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• Formation of soil water erosion and
preferential water flowduring irrigation
negatively impacted surface and ground
water bodies.

• Mapping of soil water moisture (SWM)
by Remote Sensing for precision irriga-
tion is motivated.

• A model to map SWM of soil surface
using Sentinel-1 radar data is devel-
oped.

• Test field confirms a satisfactory linear
correlation between in situ measured
and in vitro calculated SWMs.

• Developed model can be used to map
SWM by radar for the purpose precision
irrigated management.
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Soil surfacemoisture is one of the key parameters for describing thehydrological state and assessing the potential
availability of water for irrigated plants. Because the radar backscattering coefficient is sensitive to soil moisture,
the application of Sentinel-1 datamay support soil surfacemoisturemapping at high spatial resolution by detect-
ing spatial and temporal changes at the field scale for precision irrigationmanagement. Thismapping is required
to control soilwater erosion andpreferential waterflow to improve irrigationwater efficiency andminimise neg-
ative impacts on surface and ground water bodies.
Direct observations of soil surface moisture (5-cm thickness) were performed at an experimental plot in the
study site of the All-Russian Scientific Research Institute of Irrigated Agriculture, near the village Vodnyy, Volgo-
grad region. Soil surface moisture retrieval from Sentinel-1 was performed at the same location. A second set of
soil surface moisture was calculated for the soil sampling sites using the permittivity model, based on the esti-
mates of soil surface characteristics: a) reflectivity, obtained by the neural network method from Sentinel-1 ob-
servations; b) roughness, obtained from the geodata of the stereoscopic survey with unmanned aerial vehicle
Phantom 4 Pro.
The raster set of soil surface moisture geodata was obtained based on the reflectivity geodata raster set to solve
the inverse problem using a permittivity model that considers the soil texture of the experimental plot. The de-
termination coefficient (0.948) and standard deviation (2.04%) were obtained by comparing both sets of soil
moisture point geodata taken from the same soil sampling sites. The values confirmed a satisfactory linear corre-
lation between the directly measured and indirectly modelled sets. A comparison of the two sets of geodata in-
dicated a satisfactory reproduction of the first set by the second set.
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As a result, the developed method can be considered as the scientific and methodological basis of the new tech-
nology of soil surface moisturemonitoring by radar, which is one of the basic characteristics used in precision ir-
rigation management.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

For global, regional, and local hydrological dynamic modelling of
water storage at the soil cover and its root zone, the soil moisture of the
soil surface layer (SSL) Θss is one of the key dynamic characteristics.
Information derived from various aerospace and ground monitoring
systems is used to remotely assess Θss

rs (superscript “rs” means remote
sensing) at different spatial and temporal resolutions during natural
meteorological conditions and during periods of agricultural crop
irrigation (Andreassian et al., 2006; Chen et al., 2005; Gowda et al.,
2008; Moehrlen, 1999; Muzylev et al., 2017; Overgaard et al., 2006;
Pitman, 2003; Startseva et al., 2014).

At the same time, Θss
rs may be used to control soil water erosion and

preferential water flow during crop irrigation in chernozem soil
(Khitrov et al., 2009; Zatinatskii et al., 2007), which is necessary to
optimise irrigation water use efficiency (Zeyliger et al., 2019) and
protect the environment against the negative impact of irrigation
(Khitrov et al., 2009; Zatinatskii et al., 2007). One of the technologies
that addresses the temporal and spatial variability of soil moisture
within a field is called precision irrigation or variable-rate irrigation.
This technology is used to deliver the desired amount of water to spe-
cific locations in an irrigated area (Evans et al., 2015). Many studies
have been conducted on the use of point-scale sensors installed in the
field to gather information on soil moisture content (Dukes and
Scholberg, 2004; Evett and Parkin, 2005; Robinson et al., 2008, Vellidis
et al., 2007, Sui and Baggard, 2015). However, their implementation at
thefield scale requires a densemonitoring network that is resource con-
suming. Few studies have focused on the development of methods for
mapping soil moisture from space. Thus, this study aimed to develop a
remote sensing method for soil surface moisture to control zones with
risk of soil water erosion, and the development of preferential water
flow.

Sentinel-1 radar enables new approaches for the space monitoring
of Θss

rs. Unlike the sensors operating in the infrared spectrum, the
microwave radiation of Sentinel-1 operates at a C-range of frequencies
(5.4 GHz) and does not depend on light conditions and unfavourable at-
mospheric phenomena, allowing 24-h and all-weather monitoring. In
contrast to the modern satellite radiometers of SMAP and SMOS/
MIRAS (L-band, 1.4 GHz) (Entekhabi et al., 2014; Wigneron et al.,
2017), GCOM-W1/AMSR2 (K- and Ku- bands, 19 and 37 GHz, respec-
tively) (Gao et al., 2018), as well as the Metop/ASCAT radar (C-band,
5.3 GHz) (Brocca et al., 2017), which have a low spatial resolution of
~10 km, the Sentinel-1 radar has a spatial resolution of ~10 m. The
high spatial resolution of the Sentinel-1 radar enables new approaches
to distinguish even small and narrow parcels of non-homogeneous
land within the irrigated field for space monitoring of Θss

rs.
In general, in territories occupied by agricultural crops, the key char-

acteristics affecting the backscatter coefficient, which is measured by
the Sentinel-1 radar at a fixed angle (29–46°), are soil moisture and
soil surface roughness (Oh et al., 1992). In particular, when the soil sur-
face is devoid of vegetation, the key characteristics are Θss and
roughness of daylight SSL. These characteristics change in time and
space, and the rate of these changes is closely related to the
characteristics of meso- and macro-relief, as well as the characteristics
of the soil and vegetation surface layer. The drivers of such changes
have various natural and anthropogenic impacts on the soil surface
and vegetation layer. For agricultural lands, such drivers are phenomena
that provoke water and wind erosion, as well as agricultural cultivation
2

of land and irrigation of crops, which in some cases provokes irrigation
erosion.

The use of statistical characteristics of the soil surface roughness hss
is one method to represent the soil roughness in existing scattering
models. In widely used models, such as the small perturbation method,
physical and geometric optics, semi-empirical models, and integral
equation method (Ulaby and Long, 2014), the input parameters are Θss,
the standard deviation σ(hss), correlation length, and autocorrelation
function F(hss) of the surface elevation. In addition, σ(hss), the
correlation length, and the type of F(hss) measured in agricultural fields
depend on the profile length (0.5–25 m) of acquisition (Davidson et al.,
2000). As a result, the model estimates of Θss

rs from satellite radar data
based on existing classical scattering models using the statistical
parameters of the roughness of SSL lead to large discrepancies with the
field measurement data (Wang et al., 2014; Baghdadi et al., 2004, 2011;
Thoma et al., 2006). In recent years, semi-empirical approaches based
on the use of neural network (NN) methods have been widely used to
overcome these limitations. Baghdadi et al. (Baghdadi et al., 2004) pro-
posed a modified integral equation-based scattering model, in which
one of the input parameters (correlation length) was calibrated with re-
spect to the measured values of σ(hss) at the test sites. By applying this
approach, the authors were able to reduce the error of the posterior
estimate of the backscatter coefficient up to 0.9–2.2 times. Moreover, in
such scattering models, the topsoil permittivity is used as an input
parameter, which is calculated using empirical and physical-based per-
mittivity models (Dobson et al., 1985; Hallikainen et al., 1985; Mironov
et al., 2009; Zhang et al., 2020). The empirical model (Hallikainen et al.,
1985) uses Θss and soil texture fd as input parameters. In addition to
these input parameters (Hallikainen et al., 1985), the semi-empirical
model (Dobson et al., 1985) also uses the soil characteristics, such as
dry bulk density, density of the soil solid phase, and frequency of the elec-
tromagnetic wave as input parameters. Among the known dielectric
models in the microwave band, the best results are provided (Mialon
et al., 2015) by the physical model (Mironov et al., 2009), which is cur-
rently used in the SMOS (Wigneron et al., 2017) and SMAP (Zeng et al.,
2016) algorithms for global monitoring of the SSL moisture. This model
allows the calculation of the complex permittivity of soils with a clay frac-
tion fclay (soil elementary particle size <0.002mm according to the United
States Department of Agriculture classification) depending on volumetric
moisture Θss and wave frequency in the range of 45 MHz–26.5 GHz at
temperatures of 20–22°С. This model was validated on a dataset of 15
soil types, with a clay content of 0–76%.

In recent years, considerable progress in the development of semi-
empirical approaches has been achieved by the combination of integral
equation physical-based scattering models with artificial intelligent
methods, which are used to calculate Θss

rs using the values of the
backscatter coefficient (Mirsoleimani et al., 2019). The use of Sentinel-
1 radar data on vertical-vertical (VV) polarization and neural networks
(NNs)with two hidden layers and 20 neurons enabled the estimation of
the backscatter coefficient with an accuracy of 0.8 dB, and consequently,
the calculation of Θss

rs of bare soil with accuracy in the order of 0.03
m3m−3 (Mirsoleimani et al., 2019). In the case of canopy soil, with a
maximum normalized difference vegetation index (NDVI) of 0.75 and
σ(hss) within 1–3 cm, the accuracy of the posterior estimate of Θss

rs

increases to 0.05 m3m-3 using a single VV polarization, or a pair of VV
and vertical-horizontal (VH) polarizations (El Hajj et al., 2017). Similar
results were obtained in a previous study (El Hajj et al., 2016) for
an X-band radar using both a single horizontal-horizontal (HH)



A.M. Zeyliger, K.V. Muzalevskiy, E.V. Zinchenko et al. Science of the Total Environment xxx (xxxx) xxx
polarization and a pair of HH-VV polarisations. The corresponding algo-
rithms for solving inverse problems in cases of large volumes of radar
data when combining semi-empirical methods and NNs for monitoring
purposes of Θss

rs are considerably complex. However, the achieved
positive results indicate significant prospects for this methodology.
Paloscia et al. (2008) proposed an efficient algorithm for posterior
estimation of Θss

rs based on the feed-forward NN, utilizing the radar
data (HH and HV polarisations) of the ENVISAT/ASAR satellite in the
C-band for several test fields in northern Italy. They obtained a standard
deviation of 2.2–2.8% and a determination coefficient of r2 = 0.85–0.91
relative to the invasive measurement dataset of Θss

gr (superscript “gr”
means ground). A similar approach using Sentinel-1 radar data,
Radarsat, and Envisat was applied to the test plot located on agricultural
lands in Italy, Australia, and Spain (Paloscia et al., 2013), as well as
Tunisia (Hachani et al., 2019). As a result, the deviations of a posteriori
estimates of the radar data of Θss

rs from ground measuring data of Θss
gr

were in the range of 0.02–0.05 m3m−3. An analysis of the literature
also indicated that during the soil moisture retrieval, the use of any
pair of polarisations (HH and HV, VV, and VH) as input parameters of
the NN enables to consider the soil surface roughness for bare soils or
soils rarely covered by vegetation.

In contrast to existing approaches (El Hajj et al., 2017; Mirsoleimani
et al., 2019, El Hajj et al., 2016; Paloscia et al., 2008, Paloscia et al., 2013;
Hachani et al., 2019), we use a neural network to estimate the reflectiv-
ity of the soil, not directly the soil moisture. This approachmakes it pos-
sible to take into account the content of the clay fraction in the SSL based
b) 

a) 

Fig. 1.The experimental plot locatedon thefields of VNIIOZ: a) Globalmap; b)NDVImaps calcul
blue for Route№ 2 dots indicate places of soil sampling); c) ground image of the experimental p
to the web version of this article.)
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on the use of a dielectric model. In order to study in detail, the effect of
soil surface roughness and topography on the spatial distribution of Θss,
a high-resolution digital elevation model (DEM) was used. This DEM
was produced fromUnmannedAerial Vehicle (UAV) data set performed
synchronously with the polarimetric Sentinel-1 observations.

2. Materials and methods

2.1. Experimental site and soil specification

The studies for testing the developed method of a posteriori estima-
tion of Θss were conducted on the territory of the experimental
agricultural production farm of the All-Russian Scientific Research
Institute of Irrigated Agriculture (VNIIOZ), near the village Vodnyy,
Volgograd region (see Fig. 1). Climate of territory is classified asmoder-
ately continental, with moderately cold winters and hot summers. The
soil type at this territory is Luvic Kastanozem (IUSS Working Group
WRB, 2015). It is middle loamy in texture and has the typical character-
istics of such soils in Volgograd region of Russia.

The coordinates of the centre of the experimental plot (48.60367°N,
44.15659°E) correspond to the intersection of lines A-B and A1-B1 (see
Fig. 1), where they are displayed on top of the NDVI map derived from
the red and near infrared (NIR) data Sentinel-2 on 21st August 2019.
The plot with area about 3 ha is located on a relatively flat transverse
slope, with a slope in the direction from north to south (along line A-
B) of approximately 2%. The ground truth of Θss

gr monitoring was
с) 

A2

В1 В2

ВA1

A

ated fromSentinel-2 space image inRed andNear Infrared channels (red for Route№ 1 and
lot. (For interpretation of the references to colour in this figure legend, the reader is referred
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conducted at the time of the Sentinel-1 flight (20th August 2019). One
part of the experimental plot, located between its middle and northern
borders, was partially covered by rare alfalfa. The second part, located
between the middle and southern borders, was bare soil (see Fig. 1 с).
The soil surface at the experimental plot had a rather pronounced
microrelief, which was formed as a result of the ploughing of irrigated
alfalfa crops across the slope shortly before the Sentinel-1flight. The dif-
ference between the bare soil plots and those covered by alfalfa residues
was confirmed by the NDVI values, calculated according to the Sentinel-
2 constellation data (Fig. 1 b). Therefore, for the northern and southern
parts of the experimental plot, the NDVI values appeared to be 0.103 ±
0.007 and 0.176 ± 0.022, respectively.
2.2. Experimental methodology and ground truth measurements

The experimental methodology consisted of two parts. The first
part (ground) was focused on obtaining a set of instantaneous
georeferenced data of Θss

gr, as well as daytime surface characteristics
such as elevation, soil texture, and roughness at the sampling point
scale. The second part (computer) was focused on the development
of the algorithm, debugging, and testing of tools for processing the
basic data of ground monitoring and radar surveys, including the
final calculation of the posterior estimate of the Θss

rs at the radar
pixel scale obtained by remote sensing data and its comparison
with Θss

gr obtained at the point scale. The ground field part of the
experimental work consisted of obtaining datasets of elevation
characteristics and Θss

gr selection for two monitoring routes No. 1
and No. 2 (Fig. 1). The first of route started at the southern
boundary of the experimental plot. It moved along the oblique line
to the northern boundary, after which it changed direction to the
southern boundary of the experimental plot. The second route was
a mirror image of the first, and accordingly, it started and ended on
the northern border of this plot. The spatial configuration of the
monitoring routes was planned and implemented to optimally
cover the field monitoring of various elements of the SSL in the ex-
perimental plot.

Sampling sites along the routes were selected based on visual analy-
sis of the soil surfacemeso-relief such that theywere in the centre of the
representative plots of 1–2m size. For the convenience of digital record-
ing, as well as subsequent interpretation of field monitoring results, a
special mobile applicationwas developed in the ArcGIS Online software
environment with a set of necessary tabs and tools for collecting pri-
mary data and transmitting it via mobile communication to the data-
base in the specified cloud geo-service. The main data collected were:
a) date and time of soil sampling; b) coordinates of soil sampling
sites; с) numbers of soil sampling rings; g) videos of soil sampling
sites and relevant soil sampling rings identified by numbers. This proce-
dure significantly simplified the field monitoring and processing of lab-
oratory measurements, as well as the final cartographic interpretation
of the results. In general, the developed field monitoring procedure
allowed the automation of the process of filling in the layers of the
geodata database, as well as to conduct soil sampling at planned plots,
using a template prepared in advance.

The selection of undisturbed soil samples was performed with a
sampler and soil sampling rings of height 5 cm with a cutting edge
produced by the Dutch company Eijkelkamp. Using this sampler,
the rings were vertically deepened in SSL. When the top of the ring
was at the soil surface level, it was pulled out together with the soil
sample, which filled its internal volume, and its two open faces
were hermetically closed with regular soft plastic covers. The bulk
density and soil moisture of the obtained samples were subsequently
determined in the soil laboratory of VNIIOZ using the standard gravi-
metric method. Θss

gr SSL datasets were obtained by the ground moni-
toring performed on 20 August 2019 at the experimental plot of the
experimental production farm of VNIIOZ (approximately 2 ha) using
4

the method described above, at 46 points for both routes No.1 and
No.2 (Fig. 1).

2.3. Space and airborne observations

Stereoscopic image recording of the experimental plot was per-
formed using theDji Phantom4 Pro UAV, equippedwith a camera to as-
sess the elevation characteristics along both monitoring routes. As a
result of processing the received digital image data in the Agisoft
PhotoScan v. 1.3.0 (GeoScan, Russia) photogrammetry software, a digital
elevation model (DEM) was created, tied to georeferenced centres of
the dots with a sub-centimetre resolution and corresponding differenti-
ated corrections.

For the territory of the experimental plot, the complex values of the
backscatter coefficient (σVV, σVH) at VV and VH polarizationsweremea-
sured on 20th August 2019 by Sentinel-1A at a frequency of 5.4 GHz in
the interferometric broadband mode (IW SLC images projected on
Earth's surface using the Earth ellipsoidmodel)with a spatial resolution
of ~10 m. The data in the standard format (Standard Archive Format for
Europe, SAFE) were obtained from the European Space Agency Data
Centre (Copernicus Open Access Hub, 2020) and processed with ESA
SNAP v.7 (European Union) software. Due to the different spatial reso-
lution for different datasets, the backscattering coefficient measured
by Sentinel-1 were interpolated (based on origin 2D grid) to obtain
the backscattering coefficients at the coordinate exactly corresponding
to the soil moisture sampling point. In order to study the features of
the scattering properties of the soil's surface of the experimental plot,
the polarimetric analysis was carried out on the basis of the H-α-
decomposition for two polarizations VV and VH in accordance with
the work (Cloude, 2007).

3. Method of a posteriori estimation of surface soil moisture based
on Sentinel-1 geodata using a neural network

The developed method of a posteriori estimation of Θss
rs from remote

sensing data is based on the use of a NN method. In this work, we chose
the simplest feed-forward NN, consisting of 1–4 hidden layers with
1–30neurons each. NNmodellingwas performedusing theMATLAB soft-
ware environment. Reflectivity in nadir observation, Г0(Θss, fclay), where
fclay is the clay content, was used as the output value, and the
backscatter coefficients (σVV,σVH) were used as input values for the NN.
For the NN, 32 training pairs of input values (σVV,σVH) and 32 Г0(Θss,
fclay) values were used. Input and output values were randomly chosen
from the 46 values of the σVV,σVH, Г0(Θss, fclay) set, in correspondence
with the soil sampling locations (Fig. 1). The Г0(Θss, fclay) values were
calculated by the Fresnel equation using the permittivity model
(Mironov et al., 2009) (with the clay content of fclay = 35%) and Θss

gr

pedologic dataset measured by the gravimetric method at the sampling
sites (Fig. 1a). During training of the NN, the standard Levenberg-
Marquardt algorithm was used to minimise the standard deviations be-
tween the Г0N output values calculated by the NN and the Г0(Θss

gr, fclay)
values calculated using the Θss

gr soil dataset. Finally, the predicted Θss
rs was

calculated by solving the inverse problem of minimising the residual
norm between the Г0N values predicted by the NN and the Г0(Θss

rs, fclay)
values calculated based on the Fresnel equation and the dielectric
model (Mironov et al., 2009). This minimisation problem was also
solved using the Levenberg-Marquardt algorithm. The proposed method
of a posteriori estimation of surface soil moisture is schematically
depicted in Fig. 2.

General testing of the NN and the method of a posteriori estima-
tion of Θss

rs according to the scheme presented in Fig. 2 showed that
an increasing number of used neurons from 1 to 12 in each of the
hidden layers led to an increase in the determination coefficient
and a decrease in the standard deviation (ΔΘss

rs) between the
estimated Θss

rs and measured values Θss
gr (Fig. 3). However, using
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two or more hidden layers does not increase the accuracy of the NN
estimates.

Computer testing of the NN for various pairs of input data combina-
tions, q=σVH/σVV,σVV,σVH,σVV, andσVH, indicted that the highest value
of the determination coefficient between Г0

N and Г0(Θss
gr, fclay) was

obtained for the combination of σVV and σVH. As a result, for working
purposes, we selected theNN consisting of two hidden layers of 12 neu-
rons each, which allowed us to estimate the Θss

rs values for all 46 soil
sampling sites in the experimental plot with a determination
coefficient of R2 = 0.948 and ΔΘss

rs = 2.04% (see Fig. 4).
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Fig. 3. Accuracy of neural network estimates with number of neurons from 1 to 4 hidden layers
Θss
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Fig. 4. Comparison between measured in situ Θss
gr surface soil moisture values and predicted Θs

r

RMSE: root-mean-square deviation.
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In general, the measured Θss
gr and predicted Θss

rs data sets of both
routes presented in two diagrams in Fig. 5 form two similar
correlation functions. This similarity lies in a fairly clear linear
correspondence of the analyzed data sets in the range of values
exceeding 12% and somewhat less clear in the range with less than
this value.

4. Discussion and analysis of the results

According to the DEM data, the hss profiles of the elevation of the
daylight SSL were constructed (see Fig. 5), corresponding to the three
lines A-B, A1-B1, and A2-B2, as shown in Fig. 1. Along the monitoring
routes, σ(hss) of the daylight SSL was calculated (Fig. 5) on square
plots of the soil surface, whose centres coincided with the points of
soil sampling (Fig. 1).

The middle part of route No. 2, as shown in Fig. 5 a had a lower sur-
face elevation and statistically rougher surface in relation to the central
part of route No. 1 (Fig. 5 b). In addition, at the beginning and at the end
of route No. 2 there are areas with upper surface elevation and high
values of σ(hss). An analysis of the locations of the measured and
predicted values situated in the noted above middle part of route No.
2 shows that values match the zone with fairly clear linear
correspondence (Fig. 6 a).

Continuing the analysis, it should be noted that on graph 6a, site
points from 6 to 17 of the route No. 2, lying in its middle part, form a
zonewith a negative angle of inclination to the axis of surface elevation.
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Apparently, this is the result of the location of these points in the saucer-
shapedmeso depression that was shortly flooded due to irrigation done
before soil sampling. Obviously, in this flooded meso depression there
was a gradual decrease of level of water stored in it. This led to the for-
mation of the sequence of the appearance of daylight SSL from under
the water. And at the time of soil sampling, there was a recorded differ-
entiation of the soil moisture of SSL marked by surface level values.

The conducted polarimetric analysis based on H-α decomposition
using complex images of the experimental plot on VH and VV polariza-
tions revealed single-scattering mechanism by the rough soil surface
between site points noted above 6 and 17 of the route No. 2 inclusive.
As it is noted above these points correspond to the location of the
saucer-shaped meso depression, and by the starting and ending points
of the route No. 2 (Fig. 7, zones Z9 and Z6 with an entropy value of
~0.5). The results of this analysis agree with the statistically high values
of the soil surface roughness of the corresponding plots on both routes,
as well as the image of the experimental plot (Fig. 1). In addition, the
surface layer of the saucer-shaped meso-depression is formed by thin
soil particles deposited there from the corresponding watershed areas
as a result of surface runoff of not infiltrated rain and irrigation water.

Other locations of soil sampling sites are characterised by high
values of α angle and entropy, which indicate predominantly single
with diffuse-scattering mechanisms due to the random influence of
soil surface and vegetation cover. Additional scattering influence (see
6
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Fig. 7, entropy>0.5) of vegetation cover is observed at almost all points
of the route No. 1, and endpoints of the route No. 2, which are mainly
located in the northern parts of the field that was not ploughed. In addi-
tion, it can be noted that the greatest error of a posteriori estimation of
Θss
rs by NN (Fig. 7) is observed for those points along the routes, which

are mainly located higher than the average level of soil surface rough-
ness (Fig. 2), as well as those located in zone Z6 (Fig. 7).

Analysis of the data presented in Fig. 7 shows that within the range
of 4–13% of the Θss

gr values (where the greatest variance is observed),
there are statistically more points located in those regions of the
route, where soil roughness is increased (2–4 cm) (Fig. 5). High Θss

rs

values of >14% were typical for the soil sampling points, which were
located in the regions of the route with an average level of soil
roughness (< 1.5 cm). This analysis allows us to conclude that in the
areas characterised by medium roughness and high Θss

gr values, the NN
allows for a high degree of confidence to describe the statistical proper-
ties of soil surface roughness, aswell as the dependence of the backscat-
ter coefficient on Θss

gr. In the case of small Θss
gr values of <14% and high

values of soil surface roughness, an additional parameter is required.
Such additional parameters would independently characterise the
σ(hss) statistical properties of soil roughness to reduce the variance of
the Θss

rs values estimated in this area. This parameter can be σ(hss)
values, estimated at the experimental plot by the UAV on the day
when Sentinel-1 passes.

The optimal version of theNNobtained during computer testingwas
used to estimate Θss

rs over the entire area of the experimental plot (Fig. 8.
The cartogram of a posteriori estimation of Θss

rs presented in this figure
generally corresponds to the spatial distribution of Θss

gr at soil sampling
sites during ground truth monitoring. In particular, this is clearly seen
from the synchronous differences in the values of both Θss pedologic
datasets in the meso-relief lowering and meso-relief water collection
areas at the crossing of the profile lines A-B and A1-B1.
Fig. 8.Map of surface soil moisture (Θss
rs) at the experimental plot base

7

Planning of ground monitoring routes was aimed at obtaining Θss
gr

ground data in a relatively homogeneous area in places with different
characteristics of soil surface roughness.

As a result offieldmonitoring, a pedologic datasetwas obtained. One
part included information about the area of the saucer-shaped closed
meso-relief lowering, and the other part included information about
its water collection area. The Θss

gr values for lowering the meso-relief
were expected to be slightly higher than the corresponding values in
thewater collection area due to the earlier spray irrigation by the sprin-
kler machine. In general, this assumption is reflected in the results of
monitoring, which are presented as Θss

gr profiles in Fig. 6, where the
numbers of soil sampling sites along both routes No. 1 and No. 2 are
the values of the abscissa axis.

By visual analysis of themoisture profiles for the routes No. 1 andNo.
2 represented in Fig. 6, it is observed the relative similarity of corre-
sponding Θss

gr values at the beginning and end, as well as a significant
difference in these values in the middle parts of both routes. This
difference can be explained by the fact that the middle part of the
route No. 2 passes through the above-mentioned meso-relief lowering,
whereas a result of surface runoff caused by the sprinkling irrigation led
to the water storing at meso depression.

The analysis of the results represented in Figs. 4 and 8 shows good
comparability of Θss

gr and Θss
rs data in the areas where their values are

high (which is the saucer-shaped closed meso-depression for route
No. 2). This comparability was slightly worse for the relatively drier
SSL at the slop of watershed. These differences can be explained by
the higher uniformity of the SSL at low sites and a higher degree of het-
erogeneity in watershed areas.

5. Conclusion

This is the first study focused on the possible use of an NN for pro-
cessing Sentinel-1 radar data for the purpose of spatial monitoring of
d on Sentinel-1 data, created using the neural network algorithm.
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moisture distribution in the SSL at an experimental plot located on agri-
cultural land in the Volgograd region. The main feature of the proposed
approach was the use of NNs to calculate the reflectivity of the soil sur-
face, and the subsequent use of a simple algorithm to invert reflectivity
into surface soil moisture using the dielectric model that considers the
soil texture. Based on Sentinel-1 radar data, the proposed NN consisting
of two hidden layers of 12 neurons each enabled a posteriori estimation
of the spatial distribution of the surface soil moisture of the SSL at the
experimental plot with a determination coefficient of 0.948 and stan-
dard deviation of ~2%, to compare the calculated datawith the soilmois-
ture measured by the gravimetric method at the sampling sites. The
developed method was tested for areas deprived of vegetation and
areas with rare alfalfa vegetation.

In this study, we developed a method to perform an a posteriori es-
timation of surface soil moisture of SSL for values of>14%with an accu-
racy of ~2% of the absolute values for agricultural fields, where standard
deviations of soil surface elevation are ~1.5 cm.

To use the proposedmethod for agricultural fields with standard de-
viations of soil surface elevation of >2 cm and surface soil moisture of
SSL of <14%, some challenges should be addressed in future research.
First, the integration of an additional parameter that reflects the vari-
ance of soil surface elevation roughness, which can be measured in
the experimental plot using a UAV on the day of the Sentinel-1 passing,
to improve the model. Second, further experiments are required to val-
idate the proposed approach for cases of diverse soil texture of the SSL,
as well as for the areas with agricultural crops during several vegetation
stages.

Despite the above challenges, the obtained results suggest the use of
the developed method to improve estimates of SSL fluctuations at the
field scale for Θss mapping and further usage of obtained data for
efficient application in precision irrigation technology.
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