

ТЕЗИСЫ ДОКЛАДОВ

20-24 сентября 2021 г. Иваново, Россия

КЛАСТЕР КОНФЕРЕНЦИЙ 2021

XIV МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ «ПРОБЛЕМЫ СОЛЬВАТАЦИИ И КОМПЛЕКСООБРАЗОВАНИЯ В РАСТВОРАХ»

XI МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ «КИНЕТИКА И МЕХАНИЗМ КРИСТАЛЛИЗАЦИИ. КРИСТАЛЛИЗАЦИЯ И МАТЕРИАЛЫ НОВОГО ПОКОЛЕНИЯ»

VI МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ ПО ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

XIII ВСЕРОССИЙСКАЯ ШКОЛА-КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ «ТЕОРЕТИЧЕСКАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ХИМИЯ ЖИДКОФАЗНЫХ СИСТЕМ» (КРЕСТОВСКИЕ ЧТЕНИЯ)

Министерство науки и высшего образования Российской Федерации Российская академия наук

Институт химии растворов им. Г.А. Крестова РАН Институт общей и неорганической химии им. Н.С. Курнакова РАН Ивановский государственный химико-технологический университет

КЛАСТЕР КОНФЕРЕНЦИЙ 2021:

XIV Международная научная конференция «Проблемы сольватации и комплексообразования в растворах»

XI Международная научная конференция «Кинетика и механизм кристаллизации. Кристаллизация и материалы нового поколения»

VI Международная научная конференция по химии и химической технологии

XIII Всероссийская школа-конференция молодых ученых "Теоретическая и экспериментальная химия жидкофазных систем" (Крестовские чтения)

ОБОБЩЕНИЕ УРАВНЕНИЯ КЛАПЕЙРОНА-КЛАУЗИУСА ДЛЯ НАНОСИСТЕМЫ

Магомедов М.Н.

Институт проблем геотермии и возобновляемой энергетики— филиал Объединенного Института Высоких Температур РАН, Махачкала, Россия

mahmag4@mail.ru

Известно, что состояние двух нано-фаз с равным числом атомов N определяется значением свободной энергии Гиббса: $G(P,\,T,\,\Sigma)$, которая зависит от давления (P), температуры (T) и площади поверхности (Σ) нано-фазы. Равновесие двух нано-фаз при фазовом переходе первого рода $(\Phi\Pi 1)$ выполняется при соблюдении условий: механического $(P_s=P_l)$, термического $(T_s=T_l)$ и химического $(G_s=G_l)$ равновесия. Исходя из этого, для наклона линии $\Phi\Pi 1$ в T-P-координатах нами получено выражение:

$$\frac{dT_m}{dP} = \frac{\Delta v}{\Delta s} \left[1 - \frac{\Delta z_f}{\Delta v} \right], \quad \Gamma \text{De} \quad z_f = -P_{sf} \left(\frac{dv}{dP} \right)_T = P_{sf} \frac{v}{B_T}. \tag{1}$$

Здесь $\Delta x = x_l - x_s$ – изменение функции x при $\Phi\Pi 1$, $s = -\left[\partial (G/N)/\partial T\right]_{P,\Sigma}$ и $v = \left[\partial (G/N)/\partial P\right]_{T,\Sigma}$ – удельные (на атом) значения энтропии и объема, P_{sf} – поверхностное давление для нанофазы, $B_T = -\left(\partial P/\partial \ln \Sigma^{3/2}\right)_T = -\left(\partial P/\partial \ln v\right)_T$ – модуль упругости.

Как было показано в [1], функция P_{sf} для твердой фазы много меньше, чем для жидкой, т.е. значение Δz_f всегда положительное: $\Delta z_f = z_f(l) - z_f(s) \cong z_f(l) = P_{ls}(l) \ v_l/B_T(l) > 0$, где $P_{ls}(l)$ — давление Лапласа для жидкой нанофазы. Так как $P_{ls}(l) \ v_l = (2/3)\sigma_l \Sigma_l \ /N \sim 1/N^{1/3}$, где $\sigma_l = (\partial G_l/\partial \Sigma_l)_{T,P}$ — удельная (на единицу площади) поверхностная энергия жидкой нанофазы. Тогда (1) можно представить в виде:

$$T_m'(P) = \frac{dT_m}{dP} = \frac{\Delta v}{\Delta s} \left[1 + \frac{v_l C_{\Sigma}}{\Delta v N^{1/3}} \right], \quad \text{ГДе} \quad C_{\Sigma} = \frac{2\sigma_l(\Sigma/N^{2/3})}{3B_T(l)v_l} > 0.$$
 (2)

В случае ФП1 кристалл-жидкость (К-Ж) изменение удельной энтропии всегда положительно: $\Delta s = s_l - s_s > 0$, но для изменения удельного объема возможны два варианта:

- 1. Для нормально плавящихся веществ выполняется: $\Delta v = v_l v_s > 0$. Тогда функция $T_m'(P)$ будет увеличиваться при переходе от макро- к наносистеме.
- 2. Для веществ плавящихся аномально выполняется: $\Delta v = v_l v_s < 0$. В этом случае функция $T_m'(P)$ будет уменьшаться при переходе от макро- к наносистеме.

Так как при P=0 для обоих случаев выполняется [2]: $T_m(\infty) > T_m(N)$, то для обоих случаев при определенном давлении (P_0) зависимости $T_m(P)$ для макро- и нано-систем пересекаются. Легко понять, что в этой точке размерная зависимость для температуры ФП1 К-Ж исчезает. В области низких давлений $(P < P_0)$ при изобарном уменьшении размера наносистемы величина $T_m^* = T_m(N)/T_m(\infty)$ уменьшается: $T_m^* < 1$, а в области $P > P_0$ функция T_m^* при изобарном уменьшении N возрастает: $T_m^* > 1$.

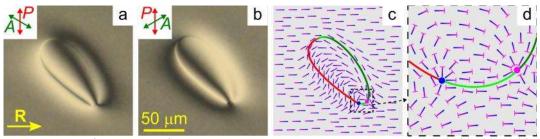
Легко видеть, что (1) и (2) обобщают уравнение Клапейрона-Клаузиуса (УКК) на случай наносистем с равным числом атомов N и ограниченных поверхностью Гиббса с площадями Σ_s и Σ_l . Выражения (1) и (2) переходят в УКК при $\Sigma/N \to 0$, т.е. при $N \to \infty$.

Работа выполнена при поддержке РФФИ в рамках гранта № 18-29-11013 мк.

- 1. М.Н. Магомедов. Росс. Нанотехнологии, 2014, 9, 5-6, 63-72. DOI: 10.1134/S1995078014030100
- 2. М.Н. Магомедов. Письма в ЖТФ, 2016, 42, 14, 94-102. DOI: 10.1134/S1063785016070245

ЭЛЕКТРИЧЕСКИ УПРАВЛЯЕМАЯ ТРАНСФОРМАЦИЯ СТРУКТУРЫ ХИРАЛЬНОГО НЕМАТИКА С ПЛАНАРНО-КОНИЧЕСКИМ СЦЕПЛЕНИЕМ

<u>Крахалев М.Н.</u> 1,2 , Прищепа О.О. 1 , Сутормин В.С. 1,2 , Бикбаев Р.Г. 1,2 , Тимофеев И.В. 1,2 , Зырянов В.Я. 1 Институт физики им. Л. В. Киренского, Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения РАН", Красноярск, Россия


²Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет, Красноярск, Россия

kmn@iph.krasn.ru

Хиральные нематики (холестерики) способны к формированию богатого разнообразия ориентационных структур, которые определяют их уникальные топологические и оптические и свойства, а также особенности отклика на внешние воздействия [1]. Формирующиеся структуры зависят от граничных условий, задаваемых на подложках. На сегодня изучены структуры с планарными, гомеотропными и гибридными гомеотропно-планарными граничными условиями. Недавно нами были начаты исследования слоев холестерика с планарно-коническими граничными условиями [2].

В данной работе представлены результаты исследования отклика на электрическое поле структур холестерика, формирующихся при планарно-коническом сцеплении.

В исходном состоянии реализуется закрученная конфигурация с линейными дефектами в виде петли (рисунок 1) или пары линейных поверхностных дефектов, расположенных на подложке с коническим сцеплением [3]. Петлеобразный дефект содержит пару точечных особенностей, на которых ориентация директора изменяется на 180°. Электр ическое поле, направленное перпендикулярно слою холестерика, изменяет как полярный, так и азимутальный угол директора на границе с коническим сцеплением. В результате происходит стягивание и схлопывание петли дефекта, или трансформация линейного дефекта на подложке с коническим сцеплением в линейный дефект нового типа, расположенный вблизи подложки с планарным сцеплением.

Рисунок 1 — Фотографии петли дефекта, сделанные для ориентации анализатора (A) - 30° (a) и + 30° (b) по отношению к направлению натирки **R**. Распределение директора на подложке с коническим сцеплением вблизи петли (c) и пары точечных особенностей (d).

Работа выполнена при поддержке Российского научного фонда (грант №18-72-10036).

- 1. P. Oswald, & P. Pieranski. Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments, (Taylor & Francis, Boca Raton, 2005), pp. 618.
- 2. M.N. Krakhalev, et al. Crystals, 2019, 9, 249.
- 3. M.N. Krakhalev, et al. Scientific Reports, 2020, 10, 4907.

ВЛИЯНИЕ СОРАСТВОРИТЕЛЯ НА ПРОСТРАНСТВЕННУЮ СТРУКТУРУ МАЛЫХ МОЛЕКУЛ ЛИДОКАИНА ПРИ СВЕРКРИТИЧЕСКИХ ПАРАМЕТРАХ СОСТОЯНИЯ ${\rm CO}_2$

Xодов И.А. 1 , Белов К.В. 1 , Дышин А.А. 1 , Киселев М.Г. 1 . 1 Институт химии растворов Российской академии наук, Иваново, Россия iakh@isc-ras.ru

Информация о пространственной структуре малых молекул имеет ключевое значение для понимания процессов зародышеобразование кристаллов различной полиморфной формы [1]. При этом влияние растворителя на данные процессы может оказать существенное влияние на конформационное поведение малых молекул лекарственных соединений.

Для понимания такого рода процессов мы выбрали местный анестетик и сердечный депрессант лидокаин, молекулы которого имеют в своей структуре характеристические группы для специфических взаимодействий.

Для выбранного соединения были определены пространственные структуры в ДМСО и сверхкритическом диоксиде углерода ск ${\rm CO_2}$, а также в их смеси на основе двумерных экспериментов ядерного эффекта Оверхаузера NOESY.

Было показано существенное влияние растворителя на конформационное поведение лидокаина в ск ${\rm CO_2}$ и обсуждены причины их обуславливающие.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (№ 01201260481 и № 0120095082), Российским фондом фундаментальных исследований (грант № 18-29-06008 и № 20-43-370011) и Советом по грантам Президента Российской Федерации (проект МК-662.2021.1.3). Эксперименты ЯМР были проведены на уникальной научной установке (http://www.ckp-rf.ru/usu/503933/) Г.А. Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР РАН) (Россия).

1. I. Khodov, A. Dyshin, S. Efimov, D. Ivlev, M. Kiselev. Journal of Molecular Liquids, 2020, 309, 113113.

СОДЕРЖАНИЕ

Доклады приглашенных лекторов КЛАСТЕРА КОНФЕРЕНЦИЙ	5-10
<i>Тезисы докладов</i> XIV Международной научной конференции «Проблемы сольватации и комплексообразования в растворах»	11-123
Тезисы докладов XI Международной научной конференции «Кинетика и механизм кристаллизации. Кристаллизация и материалы нового поколения»	124-252
<i>Тезисы докладов</i> VI Международной научной конференция по химии и химической технологии	253-338
Тезисы докладов XIII Всероссийской школы-конференции молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем» (Крестовские чтения)	339-394
Алфавитный указатель	395-405
Содержание	406
Рекламные материалы	

КЛАСТЕР КОНФЕРЕНЦИЙ 2021:

XIV Международная научная конференция «Проблемы сольватации и комплексообразования в растворах»

XI Международная научная конференция "Кинетика и механизм кристаллизации. Кристаллизация и материалы нового поколения"

VI Международная научная конференция по химии и химической технологии

XIII Всероссийская школа-конференция молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем» (Крестовские чтения)

(Тезисы докладов)

Тезисы докладов опубликованы в авторской редакции

ISBN 978-5-904580-87-2

Подписано в печать 19.07.2021 г. Формат 60х84 1/8 Печать плоская. Печ. л. 52,0. Усл. печ. л. 48,4. Заказ № 21301. Тираж 50 экз

Изд. Лиц. ЛР № 049975 от 29.06.1999

Отпечатано в АО «Ивановский издательский дом» 153000, г. Иваново, ул. Степанова, 5. Тел./факс: (4932) 30-32-37, 30-14-11 E-mail: 301411@rambler.ru