ions, and 17% for
Tb3+ ions. To see the micromorphology of the NCs,
transmission electron microscopy (TEM) images of Ln3+

ion-doped NCs were exhibited in Figures 1(g)–1(i). As
revealed by TEM, all the Ln3+ ion (Dy3+, Sm3+, Tb3+)-
doped Cs2AgInCl6 NCs demonstrated the similar uniform
cubic shape with the mean size of 9.68, 10.26, and
10.46 nm, respectively (Figure S2). The selected area
electron diffraction (SAED) signals for the three Ln3+ ion-
doped NCs all showed the presence of (022) and (004)
planes of cubic phase, further verifying the formation of the
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Figure 1: Structural characterization of Ln3+ (Ln = Dy, Sm, Tb)-doped Cs2AgInCl6 NCs. (a) XRD patterns and (b–e) Rietveld refinements of
XRD patterns for undoped and Ln3+-doped Cs2AgInCl6 NCs. (f) The cell volume of Cs2AgIn1-xCl6:xLn versus dopant concentration (x = 0,
5%Dy, 12%Sm, 17%Tb). (g–i) TEM images (up), selected area electron diffraction (SAED) patterns (left bottom), and high-resolution TEM
images (right bottom) for Dy3+-doped, Sm3+-doped, and Tb3+-doped Cs2AgInCl6 NCs.
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same perovskite structure as Cs2AgInCl6. The existence of
doped Dy3+, Sm3+, and Tb3+ ions in Cs2AgInCl6 NCs
could be confirmed by energy-dispersive X-ray (EDS)
analysis and corresponding elemental mapping images
(Figure S3). The high-resolution TEM (HRTEM) images
in Figures 1(g)–1(i) revealed that the incorporation of
Ln3+ ions did not induce the formation of crystal defects
and the clear lattice fringes with the increasing lattice
constants of 3.75Å, 3.8Å, and 3.9Å for Dy3+, Sm3+, and
Tb3+ ions doped, respectively, corresponded to the (022)
interplane distance (3.7Å) of Cs2AgInCl6. The increased

interplane distances further indicated the successful
incorporation of Dy3+, Sm3+, and Tb3+ ions.

To further characterize the chemical compositions of
Ln3+-doped Cs2AgInCl6 NCs, X-ray photoelectron spectros-
copy (XPS) measurements were carried out. As shown in the
XPS survey spectra (Figure 2(a)), the signals of Cs, Ag, In,
and Cl were clearly observed in every sample. The respective
high-resolution XPS spectra are present in Figures 2(b)–2(e).
As for the Cs 3d and In 3d XPS spectra, there was a slight
shift to higher binding energy as Dy3+, Sm3+, and Tb3+ ions
were introduced, attributed to changed chemical
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Figure 2: Elemental analysis of Ln3+ (Ln = Dy, Sm, Tb)-doped Cs2AgInCl6 NCs. (a) Survey XPS spectra for the undoped and Dy
3+-doped, Sm3+-

doped, and Tb3+-doped Cs2AgInCl6 NCs. (b–e) High-resolution XPS spectra for Cs 3d, Ag 3d, In 3d, and Cl 2p, respectively. (f) High-resolution
XPS spectra for the Dy3+ 4d, Sm3+ 3d, and Tb3+ 4d for Dy3+-doped, Sm3+-doped, and Tb3+-doped Cs2AgInCl6 NCs, respectively.
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environments of In3+ and Cs+ in terms of the samples doped
with Ln3+ ions, while for the Ag 3d the spectra showed almost
the same peak position for the undoped and three Ln3+ ion-
doped Cs2AgInCl6 NCs. Moreover, the relatively weak sig-
nals peaked at 167.9 eV, 1085 and 1110 eV, and 167.3 eV
are observed in Figure 2(f) corresponding to the binding
energy of Dy 4d, Sm 3d, and Tb 4d, respectively [36, 37].
The weak signals may be due to the small amount of lantha-
nide ions on the surface. Combined with the XRD analysis,
those results further indicated that Ln3+ ions were success-
fully doped into the perovskite host lattice and located in
the site of In3+ to alter the local coordination structures.

3.2. Optical Properties of Ln3+ (Ln =Dy, Tb, Sm)-Doped
Cs2AgInCl6 NCs. The optical features of the as-prepared

Ln3+-doped Cs2AgInCl6 NCs were investigated (Figure 3).
All samples showed a strong absorption starting at around
350 nm and peaked at ~310nm (Figure 3(a)). Additionally,
it is clear that there was a red shift of the excitonic absorption
peak with Ln3+ ion doping, which could be ascribed to the
size increase of NCs. The optical band gaps 3.83 eV,
3.85 eV, and 3.88 eV for Dy3+-doped, Sm3+-doped, and
Tb3+-doped NCs were quantified from the Tauc plots of
ðαhνÞ2, which were calculated from the corresponding
absorption spectra (Figure 3(b)). The decrease in optical
band gaps compared with ~4 eV of undoped Cs2AgInCl6
NCs [26] could be attributed from the lattice expansion of
doped NCs [38]. Doped with different lanthanide ions, the
as-synthesized NCs present variable emission (Figure 3(c)).
Under 310nm excitation, Dy3+-doped, Sm3+-doped, and
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Tb3+-doped NCs exhibited the characteristic emissions of
Dy3+, Sm3+, and Tb3+ ions with the PLQY values of 2.8%,
3.1%, and 9.2%, respectively, and the irradiated NC solutions
upon UV light were demonstrated in the insets of Figure 3(c).
The sharp peaks therein were corresponding to the intrinsic
transitions of 4F5/2-

6HJ (J = 15/2, 13/2, 11/2) for Dy3+ ions,
4G5/2-

6HJ (J = 2/5, 2/7, 2/9, 2/11) for Sm3+ ions, and 5D4-
7FJ

(J = 6, 5, 4, 3) for Tb3+ ions, respectively. All the PLE spectra
monitored at the respective peak positions of three Ln3+ ions
were almost the same, which matches closely with the PLE
spectrum of Cs2AgInCl6 NC host seen in the previous work
by Alivisatos et al. [39] and in our group [26]. That indicated
that the emissions of Ln3+-doped NCs were most likely to
originate from an efficient energy transfer from Cs2AgInCl6
NC host to the energy levels of Dy3+, Sm3+, and Tb3+ ions
[40], as illustrated in Figure S4. The PL decay curves of the
three lanthanide ion-doped samples were measured
(Figure 3(d), Table S4) and fitted by

τave =〠
i

Aiτi: ð1Þ

The calculated lifetimes for Dy3+-doped, Sm3+-doped,
and Tb3+-doped NCs were 3.29ms, 8.1ms, and 8.45ms,
respectively, consistent with the recent reports on these
lanthanide ion-doped luminescent materials [41, 42].

3.3. Tunable Luminescence of Sm3+- and Tb3+-Codoped
Cs2AgInCl6 NCs. Energy transfer between the codoped lan-
thanide ions in one system is a general strategy to achieve
tunable luminescence. We design the controlled experiments
by doping Tb3+ ions in Cs2AgInCl6 NCs with different
amounts of Sm3+ ions (Figure 4). The general amount of
Sm3+ and Tb3+ dopants was determined by ICP-MS mea-
surement. As shown in Figure 4(a), all samples showed a
strong absorption starting at ~350nm and peaked at around
310nm. The PLE spectra of Cs2AgIn(0.89-x)Cl6:0.11Tb,xSm
NCs were almost the same when monitored at 548 and
605nm, further suggesting that the emissions of Sm3+ and
Tb3+ ions were also derived from the efficient energy transfer
from Cs2AgInCl6 NC host to lanthanide ions (Figure 4(b)).
Figure 4(c) reveals the PL emission for different amounts of
Sm3+-doped Cs2AgIn(0.89-x)Cl6:0.11Tb NCs under the excita-
tion of 311nm. The PLQYs were measured to be 5.9%, 5.5%,
and 5.0%, respectively, corresponding to the Sm3+ concentra-
tions of 3%, 5%, and 11%. With the increase in the amount of
Sm3+ dopants, the PL intensity of Tb3+ emission decreases
and the PL intensity of Sm3+ emission increases first and then
decreases. Thus, the emission colors could be tuned from
green to yellow orange. The weakening of Sm3+ emission
was attributed to the concentration quenching effect. To
reveal the variation trend of PL intensity more directly, the
PL spectra were normalized as shown in the inset of
Figure 4(c). It was found that the normalized peak intensity
of Tb3+ ions decreased and the luminescent intensity of
Sm3+ ions increased gradually. Those results indicated the
possible occurrence of Tb3+→ Sm3+ energy transfer in Cs2A-
gInCl6 NCs. Moreover, the decay curves of 11%Tb3+/xSm3+

(x = 0, 2%, 3%, 5%, and 11%)-codoped Cs2AgInCl6 NCs by

recording Tb3+ 548nm emission at 311nm excitation are
shown in Figure 4(d) to investigate the energy transfer pro-
cess from Tb3+ to Sm3+ ions. The lifetimes calculated from
Figure 4(d) and Table S5 for xSm3+ (x = 0, 2%, 3%, 5%, and
11%)-doped Cs2AgIn(0.89-x)Tb0.11Cl6 NCs were 8.77, 8.39,
8.12, 7.70, and 7.35ms, respectively, which showed that
with the increase in the concentration of Sm3+ ion dopants,
the fluorescence lifetime of Tb3+ ion emission decreased
gradually. That evidence further confirmed the existence of
the energy transfer channel from Tb3+ to Sm3+ ions in
Cs2AgInCl6 NCs. Sm3+ emission decays monitored at
605 nm emission and 311nm excitation were also revealed
in Figure 4(e). It was found that with the increase in the
doping amount of Sm3+ ions, the fluorescence decays
became faster, attributed to the concentration quenching
effect of Sm3+ ion dopants. In addition, we used Bi3+-doped
Cs2AgIn(0.89-x)Tb0.11Cl6:xSm NCs to make fluorescent signs
by spray coating. Bi3+ ion incorporation could adjust the
excitation to 365 nm for wider application from our
previous work [34]. The scheme of spray coating process is
demonstrated in Figure 4(f), in which different NC-hexane
solutions were atomized into very small droplets from the
nozzle with the high-pressurized nitrogen gas. Then, the
droplets deposited onto the PMMA substrate, forming the
desired uniform, stable, and high-resolution patterns. The
fluorescence patterns with tunable emissions shown in the
right side of Figure 4(f) could respond to the 365 nm UV
excitation signal, revealing the potential application of
lanthanide ion-doped Cs2AgInCl6 NCs in the field of
anticounterfeiting technology and fluorescent signs.

4. Discussion

In conclusion, we demonstrated the successful lattice doping
of various lanthanide ions, including Dy3+, Tb3+, and Sm3+,
into lead-free perovskite Cs2AgInCl6 NCs through the hot-
injection method. It was confirmed by structural refinements
that Dy3+, Tb3+, and Sm3+ ions occupied the site of In3+ ions,
and the TEM images and XPS analysis further verified this
result. The introduction of Ln3+ doping endowed Cs2AgInCl6
with diverse PL emissions in the visible region. Benefiting
from the energy transfer process, Sm3+/Tb3+-codoped Cs2A-
gInCl6 NCs achieved tunable emission from green to yellow
orange and a fluorescent pattern from the as-prepared NC-
hexane inks by spray coating was made to show its applica-
tion in fluorescent signs and anticounterfeiting technology.
This work extends the study on lanthanide ion doping into
lead-free halide perovskite Cs2AgInCl6 NCs and further
enables a wider regulation for their optical properties and
applications in energy-related materials.
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