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Resonant transport of bosonic carriers through a quantum device
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We analyze the current of Bose particles across a tight-binding chain connected at both ends to the particles’
reservoirs. Unlike the standard open Bose-Hubbard model, where the presence of reservoirs is taken into account
by the Lindbladians acting on the first and last sites of the chain, we use semimicroscopic models for the
reservoirs. This allows us to address the case of arbitrary reservoir temperature. In particular, we discuss the
phenomenon of the resonant transmission for nearly condensed bosons, where the current across the chain is
significantly enhanced for certain values of the gate voltage.
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I. INTRODUCTION

Recently, we have witnessed an increase of interest in the
open (dissipative) Bose-Hubbard (BH) system, which has be-
come the paradigm for quantum transport with Bose particles
[1–11]. Experimentally, there are two main platforms for re-
alizing the open BH model: superconducting circuits, namely,
a chain of coupled transmon qubits [3,6,9,11], and cold Bose
atoms in optical lattices [1,7,8]. To study quantum transport in
the former system, photons are injected into the first transmon
of the chain by using a microwave generator and the signal is
read from the last transmon in the chain. In the latter system
one measures the atomic current across the lattice connecting
two atomic reservoirs with different chemical potentials, in
the spirit of the laboratory experiment [12] conducted with
Fermi atoms. The unique feature of the bosonic system, how-
ever, is that with an increase of the carriers’ density it shows a
transition from the quantum to the classical regime where the
BH chain can be viewed as a system of coupled classical oscil-
lators [3,13]. This quantum-to-classical transition for identical
particles motivates further study of transport phenomena with
bosonic carriers.

In our previous works [10,13] we analyzed the current of
Bose particles within the framework of the standard open BH
model where the effect of reservoirs is taken into account by
introducing the gain and loss Lindblad operators acting on the
first and last sites of the chain. In the classical approach this
corresponds to the situation where the first and last oscillators
are subject to friction and are excited by white noise whose
intensity is determined by the mean particle density of the
respective reservoirs [13]. Unfortunately, the standard open
BH model implies the Markov approximation, which is not
justified for low-temperature reservoirs with nearly condensed
Bose particles. In the present work we overcome this problem
by introducing a non-Markovian open BH model, which is the
bosonic analog of the non-Markovian open Fermi-Hubbard
model discussed in Ref. [14]. It is shown below that in the
pseudoclassical approach the proposed model utilizes, instead

of white noise, a narrowband noise with a well-defined mean
frequency. This brings us closer to the experiment [11] and
simultaneously to the situation one encounters in solid-state
physics for fermions with well-defined Fermi energy. In par-
ticular, similar to the fermionic case, we can address the
phenomenon of the resonant transmission [15].

II. NON-MARKOVIAN OPEN BOSE-HUBBARD MODEL

Since we are interested in the non-Markovian case, a mi-
croscopic model for the particle reservoirs is required (see
Fig. 1). Following Ref. [14], we use as the reservoirs the
tight-binding rings of size M each, where eventually M → ∞.
These rings are attached to both ends of the BH chain of length
L. Bosons can hop between the sites of the chain and the
sites of the rings with the rates Js and Jr , where Js ∼ Jr , while
the hopping between the chain and the rings is controlled by
the coupling constant ε � Js, Jr . If the chemical potentials or
temperatures of the left and right rings are different, we have
a directed current across the chain.

A. Quantum Hamiltonians and the governing equation

The system dynamics is governed by the master equation
for the total density matrix

∂R̂
∂t

= −i[Ĥ, R̂] +
∑

j=L,R

[
L̂( j)

g (R̂) + L̂( j)
d (R̂)

]
, (1)

FIG. 1. Schematic presentation of the model.
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where the Hamiltonian Ĥ has the form

Ĥ = Ĥs +
∑

j=L,R

Ĥ( j)
r +

∑
j=L,R

Ĥ( j)
ε . (2)

For the chain Hamiltonian Ĥs we have

Ĥs = δ

L∑
�=1

n̂� − Js

2

(
L−1∑
�=1

â†
�+1â� + H.c.

)
+U

2

L∑
�=1

n̂�(n̂� − 1),

(3)
with â†

� and â� the bosonic creation and annihilation opera-
tors, respectively, at the �th site. For future purposes we also
included in the chain Hamiltonian the on-site energy (gate
voltage) δ and the interparticle interaction whose strength is
characterized by the microscopic interaction constant U . The
ring Hamiltonians Ĥr and the coupling Hamiltonians Ĥε are
indexed by the superscript j = L, R specifying the ring and
we write the ring Hamiltonians in terms of bosonic operators
acting in the Fock space of the Bloch states,

Ĥr =
M∑

k=1

Ekb̂†
kb̂k, Ek = −Jr cos

(
2πk

M

)
. (4)

Here and below we drop the superscript j assuming that the
rings are identical. The coupling Hamiltonian is given by

Ĥε = − ε

2
√

M
â†

�

M∑
k=1

b̂k + H.c., (5)

where � = 1 for j = L and � = L for j = R. For the sake of
simplicity, we set in what follows Js = Jr ≡ J , which in turn
is set to unity. Thus all energy constants are measured in units
of J . Also, if not stated otherwise, δ = 0 and U = 0.

To prescribe thermodynamic properties to the reservoirs,
we introduce the particle drain

L̂d (R̂) = −γ

2

M∑
k=1

(n̄k + 1)(b̂†
kb̂kR̂ − 2b̂kR̂b̂†

k + R̂b̂†
kb̂k ) (6)

and the particle gain

L̂g(R̂) = −γ

2

M∑
k=1

n̄k (b̂k b̂†
kR̂ − 2b̂†

kR̂b̂k + R̂b̂k b̂†
k ), (7)

where

n̄k = 1

eβ(Ek+μ) − 1
. (8)

These Lindbladians ensure the occupation of the Bloch states
of the isolated (ε = 0) ring relaxing to the Bose-Einstein
distribution with a given chemical potential μ and inverse
temperature β. The rate at which this relaxation takes place
is determined by the constant γ . In what follows we use
as the control parameter the particle density n̄ = ∑

k n̄k/M,
which together with the temperature uniquely determines the
chemical potential μ. We denote the particle densities in the
left and right rings by n̄L and n̄R, respectively.

Our main object of interest is the single-particle density
matrix (SPDM) of bosons in the chain which is defined as

ρ�,m(t ) = Tr[â†
� âmR̂(t )], 1 � �, m � L. (9)
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FIG. 2. Spectral density of the stochastic force χ (t ) for n̄ =
1, γ = 0.1, M = 100, and β = 0.1, 1, 10, from top to bottom, at
ν = 0. The inset shows the Bose-Einstein distribution for the same
temperatures.

Knowing the SPDM, one finds the current in the chain (more
precisely, the current density) by using the relation

j(t ) = 1

L − 1
Tr[ρ̂(t ) ĵ], (10)

where ĵ is the current operator with the matrix elements
j�,m = Js(δ�,m+1 − δ�,m−1)/2i. In the case of noninteracting
bosons (U = 0), the dynamics of the SPDM (9) can be cal-
culated by using at least two different methods. First, one
can derive from the original master equation (1) the master
equation for the total single-particle density matrix of the size
(M + L + M ) × (M + L + M ), which is then easily solved
numerically. The central block of this matrix obviously cor-
responds to the matrix (9). Below we use this method to
calculate Fig. 3 and the dotted line in Fig. 6. The second
method employs the pseudoclassical approximation to solve
Eq. (1). The main advantage of the pseudoclassical approach
is that it can be equally applied to both noninteracting (where
it is exact) and interacting bosons. Additionally, it provides
deeper insight into the physics of the considered phenomena.
We recollect the main points of the pseudoclassical approach
in the next section.

B. Pseudoclassical approach

The pseudoclassical approach replaces the master equation
(1) with the Fokker-Planck equation for the classical distribu-
tion function f [13]. Considering for the moment the case of
a single ring (generalization to the case of two rings is given
at the beginning of Sec. III), the distribution function f is
a function of the time and M canonical variables bk and L
canonical variables a�. The governing equation reads

∂ f

∂t
= {H, f } +

∑
k

[Gk ( f ) + Dk ( f )]. (11)
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FIG. 3. Stationary current of noninteracting bosons in a chain of
length L = 5 connecting two rings with the mean particle densities
n̄L = 1 and n̄R = 0.1. The value of the coupling constant ε = 0.4 and
the size of the rings M = 100.

In Eq. (11) {. . . , . . .} denotes the Poisson bracket, H is the
classical Hamiltonian of the system [which is obtained from
the quantum Hamiltonian (2) by replacing the creation and
annihilation operators with the classical canonical variables],
and the last term is the Weyl symbol of the sum of the drain
and gain Lindblad operators (6) and (7), respectively. Explic-
itly we have

Gk ( f ) = γ

2

(
bk

∂ f

∂bk
+ 2 f + b∗

k

∂ f

∂b∗
k

)
(12)

and

Dk ( f ) = γ

(
n̄ + 1

2

)
∂2 f

∂bk∂b∗
k

. (13)

It is easy to show that Eq. (12) corresponds to the friction
(more precisely, contraction of the phase-space volume) while
Eq. (13) describes the diffusion. Thus, the following Langevin
equation can be made to correspond to the Fokker-Planck
equation (11):

idbk =
(

Ek − i
γ

2

)
bkdt +

√
γ n̄k

2
dξk − ε

2
√

M
a1dt, (14)

ida1 = −Js

2
a2dt − ε

2
dχ, χ (t ) = 1√

M

∑
k

bk, (15)

ida� = −Js

2
(a�−1 + a�+1)dt, � 	= 1. (16)

Here ξk are independent δ-correlated random functions and
〈dξk (t )dξk′ (t ′)〉 = 2δk,k′δ(t − t ′)dt .

Let us discuss the displayed equations in more detail. For
ε = 0, Eq. (14) is the damped harmonic oscillator subject to
white noise. It has the steady-state solution where 〈b∗

kbk〉 =
n̄k . Equations (15) and (16) are the equations of motion for
the chain of coupled linear oscillators where the first oscillator
is subject to the stochastic force χ (t ). We characterize this
stochastic force by its spectral density P(ν) = |χ (ν)|2, where

χ (ν) is the Fourier transform of χ (t ). The spectral density
P(ν) is shown in Fig. 2 for γ = 0.1 and three different values
of the inverse temperature β = 0.1, 1, 10. It can be seen in
Fig. 2 that condensation of bosons in the low-energy Bloch
states results in the change of χ (t ) from a broadband noise to
a narrowband noise. We also mention that a further decrease
in temperature below 1/β = 0.1 does not affect the displayed
curve because in the limit β → ∞ its shape is determined by
the value of γ but not by the width of the quasimomentum
distribution (which tends to a δ function). The same is true for
temperatures higher than 1/β = 10 because the quasimomen-
tum distribution is already practically flat for β = 0.1.

III. STATIONARY CURRENT

We proceed with analysis of the stationary current j̄ =
j(t → ∞). To address the transport problem in the framework
of the pseudoclassical approach, Eqs. (14)–(16) should be
complemented by the equation for the last site of the chain

idaL = −Js

2
aL−1dt − ε

2
dχL, χL(t ) = 1√

M

∑
k

b(R)
k , (17)

and an equation identical to Eq. (14) for the variables b(R)
k of

the right ring.

A. Dependence on system parameters

Figure 3 shows the typical dependence of the stationary
current on the relaxation constant γ and the inverse temper-
ature β. As expected, the current vanishes for γ → 0 where
j̄ ∼ γ . Less expected is that the current also vanishes for γ →
∞. Formally, one proves this result by employing the Born
and Markov approximations, which are always justified in the
above limit and which allow us to eliminate the rings. This
reduces the system (1) to the standard open Bose-Hubbard
model [10], which is parametrized by the effective relaxation
constant

γ̃ = ε2/γ . (18)

From Eq. (18) we obtain that for γ → ∞ the current, which
is now proportional to γ̃ , decreases as j̄ ∼ 1/γ . The details of
this formal analysis are given in the Appendix.

Next we address the dependence of the stationary current
on the temperature. For moderate γ we see in Fig. 3 the
pronounced step at β ∼ J , where the current drops one or-
der of magnitude (see also Fig. 5). This step is caused by
the boson condensation at low temperatures and the pseu-
doclassical approach provides the necessary details. The top
and bottom panels in Fig. 4 show the spectral densities of
the stochastic forces χ1(t ) and χL(t ), while the intermediate
panels are the spectral densities of the oscillators, i.e., the
squared Fourier transform of a�(t ). The left column in Fig. 4
refers to the case β = 0.1. One can easily identify in the figure
the eigenfrequencies ωi and eigenmodes X (i) of the isolated
chain, which are obtained by diagonalizing the chain’s single-
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FIG. 4. Spectral densities P(ν ) of the stochastic forces χ1(t ) (top
panels) and χL (t ) (bottom panels) for β = 0.1 (left column) and
β = 10 (right column). The intermediate panels show the spectral
densities of the local oscillators a�(t ). The values of the relaxation
and coupling constants are γ = 0.1 and ε = 0.4. The particle densi-
ties in the left and right reservoirs of size M = 100 are n̄L = 1 and
n̄R = 0.1, respectively. Note the different upper limits of the y axes.
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FIG. 5. Stationary current as a function of the inverse temper-
ature for γ = 0.1 and (n̄L, n̄R ) = (2, 0.2) (top solid line marked
by open circles), (n̄L, n̄R ) = (1, 0.1) (middle solid line marked by
asterisks), and (n̄L, n̄R ) = (0.5, 0.05) (bottom solid line marked by
diamonds). The dashed lines are the upper and lower curves multi-
plied by the factors 1/2 and 2, respectively.

particle Hamiltonian Hs,

HsX
(i) = ωiX

(i). (19)

The positions of the peaks, which are well approximated by
a Lorentzian of width ∼ε2, coincide with ωi, while the peak
heights are proportional to |X (i)

� |2. Note that for the currently
considered β the broadband stochastic force excited all eigen-
modes of the chain. The left column in Fig. 4 should be
compared with the right column, which refers to the case β =
10. Here the narrowband stochastic force is capable to excite
only the lowest mode. Since the group velocity at the bottom
of the conductance band tends to zero, we have a much smaller
current in the low-temperature limit. In the depicted numerical
data we also see the effect of the chain’s backaction on the
rings. This backaction is smaller for smaller ε. However, even
for the considered ε = 0.4 it can be safely neglected. In other
words, in the analytical studies of the problem the spectral
density of the stochastic force can be approximated by that
shown in Fig. 2 (see also the Appendix).

Finally, let us discuss the dependence of the current on
the particle density in the reservoirs. It follows from general
arguments that the stationary current across the chain is pro-
portional to the difference n̄L − n̄R. It is also well known that
for larger particle density the condensation of bosons occurs
at a higher temperature. Thus, the proportional increase of the
parameters n̄L and n̄R will result in the proportional increase of
the current. To support this statement Fig. 5 shows the current
as a function of the inverse temperature for different particle
densities in reservoirs. It can be seen in Fig. 5 that after the
linear scaling of the vertical axis (and the proper nonlinear
scaling of the temperature axis) all three curves can be put
one above the other.

B. Resonant transmission

The resonant transmission of the fermions is a well-studied
phenomenon in solid-state physics [15]. It occurs when the
Fermi energy of the reservoirs coincides with an eigenenergy
of the mesoscopic device. It is interesting to address the same
phenomenon for bosons. Following this goal, we incorporate
in all equations the gate voltage δ, which determines the on-
site energy in the Hamiltonian (1).

Similar to the case of fermions, there are necessary condi-
tions for observing this effect; the crucial condition is that the
distance between the energy levels of the mesoscopic device
is smaller than the width of the Bose-Einstein distribution in
the reservoirs. For the setup considered throughout the paper,
these conditions are satisfied, for example, for the parameters
used in the right column in Fig. 4. Thus, we may expect a res-
onancelike behavior of the stationary current under variation
of the gate voltage δ. Numerical simulations of the system
dynamics fully confirm this expectation (see the dotted line
in Fig. 6). Note that the positions of the resonant peak are
slightly shifted from the expected δ = −(ωi + J ). This shift
increases with an increase of ε or a decrease of γ and is due
to the backaction of the chain on the rings.

Next we study the effect of interparticle interactions on
the observed resonant transmission. To do this we use the
pseudoclassical approach where the interparticle interactions
are characterized by the macroscopic interaction constant g =
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FIG. 6. Stationary current as a function of the gate voltage δ. The
system parameters are β = 10, γ = 0.2, and ε = 0.4. The dotted
line is the SPDM solution. The solid, dashed, and dash-dotted lines
are the results of the pseudoclassical approach (averaging over 6300
realizations) for g = 0, 0.05, 0.1, respectively.

Un̄, where, as the parameter n̄, we choose the mean particle
density in the left reservoir. It is known that the pseudoclas-
sical approach is exact for g = 0 and, if g 	= 0, in the limit
n̄ → ∞ and U = g/n̄ → 0. Thus, for a fixed n̄ the method
gives correct results only up to some critical U .

The blue solid line in Fig. 6 corresponds to g = 0 (U = 0),
where the deviation from the dotted line is due to the finite
number of realizations of the stochastic force. This deviation
indicates the statistical error for the chosen ensemble with
6300 realizations. The dashed and dash-dotted lines in Fig. 6
refer to g 	= 0. It can be seen that with an increase of g the
resonant peaks shift to lower values of the gate voltage and
simultaneously the resonance pattern fades away.

We find an explanation for the observed effect by analyzing
the spectral density P�(ν) of the chain oscillators for g 	= 0.
This analysis shows that for the small g � 0.1 considered,
the stochastic force χ (t ) mainly excites the collective modes
of the system. In more detail, for g 	= 0 and δ 	= 0 Eq. (16)
transforms into

iȧ� = (δ + g|a�|2)a� − Js

2
(a�−1 + a�+1). (20)

Switching to the eigenmode variables (19), Eq. (20) takes the
form

iẊ (i) = (δ + ωi + gAi|X (i)|2)X (i) + g
∑
j,k 	=i

Bi, j,kX (i)X ( j)X ∗(k),

(21)
where Ai and Bi, j,k are constants of the order of unity.
For vanishing g the narrowband stochastic force excites
each mode independently. For example, for the parame-
ters of Fig. 6 and δ = −0.5 this will be the mode X (2) =
(−1/2,−1/2, 0, 1/2, 1/2), while for δ = −1 it is X (3) =
(1/

√
3, 0,−1/

√
3, 0, 1/

√
3). If g 	= 0 yet the amplitude of the

selected mode is much larger than the amplitudes of the other
modes, the mutual influence of the modes [which is described
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103

FIG. 7. Spectral density of the eigenmode X (2)(t ) for the param-
eters of Fig. 6 and δ = −0.5 in the (a) linear and (b) logarithmic
scales. Note the different limits of the horizontal axes.

by the last term in Eq. (21)] can be neglected and we arrive
at the problem of the single stochastically driven nonlinear
oscillator. Then the main effects are (i) the broadening of the
spectral density accompanied by the decrease of its height
and (ii) the global shift of the spectral density in the positive
direction for positive g (see Fig. 7). This explains the decrease
of the current for the fixed δ = −0.5 seen in Fig. 6. Note that
the shift can be compensated by adjusting δ to the new value,
which leads to more efficient excitation of the selected mode
and, as a consequence, to the appearance of the transmission
peak at this value of the detuning.

IV. CONCLUSION

We have analyzed the current of Bose particles across a
one-dimensional lattice connected at both sides to particle
reservoirs. The lattice is modeled by the Bose-Hubbard chain
and the reservoirs by bosons in the tight-binding rings, which,
if the rings are disconnected from the lattice, relax with the
rate γ to the equilibrium state described by the Bose-Einstein
distribution. For simplicity, we considered the case of equal
reservoir temperatures. Then the stationary current in the
lattice is proportional to the difference in the mean particle
densities of the reservoirs with the prefactor depending on
the temperature 1/β, relaxation rate γ , and gate voltage δ.
The central result of the work is that at low temperature
the current as the function of the gate voltage can show
pronounced oscillations where it is significantly enhanced
for the values of δ coinciding with the eigenenergies of the
quantum particle in the isolated lattice. Thus, similar to the
case of fermionic carriers, we encountered the phenomenon
of resonant transmission. We also quantified the role of inter-
particle interactions in the observed effect and showed that the
resonancelike pattern for the current gradually fades out with
increasing the interaction constant.
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APPENDIX

For noninteracting bosons, the derivation of the master
equation for the SPDM (9) is similar to that for fermionic
carriers [16]. Of course, one can obtain the master equation
in the closed form only under certain assumptions, which
are known as the Markov and Born approximations. The for-
mer approximation neglects the memory effect in the system
dynamics; the latter neglects the backaction of the chain on
reservoirs. This means, in particular, that the SPDM of the
Bose particles in the reservoirs can be approximated by the
thermal density matrix ρ̂ (0)

r determined by the Bose-Einstein
distribution (8).

According to Ref. [16], the master equation for the SPDM
of the carriers in the chain in the Born approximation reads

∂ρ̂s

∂t
= −i[Ĥs, ρ̂s] + ε2

∑
�=1,L

(L̂� + L̂†
� ), (A1)

where Ĥs is the chain’s single-particle Hamiltonian

Ĥs = δ

L∑
�=1

|�〉〈�| − Js

2

L−1∑
�=1

(|1 + �〉〈�| + H.c.) (A2)

and the operators L̂� have the form

L̂� = |�〉〈�|
4

∫ 0

−t
dτ e(γ /2)τ [JF(Jrτ )Îs−J0(Jrτ )ρ̂s(τ + t )]Ûs(τ ).

(A3)
In Eq. (A3) J0 is the zeroth-order Bessel function of the first
kind, Îs is the identity matrix of the size L × L, Ûs(τ ) denotes
the evolution operator, Ûs(τ ) = exp(−iĤsτ ), and

JF(Jrt ) = 1

2π

∫ π

−π

dκ
e−iJr cos(κ )t

e−β[Jr cos(κ )+μ] − 1
. (A4)

If we now neglect the memory effects, the depicted integro-
differential master equation transforms into the Markovian
master equation. Formally, this is done by using the general

10-3 10-2 10-1 100 101 102
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0.01
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0.04

FIG. 8. Comparison of the results based on the Markovian master
equation (A6) (dashed line) and the non-Markovian master equation
(A1) (solid lines with symbols) with the exact results based on the
original model (1) (solid lines). Different solid lines in the figure refer
to different inverse temperatures β = 0.1, 1, 10, from top to bottom.

relation for any slowly varying function∫ t

0
dτ e(γ /2)τA(τ + t ) ≈ 2

γ
A(t ), (A5)

which becomes exact in the limit γ → ∞. This gives

∂ρ̂s

∂t
=−i[Ĥs, ρ̂s] − γ̃

∑
�=1,L

(
1

2
{|�〉〈�|, ρ̂s}−n̄�|�〉〈�|

)
, (A6)

where γ̃ = ε2/γ . Equation (A6) is the SPDM master equation
of the standard open BH model. It admits the analytical solu-
tion with the following result for the stationary current [10]:

j̄ = Js
Jsγ̃

J2
s + γ̃ 2

n̄L − n̄R

2
. (A7)

It is interesting to discuss the validity of the Born and
Markov approximations with respect to the numerical data
presented in Fig. 3. The solid lines in Fig. 8 are the sections of
Fig. 3 for β = 0.1 (high temperature), β = 1 (moderate tem-
perature), and β = 10 (low temperature). The dashed magenta
line is the result obtained on the basis of the Markovian master
equation (A6). It can be seen that the Markov approximation
is justified only for the large γ > 5. Unlike the Markovian
master equation, the non-Markovian master equation (A1) is
seen to be valid until γ ≈ 0.1. Thus it is particularly capable
of describing the phenomenon of resonant transmission con-
sidered in Sec. III.
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