ХХІV Международная научная конференция

Новое в Магнетизме и Магнитных Материалах

1 – 8 июля 2021 года Сборник трудов

Москва, 2021

МАГНИТНЫЙ КРУГОВОЙ ДИХРОИЗМ И ПОГЛОЩЕНИЕ КРИСТАЛЛА НоАl₃(BO₃)₄ В ОБЛАСТИ *f-f* ПЕРЕХОДА ${}^5I_8 \rightarrow {}^5S_2$

12-60

Соколов В. В.

к.ф.м.н., м.н.с., Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН

Малаховский А. В.

д.ф.-м.н., с.н.с., Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН

Гудим И.А.

к.ф.м.н., с.н.с., Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН

Аннотация. Работа посвящена изучению спектров поглощения и магнитного кругового дихроизма (МКД) кристалла HoAl₃(BO₃)₄. С помощью спектров МКД определены Зеемановские расщепления линий поглощения. Зеемановские расщепления также вычислены теоретически в приближении волновых функций свободного иона.

Ключевые слова: ионы Ho³⁺, f-f переходы, магнитный круговой дихроизм.

MAGNETIC CIRCULAR DICHROISM AND ABSORPTION OF HoAl₃(BO₃)₄

CRYSTAL IN THE REGION OF *f*-*f* TRANSITION ${}^{5}I_{8} \rightarrow {}^{5}S_{2}$

Sokolov V. V.

candidate phys.-math. sciences, Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Malakhovskii A. V.

doctor phys.-math. sciences, Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Gudim I. A.

candidate phys.-math. sciences, Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Annotation. This work is devoted to the study of the absorption and magnetic circular dichroism (MCD) spectra of the $HoAl_3(BO_3)_4$ crystal. The Zeeman splitting of the absorption lines was determined using the MCD spectra. Zeeman splittings were also calculated theoretically in the approximation of the wave functions of free ion.

Keywords: Ho^{3+} *ion, f-f transitions, magnetic circular dichroism.*

Измерены спектры магнитного кругового дихроизма (МКД) и поляризованные спектры поглощения $HoAl_3(BO_3)_4$ в области *f-f* перехода ${}^5I_8 \rightarrow {}^5S_2$ при температуре 90 К. Переходы из возбуждённых подуровней основного мультиплета идентифицированы на основании поляризации переходов с использованием правил отбора в симметрии D_3 . Заглавные буквы на рис. 1 и в табл. 1 обозначают переходы из основного состояния, а строчные буквы

обозначают переходы из возбуждённых подуровней основного мультиплета. Спектры поглощения были разложены на компоненты формы Лоренца и определены их интенсивности (табл. 1).

Рис. 1 (a, b). 1) Поляризованные спектры поглощения (k), вторая производная от поглощения (d^2k/dE^2) , производная от дихроизма $(d\Delta k/dE)$ и магнитный круговой дихроизм (Δk) перехода ${}^5I_8 \rightarrow {}^5S_2$ при температуре 90 К в HoAl₃(BO₃)₄.

Таблица 1. Энергии уровней и переходов (E), интенсивности переходов в π и σ поляризациях (I_{π} , I_{σ}), измеренные экспериментально (Δg_{C}) и теоретические значения (Δg_{CM}) изменения фактора Ланде.

Мультиплеты	Уровни, переходы	$E (\text{cm}^{-1})$ (90 K)	I_{π} (cm ⁻²)	I_{σ} (cm ⁻²)	Δg_C	Δg_{CM}	M_J
	$Gr1(E_1)$	0					1
	Gr2 (E)	12-12.8					
	$\operatorname{Gr3}(A_{1})$	14-14.3					
	$Gr4(A_2)$	20-22.5					
${}^{5}I_{8}$	$\operatorname{Gr5}(A_2)$	33-34.5					
	$\operatorname{Gr6}(A_{l})$	123-127					
	Gr7 (E)	134-138					
	Gr8 (E)	144-149					
	$Gr9(A_2)$	174-178					
	$E1(A_l)$	18378.5		71	(+)		
	$E2a(E_2)$	18394	290				
	$E2b(E_2)$	18396		333	+5.3	+5.5	2
	$E2c(E_2)$	18397	226				
50	E3a (E_l)	18407	π	122			
\mathfrak{Z}_2	E3b (E_l)	18409	10	278	-6.3	-6.5	1
	e6 (Gr8-E1)	18231		34.69	-5.1		
	e7(Gr7-E1)	18245		45	+5.1		
	e9 (Gr7-E3)	18270	π	76	+4.5		
	e17 (Gr5-E2)	18361.4		236.2	+5		

Используя спектры поглощения и МКД, были найдены значение Зеемановского расщепления $\Delta \omega_0$ согласно формуле:

$$\Delta \omega_0 = 2 \frac{\Delta k_{dm}}{k_m} |\omega_m - \omega_0| \tag{1}$$

Где Δk_{dm} и ω_m – это величина и положение экстремумов диамагнитной линии МКД соответственно, а k_m - амплитуда поглощения $\alpha(\sigma)$ поляризованной линии.

12-62 Секция 12. Магнитооптика и фотомагнетизм

HMMM-2021

Экспериментальные изменения фактора Ланде Δg_C при переходах (табл. 1) были найдены по Зеемановскому расщеплению переходов в магнитном поле, направленном вдоль оси C_3 кристаллов из соотношения:

$$2\hbar\Delta\omega_0 = \mu_B H\Delta g_C \tag{2}$$

Основное состояние иона гольмия ${}^{5}I_{8}$ при переходе к кубической и далее к тригональной симметрии трансформируется следующим образом:

$$^{5}I_{8}(J=8) \rightarrow A_{1} + 2E + 2T_{1} + 2T_{2} \rightarrow A_{1} + 2E + 2(A_{1}+E) + 2(A_{2}+E)$$
 (3)

Электронные состояния в одноосных кристаллах могут быть описаны в первом приближении волновыми функциями $|J,\pm M_J\rangle$ свободного атома и кристаллического квантового числа μ . Между значениями μ , M_J и неприводимыми представлениями состояний существует следующее соответствие [1]:

$$M_J = 0 \pm 1 \pm 2 (\pm 3)_{1,2} \pm 4 \pm 5 (\pm 6)_{1,2} \pm 7 \pm 8 \tag{4}$$

$$\mu = 0 \pm 1 \mp 1 \quad 0 \qquad \pm 1 \quad \mp 1 \qquad 0 \qquad \pm 1 \quad \mp 1 \tag{5}$$

$$A_1 \quad E_1 \quad E_2 \quad A_1, A_2 \quad E_1 \quad E_2 \quad A_1, A_2 \quad E_1 \quad E_2$$
 (6)

Дублеты E_1 и E_2 отличаются знаком μ . Проекция M_J определяет расщепление состояния в магнитном поле. Соответственно фактор Ланде g_{CM} дублета $\pm M_J$ в приближении $|J,\pm M_J\rangle$ волновых функций равен:

$$g_{CM} = 2gM_J \tag{7}$$

где g - фактор Ланде свободного иона (табл. 2). Тогда мы можем теоретически оценить изменения фактора Ланде Δg_{CM} при переходах между состояниями, используя правила отбора для числа μ [2].

Таблица 2. Факторы Ланде состояний (g_{CM}) вдоль оси C_3 в приближении функций $|J,\pm M_J\rangle$ свободного атома

		A_{l}	E_{I}	E_2	A_1, A_2	E_{I}	E_2	A_1, A_2	E_1	E_2
	M_J	0	1	2	$(\pm 3)_{1,2}$	4	5	$(\pm 6)_{1,2}$	7	8
State	g									
${}^{5}I_{8}$	1.25	0	2.5	5	0	10	12.5	0	17.5	20
${}^{5}S_{2}$	2.00	0	4	8						

Возбуждённые ${}^{5}S_{2}$ состояния расщепляются в кубическом и тригональном полях следующим образом:

$${}^{5}S_{2} \quad J=2 \rightarrow T_{2} + E \rightarrow (A_{1} + E) + E$$

$$E1 \quad E2 \quad E3$$
(8)

Е1, Е2 и Е3 – общепринятые обозначения состояний и переходов в данном мультиплете.

В работе [3] из магнитных измерений и расчета кристаллического поля было получено, что фактор Ланде основного состояния $g_C=2.52$. Эта величина близка к теоретическому значению $g_{CM}=2.5$ (табл. 2) для состояния $M_J=1$ с симметрией E_I . Для определения знаков Зеемановских расщеплений переходов была использована табл. 3, которая была получена в работе [2] из диаграммы переходов и правил отбора для состояний с целым моментом.

Таблица 3. Знаки Зеемановских расщеплений переходов. Первые знаки для переходов E₁↔E₂ относятся к случаю, когда расщепление основного состояния больше, чем расщепление возбуждённого состояния. Абсолютная величина расщепления переходов E₁→E₁ и E₂→E₂ равна сумме расщеплений основного и возбуждённого состояний, а переходов E₁↔E₂ равна разности.

	A	E_1	E_2
$A \rightarrow$	0	(-)	(+)
$E_1 \rightarrow$	(-)	(-)	(-,+)
$E_2 \rightarrow$	(+)	(+,-)	(+)

В линии **E3**(E_1) наблюдается расщепление на две составляющие E3a и E3b (рис. 1b), вследствие локального искажения кристаллического поля в возбуждённом состоянии. Зеемановское расщепление перехода Gr1(J=8, M_J =1, g_{CM} =2.5, E_1) \rightarrow E3 (J=2, M_J =1, g_{CM} =4, E_1) согласно таблицам 2 и 3 равно: Δg_{CM} = -6.5, что близко к экспериментальному значению -6.3.

Рассмотрим теперь линию **E2**(E_2). Из производной от спектра МКД и второй производной от спектра поглощения видно, что данная линия состоит из трёх линий (рис. 1b). Это возможно, если при электронном переходе происходит локальное понижение симметрии как в возбуждённом так и в основном состоянии. Зеемановское расщепление перехода Gr1(J=8, $M_J=1$, $g_{CM}=2.5$, E_1) \rightarrow E2 (J=2, $M_J=2$, $g_{CM}=8$, E_2) согласно табл. 2 и 3 равно: $\Delta g_{CM}=+5.5$, что близко к экспериментальному результату +5.3.

Линия $E1(A_I)$ плохо разрешена, и как результат не удается определить величину Δg_C , но из производной от МКД (рис. 1b) можно определить знак расщепления. Для идентификации свойств возбуждённых подуровней основного мультиплета необходимо анализировать спектры МКД и поглощения одновременно нескольких полос поглощения.

Исследование выполнено при финансовой поддержке РФФИ грант № 19-02-00034, а также при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края и Красноярского краевого фонда науки в рамках научного проекта: № 19-42-240003 «Влияние локального окружения на магнитооптические свойства *f*-*f* переходов в редкоземельных алюмоборатах и ферроборатах»

Список использованных источников:

[1] Ельяшевич М.А. Спектры редких земель, Москва, ГИТ-ТЛ, 1953.

[2] Malakhovskij A. V., Sokolov V. V., Gudim I. A. Magnetic circular dichroism and absorption of HoFe₃(BO₃)₄ crystal in the region of f–f transitions ${}^{5}I_{8} \rightarrow {}^{5}F_{2}$ and ${}^{5}F_{3}$. Fizika Nizkikh Temperatur. – 2020. – T. 46. – No. 7. – C. 869-876.

[3] Begunov A.I., Demidov A.A., Gudim I.A., and Eremin E.V., Features of the magnetic and magnetoelectric properties of HoAl₃(BO₃)₄, JETP letters 97 (2013) 528-534.