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ABSTRACT: The dependence of photoluminescence quantum
yield (PLQY) on the crystal structure of existing zero-dimensional
ns2 metal halides is analyzed with the help of principal component
analysis and random forest methods. The primary role of the
distance between metal ions in different compounds is revealed,
and the influence of other structural features such as metal-halogen
distance and the distortion of metal-halogen polyhedrons are
quantified. Accordingly, the two previously unknown Sb3+-based
zero-dimensional metal halides were synthesized to verify the
obtained model. Experimental studies of the two compounds
demonstrated good agreement with the predictions, and the PLQY
of (C10H16N)2SbCl5 is found to be 96.5%. Via machine learning
analysis, we demonstrate that concentration quenching is the main factor that determines PLQY for all s2 ion metal halides, which
will accelerate the discovery of new luminescence metal halides.

1. INTRODUCTION

Prediction of functional properties of new materials for a wide
range of applications before their discovery and experimental
synthesis is an important and obviously challenging problem.
Nowadays, machine learning (ML) attracted huge interests
which employed it to make predictions of different material
properties, including whole life cycle of material discovery,1

searching new synthetic methods,2 studying new prominent
ferroelectric compounds,3 searching high-temperature ferro-
electric perovskites,4 accurate band gap prediction,5 meta-
material design,6 space group determination,7−9 and so on.
However, the majority of areas still lack satisfactory predictive
tools. One of such areas is the area of science concerning
luminescent materials. Certain progress is achieved in solution
of a somehow simplified task, namely, the prediction of optical
properties, commonly absorption, from structural data
obtained for a certain material after its actual synthesis.10

The progress in prediction of luminescent properties of new
materials is much more modest than in the case of absorption
since a set of factors influencing the luminescent properties are
very diversified and hardly coverable using modern ab initio
computer simulation tools.
Recently, zero-dimensional (0D) ns2 luminescent metal

halides have attracted tremendous interests due to their
specific electronic and optical properties. Among these new
types of materials, a number of highly luminescent ones with
photoluminescence quantum yield (PLQY) approaching unity
were discovered,11−13 while other cognate materials with a

seemingly insignificant difference in chemical content demon-
strate a drastic drop in PLQY that could not be satisfactorily
explained.14−19 Thus, it is meaningful to establish the
relationship between the structure and high PLQY, which
will accelerate the design of new materials with functional
applications and greatly promote the development of 0D
luminescent metal halides. Recently, the joint work by our
group demonstrated that concentration quenching is a decisive
factor influencing PLQY of Mn2+-based hybrid metal halides.20

Simultaneously, the same result was obtained by Mao et al.21

who established that a Mn···Mn distance of 9 Å guarantees
PLQY above 13% in the class of compounds investigated in ref
21. In these studies, a series of materials with differing
concentration quenching are synthesized and completely
characterized to reach the conclusion formulated above.
However, concerning all 0D hybrid metal halides with ns2

metal ions, including Pb2+, Sn2+, Sb3+, and Bi3+, the emission is
mainly originated from the typical self-trapped excitons
(STEs), which is closely related to metal halide units in their
structures.12,13,22−24 Influence of concentration quenching was
mentioned only for Pb2+ in 0D trans-[Pb(DMTU-S)4Cl2]
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that belongs to a different coordination class of compounds
than those which will be studied in the present paper; Pb···Pb
distance 9.4 Å was established to prevent from concentration
quenching in ref 25. Thus, the PLQY is mainly affected by the
environment of central metal ions, such as the distance of
metal ion, local symmetry, ability to form hydrogen bonds to
the organic cations, and so on. However, so far, there is no
design principle on the prediction and discovery of new
luminescent zero-dimensional metal halides with high PLQY.
Considering the costly synthesis and characterization of an
extremely large set of compounds, it is anticipated to analyze
already existing data and then to establish the relationship
between structural type and PLQY in ns2 metal halides.
Presently, one of the well-known methods of machine

learning for the property prediction is deep learning (DL);
however, it should be stressed that thousands of data samples
should be supplied in this case and a lot of time will be spent
for data collection.26−31 Moreover, there is the so-called
“supervised” algorithm, which demands tuning of hyper-
parameters in order to obtain good and correct prediction
on new data. In addition, DL acts as the so-called “black-box”,
that is, it gives information about predicted values without
revealing the rules because weight distribution between hidden
neuron layers cannot be interpreted. Therefore, scientists
usually use other ML methods, such as Naive Bayesian (NB)
learning, random forest (RF), and so forth.31−42 The NB
method assigns class labels from some finite set to problem

instances, represented as vectors of feature values. Therefore, it
is not appropriate for some tasks with continuous class values,
that is, for regression analysis. The RF method is an ensemble
learning method (Figure 1) for classification, regression, and
other tasks, and it is invariant under scaling and various other
transformations of feature values, is robust to inclusion of
irrelevant features, and produces inspectable models.43 The RF
result can be easily showed and even interpreted. Moreover,
RF can be used to rank the importance of feature variables
(Figure S1) in a regression or classification problem in a
natural way, which is a very important tool for analysis and
deriving structure−property rules. In the present work, we will
use this method together with principal component analysis
(PCA) to obtain some “structure−property” relations, namely,
relationships between the structure and PLQY, which is one of
the main characteristics of luminescent materials. PCA is also a
good tool to select main structural components which can be
used to simplify input parameters for ML and make training
procedure more stable and robust. Finally, we used RF for
training and prediction purposes, and it showed very good
results with the discovery of new compounds with high PLQY.

2. EXPERIMENTAL SECTION
2.1. Reagents. 1,3-Cyclohexanedimethanamine (C8H18N2, 98%),

benzyltrimethylammonium chloride (C10H16NCl, 98%), antimony
chloride (SbCl3, 99%), N,N-dimethylformamide (DMF, 99%), and
ethylalcohol (95%) were purchased from Aladdin. HCl aqueous

Figure 1. Main process of RF building, checking, and making prediction. Herein, the collected data initially were divided into training and test data
sets with 80:20 proportions. The bootstrap aggregation algorithm was used for creating multiple different models from a single training data set.
The ensemble of trees combined together has a name RF. After that test data were used to check reliability of RF model for prediction. Finally, the
new data can be used to make prediction of desired PLQY property.
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solution (38% in water by weight) was purchased from Sinopharm
Chemical Reagent Co., Ltd. All reagents and solvents were used
without further purification.
2.2. Synthesis. (C8H20N2)SbCl5 single crystals were synthesized

by the saturated crystallization method. First, 1 mmol C8H18N2 and 1
mmol SbCl3 were dissolved in 10 mL of HCl at 100 °C for 10 min to
form a clear solution. The large sheet single crystals that were
colorless transparent were obtained by slowly evaporating the HCl
solution at room temperature for a few days. Finally, the obtained
single crystals were washed with ethanol and dried in vacuum at 60 °C
overnight. Powder crystals (Figure S2) were obtained by evaporating
the HCl solution at 80 °C for a few minutes. For (C10H16N)2SbCl5
single crystals, C10H16NCl (2 mmol) and SbCl3 (1 mmol) were first
dissolved in DMF (15 mL) at room temperature with stirring to form
a clear solution. Then, large-sized crystals were obtained by slowly
evaporating the solvent at room temperature for a few days. Powder
crystals were obtained by evaporating the solvent at 60 °C for a few
minutes.
2.3. Characterization. Single-crystal X-ray diffraction (SCXRD)

of (C8H20N2)SbCl5 and (C10H16N)2SbCl5 was collected using an
XtaLAB AFC12 four-circle single-crystal diffractometer (Rigaku)
equipped with a CCD detector, graphite monochromator, and Mo Kα
radiation source (λ = 1.5406 Å) at 150 K. The orientation matrix and
cell parameters were defined and refined for the set of 38450 and
35647 reflections for (C8H20N2)SbCl5 and (C10H16N)2SbCl5,

respectively. The unit cells (C8H20N2)SbCl5 and (C10H16N)2SbCl5
correspond to orthorhombic and monoclinic symmetry, respectively.
Space groups Pbca and Pn were determined from the statistical
analysis of the intensities of all the reflections. The absorption
corrections were applied using the CrysAlisPro program. The
structures were solved by the direct methods using package SHELXT
and refined in the anisotropic approach for nonhydrogen atoms using
SHELXL program.44 All the hydrogen atoms of the organic ligands
were positioned geometrically as riding on their parent atoms with
d(C−H) = 0.97 Å for the C−H bonds and d(N−H) = 0.89 Å for all
other N−H bonds and Uiso(H) = 1.2Ueq(C,N). The structural tests
for the presence of missing symmetry elements and possible voids
were produced using the PLATON program.45 The photolumines-
cence (PL) and photoluminescence excitation (PLE) spectra were
obtained on an FLS1000 fluorescence spectrophotometer (Edinburgh
Instruments Ltd., U. K.) The photoluminescence quantum yields
(PLQYs) were recorded using a sphere, which was attached to the
FLS1000 spectrofluorometer. The PLQYs were calculated based on
the equation: ηQE = IS/(ER − ES), in which IS is the luminescence
emission photon number of the sample, ER represents the photon
number of the excitation light of the empty integrated sphere, and ES
is the excitation photon number of the excited sample.

Table 1. Data Set of 0D Hybrid Metal Halides and Inorganic Metal Halides, and the Predicted Values Were Obtained from the
RF Model

M compounds measured PLQY (%) predicted PLQY (%) difference (%) reference

Sb3+ ((C6H5)4P)2SbCl5 87 87 0 23
(C11H13N2)3SbCl6 87.5 85 2.5 14
(C11H13N2)2SbCl5 22.3 38 −15.7 14
(C8H15N2)2SbCl5 86.3 78 8.3 47
(C8H20N)2SbCl5 86 71 15 48
(C13H22N)2SbCl5 98 73 25 48
(C36H30NP2)2SbCl5 98.1 94 4.1 49
(C6H8N2O2)3SbCl6 55 50 5 52
(C7H10N)3SbBr6 1 3 −2 15

Sn2+ (C4N2H14Br)4SnBr6 95 89 6 50
(C4N2H14I)4SnI6 75 77 −2 13
(C10H22N)2SnBr4 75 66 9 51
(C9NH20)2SnBr4 46 56 −10 12
[(C8H12N)4SnBr6][C8H12NBr]2[CCl2H2]2 90 88 2 52
(C8H14N2)2SnBr6 40 56 −16 19
(C8H12N)SnBr4 0.1 1.6 −1.5 62
(C6N2H16Cl)2SnCl6 8.1 9 −0.9 16
Cs4SnBr6 20 21 −1 53

Pb2+ (C9NH20)6Pb3Br12 12 18 −6 54
(C13H19N4)2PbBr4 40 57 −17 17
(C10H22N)2PbBr4 24 34 −10 51
(C3H12N2)PbBr4 0.5 3 −2.5 58
(C6H14N)2PbBr4 9 8 1 59
(C6H18O2N2)PbBr4 9 7 2 58
(C6H18O2N2)PbCl4 2 5 −3 58
(C9H20N)9(ZnCl4)2Pb3Cl11 100 82 18 11
(C4N2H14)PbBr4 1.7 3 −1.3 60
(C3H11N3O)2PbBr6(H2O)4 9.2 24 −14.8 61
Cs4PbBr6 45 49 −4 55

Bi3+ (C18H24Bi2Cl12K2N2O6)(C9H8NO)2(H2O)2 18 41 −23 56
(C7H10N)BiBr6 1 4 −3 15
Cs3Bi2Br9 29.6 20 −9.6 57
mean ± standard deviation 42.8 ± 36.4 43.6 ± 31.8 −1.4 ± 10.1
(C8H20N2)SbCl5

a 18.8 6.5 −12.3 this work
(C10H16N)2SbCl5

a 96.5 75.9 20.6 this work
aNew compounds under investigation were not used to build the RF model. The PLQY estimation was made for them using the model.
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3. DATA AND METHOD

3.1. Data Set Description. The data set of 0D metal
halides studied here contains 32 compounds (29 hybrid metal
halides and 3 inorganic metal halides). The descriptive
statistics and the plot of the considered data set are
summarized in Tables 1 and 2 and Figure S3, respectively.
The selected structural parameters in Table 2 were considered
as main featured parameters, which have the biggest influence
on PLQY values. The first parameter “d(M−X) average” equals
to the average value of M−X bond lengths from the first
coordination sphere of M ions (M = Pb2+, Sn2+, Sb3+, and
Bi3+). The second parameter “MXn distortion” equals to the
distortions of isolated MXn polyhedrons, which were calculated
using the following formula46

∑=
−

=

D
n

l l
l

1

i

n
i

1

av

av

where li is the distance from the central atom to the ith
coordinating atom and lav is the average bond length. The third
parameter “d(M···M)” is just the shortest distance between M
ions in the structure, and this parameter should be associated
with the concentration quenching mechanism. The last

parameter is “local symmetry of M site” which equals to the
number associated with the point group (Table S1) of Wyckoff
positions of M ions.
Preliminary data analysis revealed that PLQY values of

compounds showed almost uniform distribution, which means
that all representative compounds were selected. The local
symmetry of M ions in compounds showed the maximum
around 0−1 which is a normal situation because hybrid halides
usually crystallize in low space group symmetry (P-1, P21/c,
and C2/c) and M ions are often located in general sites. It
should be noted that d(M···M) distribution also showed one
maximum at 8−9 Å which could be an important parameter
because most of these compounds show luminescence.

3.2. Principal Component Analysis. PCA is a multi-
variate method that converts several correlated variables into
several linearly uncorrelated variables named principal
components. In this conversion, the first principal components
contain the most information about the data set.63 It should be
noted that numerous variables (N > 3), which span N-
dimensional space, cannot be visualized, and it is hard to
analyze data. If N parameters can be reduced to 2 or 3
principal components without large loss of information, then it
can be easily represented and analyzed.

Table 2. Structural Parameters Used to Build the RF Model for Prediction

compound d(M−X) average, Å MXn distortion d(M···M), Å local symmetry of M site reference

((C6H5)4P)2SbCl5 2.5348 0.0533 10.0049 2 23
(C11H13N2)3SbCl6 2.6609 0.0259 9.5133 1 14
(C11H13N2)2SbCl5 2.5283 0.0110 8.8928 10 14
(C8H15N2)2SbCl5 2.5572 0.0290 8.5036 1 47
(C8H20N)2SbCl5 2.5581 0.0276 8.9417 3 48
(C13H22N)2SbCl5 2.5722 0.0312 8.6708 1 48
(C36H30NP2)2SbCl5 2.5682 0.0292 11.0421 1 49
(C6H8N2O2)3SbCl6 3.0288 0.0250 5.8795 1 52
(C7H10N)3SbBr6 2.8119 0.0245 7.6457 1 15
(C4N2H14Br)4SnBr6 3.0525 0.0626 10.207 1 50
(C4N2H14I)4SnI6 3.2193 0.0105 10.7464 1 13
(C10H22N)2SnBr4 2.7977 0.0553 8.4218 3 51
(C9NH20)2SnBr4 2.7979 0.0595 8.5597 3 12
[(C8H12N)4SnBr6][C8H12NBr]2 [CCl2H2]2 2.9920 0.0400 9.8901 1 52
(C8H14N2)2SnBr6 2.9913 0.0045 8.3700 1 19
(C8H12N)SnBr4 3.0717 0.0205 5.9157 4 62
(C6N2H16Cl)2SnCl6 2.4256 0.0046 7.7765 3 16
Cs4SnBr6 2.6387 0 7.6155 30 53
(C9NH20)6Pb3Br12 3.0312 0.0002 4.0897 16 54
(C13H19N4)2PbBr4 2.8627 0.0443 8.9526 1 17
(C10H22N)2PbBr4 2.8672 0.0493 8.4235 3 51
(C3H12N2)PbBr4 3.0420 0.0409 6.0917 1 58
(C6H14N)2PbBr4 2.8512 0.0069 5.4004 3 59
(C6H18O2N2)PbBr4 2.8980 0.0392 10.5787 1 58
(C6H18O2N2)PbCl4 2.8792 0.0133 7.7772 1 58
(C9H20N)9(ZnCl4)2Pb3Cl11 3.0239 0.0354 5.9770 1 11
(C4N2H14)PbBr4 3.0109 0.0020 8.1354 2 60
(C3H11N3O)2PbBr6(H2O)4 2.7195 0.00002 8.6309 17 61
Cs4PbBr6 2.7381 0 8.4363 32 55
(C18H24Bi2Cl12K2N2O6)(C9H8NO)2(H2O)2 2.7105 0.0066 8.1633 2 56
(C7H10N)BiBr6 3.0036 0.0661 5.7805 1 15
Cs3Bi2Br9 2.8461 0.0469 5.9587 19 57
mean ± standard deviation 2.82 ± 0.27 0.027 ± 0.020 8.09 ± 1.68 5.3 ± 8.2
(C8H20N2)SbCl5

a 2.7367 0.1075 3.797 1 this work
(C10H16N)2SbCl5

a 2.7586 0.0256 8.935 1 this work
aNew compounds under investigation were not used to build the RF model. The PLQY estimations were made for them using the model.
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This very feature was used in our case. To build the PCA
models in our study, we used simple self-written python script
(see the Supporting Information) using the Python 3.6
programming language.64 The standard libraries were used to
write the program: numpy, pandas, sklearn, and xlwt. Initially,
we tested several models with different numbers of structural
parameters (bonds, angles, coordination numbers, etc.), which
were further converted to three parameters by PCA. We
accepted only models for which loss is no more than 20% of
the initial information after PCA data reducing. One of the
models with four parameters listed in Table 2 can be converted
to tree parameters’ model without strong information loss (less
than 20%). The plot which contains all 32 compounds in 3D
space of PCA-converted parameters (x,y,z) is depicted in
Figure S4. The most important fact is that compounds with
high PLQY values were segregated from compounds with low
PLQY (highlighted red area in Figure S4). It means that PLQY
values really correlate with suggested structural parameters,
and the predictive model is built. The PCA model can be used
to make prediction, for example, four parameters can be
extracted from the new structure, after that converted to (x,y,z)
PCA parameters, and plotted in Figure S4. If the new point
falls into the red area, then it means that the new compound
with high probability will have high PLQY. However, this
method cannot estimate approximate values of PLQY and
requires much effort. The easiest way is to build a model based
on the machine learning method and use it for prediction. The
deep learning method should be excluded because it requires
thousands of data examples for learning. The RF method is an
unsupervised algorithm that can work well with limited sets of
data; therefore, it was selected for our purpose to build the
prediction model.
3.3. RF Method. The prediction tool used in this study is

RF, an ensemble method based on regression trees.65 The
regression trees are built by recursive binary partitioning of the
multidimensional predictor space into regions by constructing

a multitude of “decision trees” at training time and outputting
the class that is the “mode” of the classes (classification) or
mean/average prediction (regression) of the individual trees.66

Predictions are performed by passing new data parameters
from the root through the internal nodes until a terminal node
is reached. We used simple self-written python script named
RandomForest.py (see the Supporting Information) using the
Python 3.6 programming language57,65 in order to build the
described RF model. The standard libraries were used in the
program: numpy, pandas, sklearn, matplotlib, and mpl_tool-
kits. Since this machine learning algorithm is stochastic, we
used it with averaging performance across ten repeats of cross-
validation. Each time, the data were split into the two random
data sets: a set for training procedure (80% of total data) and
another set for test (20% of total data). The mean absolute
error (MAE) of training set and test set PLQY values measured
in this way was 6.4 and 16.4%, respectively. Additionally, we
have made fivefold cross-validation test on the whole data set,
which showed MAE = 15 ± 5%. Previously obtained MAE
values are within two estimated standard deviations from the
mean of this value. The reliability and precision of prediction
can be increased further by increasing the number of observed
data. However, currently, the main correlation between the
structure and property was revealed using 32 compounds only
(Figure 2a,b).
The calculated PLQY values and their differences from the

observed ones were less than 10% (Table 2, Figure S5), and
good fit between them can be checked in Figure 2b. An
additional RF model using only one input parameter d(M···M)
was also built (Figure S6). The MAE of training set and test set
PLQY values becomes 7.0 and 26.4%, respectively, and fivefold
cross-validation test on the whole data set showed MAE = 18
± 5% which is worse. Comparison of Figures 2b and S6 allows
understanding how the employment of the extended set of
parameters improves the correlation between training set and
prognostic dependence. The RF model can now be used to

Figure 2. (a) Samples with high PLQY values (red circles in highlighted area) are segregated from others in the 3D space spanned on three most
important parameters. (b) Comparative plot of observed PLQY values per calculated PLQY obtained from the RF model. Linear fit proves
correctness of the model. Green bars marked new compounds under investigation. (c) Importance of four feature parameters on PLQY values in
the RF model. The d(M···M) distance has the major influence. (d) Model describes possible ways to increase PLQY values in 0D halides: increase
distance between M···M ions and increase distortion associated with lowering of local symmetry.
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predict PLQY of any 0D hybrid or inorganic halides. We
prepared several new compounds, whose structure was
successfully resolved. Their structures allow us to forecast
PLQY values using the RF model and compare these values
with the real ones.
It should be noted that RF allows measuring the importance

of the feature after training. The selected value is permuted
among the training data and the error is computed on this
perturbed data set. The importance score for the selected
feature is computed by averaging the difference in error before
and after the permutation over all trees.67 The score is
normalized by the standard deviation of these differences.
Features which produce large values for this score are ranked
as more important than features which produce small values.
We performed this analysis also and found correlation with
PCA analysis.

4. RESULTS AND DISCUSSION
The several interesting results were obtained using PCA and
RF methods with PLQY data of 0D halides. First of all, the
PCA method really shows the existence of “structure−
property” relations for these compounds, and several rules
can be derived. For example, three linearly uncorrelated
principal components (x,y,z) fit 87% of all data, and their
contributions are 45% for x; 26% for y; and 16% for z
component. According to Figure S4, the x value should be the
smallest (negative), the z value should be the biggest (positive)
in order to reach high PLQY, and the y value almost has no
influence. According to calculated eigenvectors (Table S2),
one can see that the coefficient associated with d(M···M) has
simultaneously big reduction in the x value and large increase
in the z value under increasing d(M···M). Therefore, the main
structural feature which increases PLQY is increasing d(M···
M) values. Moreover, the decreasing local symmetry leads to
simultaneous reduction in the x value and increase in z;
therefore, this is an additional mechanism to control PLQY.

Increasing polyhedron MXn distortion, which has some
correlation with decreasing M local symmetry, also has a
positive influence on PLQY. The d(M−X) parameter has not
so pronounced linear influence on the PLQY value because the
corresponding eigenvector component has six times smaller
influence on the x value in comparison with other structural
parameters under consideration (Table S2). The importance of
feature parameters was calculated from the RF model also and
the result is depicted in Figure 2c. One can see that the d(M···
M) distance has the major influence on PLQY and MXn
polyhedron distortion and lowering of local symmetry have the
second and third places, respectively. All samples were
presented in 3D space of these three parameters (Figure 2a)
and high PLQY samples were segregated from others, forming
a small area. In general, the mechanism of structural
transformation, which on average should increase PLQY
values, is depicted in Figure 2d. It is important to stress that
obtained rules should work with M = Pb2+, Sn2+, Sb3+, and Bi3+

and with any possible organic molecules in the compound, that
is it covers a relatively broad range of halides. Moreover, the
simple method demonstrated in the present work can help to
reveal many other “structure−property” relations for other
crystal families.
Second, the RF model was built, which can quickly estimate

PLQY values. In order to prove its reliability, we synthesized
two new 0D metal halides, the crystal structures are shown in
Figure 3a,b. The main crystal data are shown in Table S3. The
crystallographic data are deposited in Cambridge Crystallo-
graphic Data Centre (CCDC 2102048-2102049). The data
can be downloaded from the site (www.ccdc.cam.ac.uk/data_
request/cif). The PL and PLE and PLQYs of (C8H20N2)SbCl5
and (C10H16N)2SbCl5 are shown in Figure 3c,d. We calculated
the PLQY values of new crystal structures of (C8H20N2)SbCl5
and (C10H16N)2SbCl5 and compared them with the as-
measured PLQY values in the laboratory (Table 1). In order
to use the RF model, we take structural parameters from the

Figure 3. (a) Crystal structure of (C8H20N2)SbCl5; Sb···Sb distances: 3.79 Å (shortest), 7.36, 7.94, and 10.66 Å labeled with black dashes. (b)
Crystal structure of (C10H16N)2SbCl5; Sb···Sb distances: 8.94 Å (shortest), 9.23, 13.39, and 13.89 Å labeled with black dashes. (c,d) Normalized
photoluminescence excitation (PLE) and emission spectra of (C8H20N2)SbCl5 and (C10H16N)2SbCl5, respectively.
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CIF files: average M-X distance, polyhedron distortion,
shortest Me···Me distance, and local symmetry (Table 2).
These parameters were uploaded to the RF model and
predicted PLQY values were calculated using routine
procedure of averaging the Forest voting: 6.5 and 75.9% for
(C8H20N2)SbCl5 and (C10H16N)2SbCl5, respectively. The
difference of the measured and predicted values appeared to
be −12.3 and −20.6% (Table 1), which are close to the
obtained MAE value (15%), and actually not very large proving
good prediction reliability. It should be noted that we have got
good predicative result using only four structural parameters
and, namely, they are responsible for structure−property
relationships. Moreover, experiments with new crystals showed
that both high PLQY and low PLQY values can be predicted
with a similar error. Therefore, the as-obtained RF model can
be used to screen many CIF files to find compounds with
high/low PLQY and select desirable materials among them
before using routine synthesis procedure. Screening of current
CSD database and predicting PLQY values of structures
revealed compounds with average or low PLQY values only,
not high PLQY. This is because the data set we used is not
representative of the structures in CSD, so that it took a lot of
time to find compounds with high PLQY in order to make a
balanced data set. The discovery of a new material with a
PLQY as high as 96.5% was a very lucky and not related with
prediction program at this time. However, understanding main
parameters which influence PLQY can help to build new
compounds with high luminescence.
Let us finally obtain a rough estimate for “average” Förster

radius of dipole−dipole energy transfer between s2 ions in the
group of materials under study. For this purpose, the
dependence of PLQY on the interionic distance can be fitted
by the curve describing the inverse probability of the excited
ion to experience energy transfer instead of radiative decay
(Figure 4). One can see from Figure 4 that rough agreement

can be obtained with the chosen fitting, and rough estimate for
the Förster radius is 8.4 Å. In reality, every ion must have its
own value of Förster radius that may have minor variations in
dependence on the organic/inorganic host. As seen from
Figure 4 Förster radii for all cases included in the data set are,
as the first approximation, just the same. Influence of
concentration quenching for s2 electronic system is, therefore,
in general slightly weaker than for the d5 electronic system
investigated in refs 20 and 21.

5. CONCLUSIONS
In conclusion, we demonstrate that a relatively small data set of
hybrid and inorganic metal halides is sufficient for machine
learning analysis of luminescent properties of these materials,
including making predictions and deriving “structure−prop-
erty” relationships and PLQY. The PCA analysis with
eigenvectors was used to reveal rules to increase/control
PLQY, and these rules can be used to design new
luminescence materials with prominent PLQY values. It was
shown that PLQY of 0D halides with M = Pb2+, Sn2+, Sb3+, and
Bi3+ ions increases with the increase in M···M average distance,
decrease in M local symmetry, and increase in MXn polyhedron
distortion. The RF unsupervised algorithm with splitting data
on training and test sets and averaging performance across ten
repeats of cross-validation was used in order to foresee PLQY
values from a structure. Several new compounds were tested
using a suggested model and very good agreement was
observed, and the model and methodology developed herein
will be used to accelerate the discovery of new luminescence
metal halides with high PLQY.
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