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ABSTRACT: Negative thermal expansion (NTE), violating the
common sense of “thermal expansion and cold contraction” effects,
is a novel temperature-responding behavior of great scientific and
technical significance. Herein, we report a two-dimensional (2D)
NTE behavior in a crystal of LiBO2, which is constructed by
graphite-like [LiBO2]∞ layers. This intriguing thermal property
originates from the synergistic effect of the distortion of in-plane
[LiO3] bases in [LiO4] tetrahedra and the rotation of [BO3]
triangles in the [LiBO2]∞ layer, driven by the force perpendicular to
the layer owing to the large interlayer separation as temperature
increases. Remarkably, the in-plane and out-of-plane Li−O bonds
within the [LiO4] tetrahedra have nearly the same bond strength
and exhibit the similar variation with respect to temperature, and
this is quite different from the common sense on the 2D NTE
behavior in layered structures that the intralayer atomic interaction must be much stronger than the interlayer ones. Our study
deepens the understanding of the 2D NTE mechanism and would promote the exploration for NTE materials.

■ INTRODUCTION

Negative thermal expansion (NTE) materials, with the
capability to contract along specific directions as temperature
increases, provide a simple and effective method to buffer the
“heat expansion and cold contraction” effect in conventional
materials1−3 and thus hold significant application prospects for
enhancing the heat resistance of apparatus under temperature-
fluctuating conditions.4−6 Meanwhile, the counterintuitive
“heat-shrinkage” response in NTE materials embraces rich
mechanisms,7−11 which is quite helpful for understanding the
fundamental and novel physicochemical properties in materi-
als. Until now, quite a few NTE material systems have been
exploited, such as ZrW2O8,

12 PbTiO3-family,13,14 Mn3GaN-
family,15,16 Sc2W3O12-family,17 ScF3-series,

18,19 Prussian
blue,20,21 and Tb(Co, Fe)2,

22,23 with the mechanisms including
transversal vibration of bridged atoms,24 magneto volume
effects,25 spontaneous volume ferroelectrostriction,26 and
interatomic charge transfer.27 Even though intensive efforts
in this field have been in progress for decades, the search for
new NTE material systems and the investigation of structure−
property relationships are still very active.28,29

It is known that the compounds with layered structures have
large structural anisotropy and are able to manifest the two-
dimensional (2D) NTE behavior.30−32 With the increase in
temperature, the 2D layers in these structures often
prominently separate from each other. Driven by the
perpendicular-to-layer force from the colossal interlayer
separation, the microscopic units protruding from the layers,
which are usually surrounded by the (quasi-) rigid units in-

plane, would be dragged toward the interlayer interstices. As
the (quasi-) rigid unit experiences negligibly small expansion
with respect to the temperature, the out-of-plane force would
shrink the area of the layers so as to generate the 2D NTE
behavior. Actually, this structure−property relationship has
been summarized by the membrane effect or the Lifshitz
mechanism.31 Since the prominent interlayer separation is the
prerequisite for the occurrence of 2D NTE in the layered
structures, the related 2D NTE material exploration has been
entirely focused on the materials with the much stronger
interlayer interaction than the intralayer counterpart. Guided
by such a structural prototype, several 2D NTE materials with
layered structures have been discovered, such as graphite,33 BN
nanosheets,34 TlGaSe2,

35 Ag[tcm],36 KBBF,37 β-CuN3,
38 and

so on. Herein, we report a 2D NTE effect in a crystal of lithium
metaborate (LiBO2) with layered structures. Different from
other 2D NTE-layered compounds,33−38 the interlayer and
intralayer atomic interactions are in a similar strength in
LiBO2, suggesting that this work would provide another
perspective for understanding the 2D NTE behaviors in
layered compounds. The potential optical application of 2D
NTE in LiBO2 is also discussed.
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■ EXPERIMENTAL AND CALCULATION METHODS
Sample Preparation. LiBO2 powder was synthesized by solid-

state reaction. The ingredients Li2CO3 and H3BO3, without further
purification, are ground in a stoichiometric ratio and left to set for at
least 1 day at 373 K to remove H2O. The mixture was heated
gradually up to 923 K in 7 days and kept at 923 K for 1000 min with
several careful intermediate grinding. After naturally cooling to room
temperature, white LiBO2 powder is obtained. Crystal growth was
implemented in an electric vertical furnace under the control of an AI-
808P digital microprocessor temperature programmer-controller. The
synthesized LiBO2 powder (200 g) was put into an 80 mm diameter
Pt crucible and heated to 1123 K at 3 K/min. After holding for 6 h to
homogenize the mixture, the melt was naturally cooled to room
temperature to acquire a seed crystal. With the regrowth progress with
the seed crystal in the flux following the above process, single crystals
in subcentimeter size can be obtained.
Variable-Temperature Powder X-ray Diffraction. Variable-

temperature powder X-ray diffraction (XRD) was performed on the
as-synthesized polycrystalline sample by Bruker D8 ADVANCE (Cu-
Kα radiation, 6−300 K) and Rigaku SmartLab powder diffractometers
(Cu-Kα radiation, 100−850 K). The angular scanning range was set
from 10 to 90° with a step size of 0.01°, and the scanning rate was set
to 0.05 s/step and 15°/min for the Bruker D8 ADVANCE and Rigaku
SmartLab apparatus, respectively. The lattice parameters of LiBO2
were refined by the Le Bail profile39 fitted by TOPAS 4.2,40 and
thermal expansion coefficients were fitted by PASCal software.41

Variable-Temperature Raman Spectra. Variable-temperature
Raman spectra on the as-grown crystal were collected via LabRAM
HR Evolution equipped by a solid-state laser with a wavelength of 532
nm, and the spectra were recorded from 123 to 603 K with an interval
of 30 K. The wavenumber scanning range is from 100 to 1500 cm−1.
The peak positions were determined by the Gauss−LorenCross fitting
with a chi2 tolerance of 1 × 10−6.
Optical Transmission Spectrum. The NIR−vis−UV trans-

mission spectrum was measured on an Agilent Cary 5000
spectrophotometer over the spectral range of 190−3000 nm. The
infrared spectrum from 3000 to 6000 nm was measured on an
Excalibur 3100 Fourier transform infrared spectrometer.
First-Principles Calculation. First-principles lattice dynamics

and structure simulations were performed by plane-wave pseudopo-
tential density functional theory (DFT),42 using CASTEP software.43

The functionals developed by Perdew, Burke, and Ernzerhof (PBE)44

in the form of a generalized gradient approximation (GGA)45 is
adopted to describe the exchange-correlation energy so as to search
the electronic ground state. Norm-conserving pseudopotential46 was
chosen to model the effective interaction between the valence
electrons and atom cores. The kinetic energy cutoff was set as 800 eV
and the Monkhorst-Pack grid interval47 was set to less than 0.04 Å−1.
The atomic positions at respective temperature were refined by
geometry optimization with the cell parameters fixed at experimental
values, in which the Broyden−Fletcher−Goldfarb−Shanno (BFGS)48

minimization algorithm was used. The Raman spectrum and atomic
vibration assignment were calculated by linear response formalism,49

in which the phonon frequencies were obtained by the second
derivative of the total energy with respect to a given perturbation. The
band gaps were predicted by the hybridized PBE0 functionals.50 The
bond energy of Li−O bonds was calculated via the binding energy
calculation on Li2O with the same lengths of constituent Li−O bonds
in LiBO2.

■ RESULTS AND DISCUSSION

The crystal structure of LiBO2 was determined by Zachar-
iasen,51 and it crystallizes in the monoclinic space group P21/C
with the cell parameters (at room temperature) of a =
5.838(2) Å, b = 4.348(1) Å, c = 6.449(2) Å, and β =
115.12(2)°. The lithium and boron atoms are coordinated
with four and three oxygen atoms to construct [LiO4]
tetrahedra (Figure 1a) and planar [BO3] triangles (Figure

1b), respectively. By sharing the oxygen corners, [BO3]
triangles connect with each other to form the one-dimensional
zigzag [BO2]∞ chain along the b-axis. The [BO2]∞ chains are
connected to the (LiO3) bases within the [LiO4] tetrahedra to
form the graphite-like [LiBO2]∞ layer in which the [Li2BO3]
and [LiB2O3] hexatomic rings are alternatively arranged along
the (a, b) plane (Figure 1c). The [LiBO2]∞ layers are
interconnected by the out-of-plane Li−O bonds (Figure 1d),
whose bond length (2.0027 Å) is almost the same with the in-
plane cousins varying from 1.9449 to 1.9639 Å (Table S2).
Accordingly, the lattice constants of a-, b-, and c-axes are
determined by the sum of the O−O distance in [LiO4]
tetrahedra and the width of [BO2]∞ chains, by the length of
[BO2]∞ chains, and by the out-of-plane Li−O bond,
respectively (Figure 1c,d).
The variable-temperature powder X-ray diffraction (VT-

XRD) on the as-synthesized polycrystalline sample shows that
neither a new peak emerges nor an old peak vanishes from 6 to
850 K, confirming the thermodynamic stability of LiBO2
(Figure S1). Regardless of the diffraction peaks from small
amounts of Li2B4O7 impurities and the copper sample hold, as
displayed in Table S1, one can see that the refined errors of the
cell parameters (less than 0.0005 Å) are always smaller than
the variation of the cell parameters (larger than 0.001 Å), and
this confirms that the refined cell parameters are accurate
enough to identify the NTE property in LiBO2. Since the data
between 6 and 100 K and between 100 and 850 K were
collected by two respective XRD apparatus, an overall shifting
occurs between the two sets of refined cell parameters. Here,
the cell parameters below 100 K were corrected overall by the
difference between values at 100 K in the two sets of data, and
their original values are listed in Table S1. The cell parameter
refinement reveals that as the temperature increases from 6 to
325 K, the a- and b-axes anomalously decrease from 5.8472 (5)
to 5.8405 (2) Å (by −0.11%) and from 4.3514 (3) to 4.3494
(2) Å (by −0.05%), respectively, which indicates the NTE
behavior along these two axes. In comparison, the c-axis
increases from 6.4185 (5) to 6.4571 (2) Å (by 0.60%),
exhibiting the normal positive thermal expansion (PTE)
property (Figure 2a). As LiBO2 belongs to the monoclinic

Figure 1. Crystal structure of LiBO2. (a) [LiO4] tetrahedron; (b)
planar [BO3] triangle; (c) [LiBO2]∞ layer, viewed along the c-axis;
and (d) crystal structure viewed along the b-axis. The black box
indicates the unit cell.
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P21/c space group, the thermal principal axes do not coincide
with crystallographic axes. The thermal principal axes (X1, X2,
and X3) and the corresponding thermal expansion coefficients
were fitted by the PASCal program developed by Cliffe and
Goodwin41 (Figure 2b,c). The transformation relation between
the two sets of axes is:
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The thermal expansion coefficients along the thermal
principal axes X1, X2, and X3 are −5.39 (12), −1.47 (3), and
33.37 (76) MK−1, respectively, confirming the 2D-NTE
property with an area thermal expansion coefficient of −6.86
(15) MK−1 in LiBO2. Within the 2D-NTE temperature range,
the volume expansion coefficient was fitted to be a normally
positive value of 26.96 (78) MK−1. Above 325 K, the 2D-NTE
behavior terminates and the NTE property is only maintained
along the a-axis.
To unravel the mechanism of the 2D-NTE property in

LiBO2, the bond lengths and angles at respective temperatures
were refined by high-precision first-principles simulations,
since the exact atomic position variations of light lithium,
boron, and oxygen atoms are difficult to be experimentally
determined by XRD. It is revealed that as temperature
increases from 6 to 325 K, the out-of-plane Li−O bond is
elongated by 0.210% (from 2.002 to 2.007 Å in the calculated
values, Figure 3a), which gives rise to the prominent PTE
along the c-axis (Table S2). Stretched by the out-of-plane Li−
O bonds, the lithium atoms are shifted toward the convex of
[LiO4] tetrahedra and the average value of the ∠O−Li−O in
the (LiO3) bases decreases from 110.887 to 110.515° (by
−0.335%), which makes the (LiO3) bases contracted (Figure
3a,c and Table S3). In comparison with the Li−O bonds, the
variation of B−O bonds is negligibly weak (with an average

elongation of 0.005%, Table S2), and the main temperature-
induced modification in the [BO2]∞ chain is the rotation of the
[BO3] triangles along the b-axis (Figure 3b,d). With regard to
the a-axis, the contraction effect from the decreasing ∠O−Li−
O is more prominent than the expansion effect from the
elongation of B−O bonds in the [BO3] groups, and it
eventually gives rise to the NTE along this direction (Figure
3c). On the other hand, the stretching of in-plane Li−O bonds
causes ∠B−O−B, the angle between the neighboring [BO3]
triangles, to decrease from 136.332 to 136.325° (by −0.005%,
Table S3), leading to the NTE behavior along the b-axis in the
range 6−325 K (Figure 3d). Remarkably, the elongation of in-
plane Li−O bonds (by the average values of 0.195%) is almost
in the same magnitude with the out-of-plane cousins (by
0.210%) (Table S2), indicating that the interlayer and
intralayer Li−O bonds have nearly the same bond strength.
Moreover, bond energy is an explicit indicator of bond
strength,52,53 and the first-principles calculation revealed that
the bond energy of the intralayer Li−O bond (average value of
1.2021 eV) is almost the same with the interlayer cousins
(1.2022 eV) (Table S4). This demonstrates that the 2D NTE
behavior can occur in the structure with similar in-plane and
out-of-plane interaction.
The thermal expansion mechanism can also be investigated

from the viewpoint of lattice dynamics,54 and variable-
temperature Raman spectrum measurements on the as-grown
single crystal from 123 to 603 K were performed (Figure S4).
In the Raman spectra, 14 main peaks are observed and defined
as modes I to XIV successively. It is observed that the
frequencies of modes I to IX and XII to XIV continuously
decrease (i.e., softening) as temperature increases from 123 to
603 K, indicating that they positively contribute to the thermal
expansion. On the contrary, the frequency of modes X and XI
increase (i.e., hardening) as temperature increases from 123 to
333 K, while decreases from 333 to 603 K (Figure 4a,b). The
hardening−softening reversal temperature 333 K of modes X

Figure 2. Thermal expansion in LiBO2. (a) Variation of cell
parameters versus temperature. To eliminate the overall shifting of
the cell parameters resulting from the change of XRD apparatus, the
data below 100 K were corrected by the difference (−0.0001,
−0.0013, and 0.0012 Å for a-, b-, and c-axes, respectively) between the
values at 100 K in two sets of data. (b) Three-dimensional (3D)
distribution of the direction-dependent thermal expansion coefficients
in which the crystallographic axes were displayed as black arrows. (c)
2D distribution of the direction-dependent thermal expansion
coefficients within the (X1, X2) plane in which the positive and
negative values are represented by red and blue grids, respectively.

Figure 3. Temperature-induced structural modification accounting for
the 2D-NTE property. (a) Variation of the interlayer Li−O bond
length and the average ∠O−Li−O in the (LiO3) base of the [LiO4]
tetrahedron. (b) ∠B−O−B versus temperature. (c) Schematic for the
NTE along the a-axis; the stretching of out-of-plane Li−O bonds is
represented by the green straight arrow, the decrease of ∠O−Li−O in
the (LiO3) base is represented by green curved arrows, and the
contraction of the O−O distance is represented by orange arrows,
respectively. (d) Schematic for the NTE along the b-axis. The rotation
between [BO3] triangles are represented by yellow curved arrows.
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and XI is close to the terminating temperature (325 K) of the
2D-NTE effect in LiBO2, suggesting that they would play a
crucial role in leading to the 2D-NTE behavior (Figure 4c). To
assign the vibration assignment, the first-principles calculation
was performed. As plotted in Figure S5, the calculated Raman
spectrum agrees well with the experimental one, which
confirms the feasibility of the first-principles atomic vibration
assignment. It is revealed that both modes X and XI are mainly
originated from the twisting vibration of oxygen atoms in
[LiO4] tetrahedra and the rotation of the [BO3] triangle
(Figure 4d). The decrease in ∠O−Li−O and ∠B−O−B
(Figure 3a,b), which accounts for the 2D NTE, would shorten
the distance between oxygen atoms within the [LiO4]
tetrahedra and between the neighboring [BO3] triangles
(Table S2) and strengthen these effective atomic interactions,
which makes phonon frequency blue-shifted. As temperature
increases above 325 K, the decrease of ∠B−O−B terminates,
and this angle starts to increase, which suppresses the
continuous reduction in ∠O−Li−O and eventually results in
the decreasing-to-increasing transition of the effective O−O
distances (Figure 3a,b, displayed in Tables S2 and S3). This
makes the effective atomic interaction experience a transition
from being strengthened to weakened, and consequently, the
temperature-depending phonon mode changes at 333 K, which
is close to the ∠B−O−B decreasing-to-increasing transition
point of 325 K. Since the twisting of the [LiO4] tetrahedra and
the rotating of the neighboring [BO3] triangles are mainly
characterized by the variation of ∠O−Li−O and ∠B−O−B,
the hardening of modes X and XI in the whole 2D NTE
temperature range exactly confirms that the 2D NTE in LiBO2
ascribes to the intercoupling ∠O−Li−O and ∠B−O−B
decrease. Remarkably, the stretching vibration of all the four
Li−O bonds within in the [LiO4] tetrahedra is involved in the

modes X and XI, confirming that the stretching of both in-
plane and out-of-plane Li−O bonds contribute to the 2D NTE
behavior.
In comparison with the much weaker inter- than intralayer

interaction in the previously reported Lifshitz-governed 2D-
NTE materials (Table S6), LiBO2 possesses a similar inter- and
intralayer Li−O interaction. The discovery of 2D NTE in
LiBO2 clarifies that much weaker interlayer interaction than
the intralayer ones is not a necessary condition for the
occurrence of 2D NTE in layered structures. Instead, with a
similar inter- and intralayer interaction, the corrugation in the
layer could also be enlarged to stimulate a Lifshitz-governed
2D NTE.
Borates often have wide energy band gaps,55 and the optical

transmittance measurements on LiBO2 were performed. As
shown in Figure 5, LiBO2 is transparent in the range between
190 and 5790 nm at room temperature, which covers a wide
spectral range from ultraviolet, visible to near-infrared regions.
First-principles calculation predicts that the ultraviolet
absorption edge is 168 nm (band gap 7.38 eV) at 850 K,
and as temperature decreases to 6 K, it is blue-shifted to 165
nm (band gap 7.52 eV). This demonstrates that the wide
optical transmittance range would be maintained as temper-
ature varies, which would be favorable to the high-precision
optical application in temperature-fluctuating environments.
Summarily, 2D NTE behavior was discovered in the crystal

of LiBO2 with layered structures. By means of temperature-
induced structural evolution and lattice dynamics analysis, it is
revealed that the 2D NTE property in LiBO2 is originated from
the decrease of in-plane ∠O−Li−O and ∠B−O−B driven by
the stretching of out-of-plane Li−O bonds as temperature
increases. Remarkably, the stretching in the similar magnitude
of both in-plane and out-of-plane Li−O bonds plays a crucial

Figure 4. Lattice dynamics mechanism of the 2D-NTE property in LiBO2. (a) Counter map of the Raman peaks in mode X and XI versus
temperature. (b) Peak shift of mode X and XI versus temperature. (c) Frequency shifting of phonon modes in the temperature range of 123−333 K
and 333−603 K. (d) Atomic vibration of modes X and XI. The deformation vibration of [LiO4] and the rotation of [BO3] triangles are represented
by blue and yellow arrows, respectively.
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role in leading to the 2D-NTE behavior. This updates the
common sense on 2D NTE in the layered materials that the
interlayer interaction must be much weaker than the intralayer
one and thus would be beneficial to the broadening of the
exploration scope in NTE materials. Optical transmittance
measurements show that the optical transparent range of
LiBO2 covers the wide spectral range from the ultraviolet,
visible to near-infrared region, and the broad optical trans-
parency would be maintained in the whole 2D-NTE
temperature range. Benefiting from the NTE in combination
with the excellent optical property, LiBO2 holds significant
application in the ultraprecise optical apparatus operated in
low temperature.
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