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Enhanced sensitivity of an all-dielectric refractive index sensor
with an optical bound state in the continuum
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The sensitivity of a refractive index sensor based on an optical bound state in the continuum is considered.
Applying Zel’dovich perturbation theory we derived an analytic expression for bulk sensitivity of an all-dielectric
sensor utilizing symmetry protected in-� optical bound states in a dielectric grating. The upper sensitivity limit
is obtained. A recipe is proposed for obtaining the upper sensitivity limit by optimizing the design of the grating.
It is shown that the maximal sensitivity can be achieved regardless to the permittivity of the constituent dielectric
of the system. The results are confirmed through direct numerical simulations.
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I. INTRODUCTION

Recently, we have witnessed a surge of interest to bound
states in the continuum (BICs) [1–3] that have revolutionized
nanophotonics by paving a way to high throughput optical
sensing devices with enhanced light-matter interaction at the
nanoscale [4–11]. The most remarkable feature of BICs is the
occurrence of high-quality Fano resonances in the transmit-
tance spectrum [12–15]. The Fano resonances emerge when
the system’s symmetry is broken, so the otherwise localized
BIC mode can couple with impinging light [16,17]. The spec-
tral position of these extremely narrow Fano resonances is
affected by the refractive index of the surrounding medium
allowing to design optical sensors with an excellent figure of
merit (FOM) [18–23] as the narrow Fano feature can be easily
resolved in the spectral measurements. Despite the unsur-
passed FOM, the major drawback of the dielectric sensors
in comparison against the plasmonic ones is a noticeably
(approximately five times) less sensitivity [24]. Nowadays,
comparative analysis of dielectric sensors performance is al-
ready available in the existing literature [25,26]. Yet, to the
best of our knowledge, there is no exhaustive theory providing
a clear optimization procedure that would lead to the maximal
sensitivity of a BIC sensor. In our previous paper [17] we
argued that the maximal sensitivity of a BIC sensor is given
by Smax = λBIC/nc, where λBIC is the vacuum wavelength of
the BIC, and nc is the cladding fluid refractive index, i.e., the
physical quantity whose variation is measured by the sensor.

In this paper, we provide a route for achieving the maximal
bulk refractive index sensitivity by considering optical BICs
whose spectral position approaches the diffraction threshold.
An analytic expression for a BIC vacuum wavelength shift is
derived by applying the Zel’dovich perturbation theory [27].
The primary advantage of the Zel’dovich approach is that
it can be applied to optical delocalized eigenmodes [28]
to have already been proved useful in theory of plasmonic

sensors [29]. The onset of diffraction usually has a negative
impact on high-Q resonances, particularly on BICs which are
typically destroyed by the radiation losses [30]. However, in
the situation when the first-order diffraction cutoff frequency
is not yet exceeded the evanescent field are demonstrated to
provide the largest overlap with the cladding fluid leading to
enhanced sensitivity [31].

II. THE SYSTEM

One of the most important platforms for implementing
optical BICs is subwavelength dielectric gratings [30,32–39]
which have been extensively studied for sensing applications
with both dielectric [17,40–43] and plasmonic structures [44].
The system under consideration is a subwavelength dielectric
grating of period h = 300 nm made of TiO2 bars with width
w = 0.5h. In our numerical simulations, we use ng = 2.485
as the refractive index of the grating while the material losses
are ignored so the absorption coefficient is set to zero. The
TiO2 grating is placed on top of a glass substrate with re-
fractive index ns = 1.5 as shown in Fig. 1(a). The geometric
parameters of the grating are specified in the caption to Fig. 1.
The propagation of TE modes is controlled by the Helmholtz
equation

∇2Ex(y, z) + k2ε(y, z)Ex(y, z) = 0, (1)

where Ex is the x component of the electric field, ε = f (y, z)
is the coordinate-dependant dielectric function, ∇2 is the
two-dimensional (2D) Laplacian operator, and k = ω/c is the
vacuum wave number. The spectrum of the diffraction chan-
nels into to the cladding fluid is given by

(nck)2 =
(

β + 2πm

h

)2

+ k2
z , (2)

where m is an integer, kz is the z component of the outgoing
wave vector, β is the propagation constant with respect to the
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FIG. 1. BIC in dielectric grating. (a) TiO2 dielectric grating on a glass substrate, h = 300 nm, b = 0.5h, w = 0.5h, ng = 2.485, and
ns = 1.5. The magenta arrow is the electric vector of an incident s wave. (b) Number of scattering channels allowed for diffraction. The red
star indicates the position of a symmetry protected BIC with hkBICnc = 3.262, nc = 1.7. The BIC mode profile is depicted below its spectral
position in procedure defined units with red areas corresponding to positive Ex whereas in the blue areas Ex is negative.

y axis, and nc is the refractive index of the cladding fluid. All
simulation results referenced throughout the paper have been
obtained with application of the FDTD Lumerical photonics
simulation software solution [45].

Following our previous work [17], we consider a symmetry
protected in-� BIC which does not radiate to the far field
because it is symmetrically mismatched with the zeroth-order
diffraction channel. In engineering, a symmetry protected BIC
it is of key importance to ensure that the higher diffraction
orders are not allowed at the BIC wavelength. Once diffrac-
tion is allowed either in the substrate or in the superstrate
(cladding fluid), the BIC is destroyed being transformed into
a leaky mode radiating into the diffraction channels [30]. The
positions of the frequency cutoffs are given by the following
equations:

nck = |β|, nck = β + 2πm

h
if m > 0,

nck = −β − 2πm

h
if m < 0. (3)

In Fig. 1(b), we demonstrate the number of diffraction chan-
nels N allowed in the cladding depending on the spectral
parameters of the incident wave, namely, its vacuum wave
number, k and the propagation constant in the y direction
β. Each colored domain in Fig. 1(b) corresponds to the
specified value of N . The symmetry protected in-� BIC is
destroyed due to opening diffraction channels with m = ±1
when hkBICnc > 2π . For the considered structure BIC lies in
the domain of the specular reflection where only the zero-
order diffraction channel (m = 0) is open. The frequency of
BIC is shown by a red cross in Fig. 1(b). The BIC field profile
is shown in the inset. It is important for our future analysis
to point out that the BIC mode profile has the following
asymptotic far-field expression

Ex ∝ e−κz sin

(
2πy

h

)
, (4)

where

κ =
√(

2π

h

)2

− ε
(0)
∞ k2, (5)

with ε (0)
∞ = n2

c and y = 0 corresponding to the geometric cen-
ter of the unit cell. Notice that in Eq. (4) we only retained the
contribution of the first-order evanescent diffraction channels,
since the higher-order channels decay much faster with the
increase of z.

III. PERTURBATION THEORY

The Zel’dovich [27] perturbation approach is introduced by
writing a series expansion in the increment of the dielectric
function �ε,

ε = ε (0) + �ε, k = k(0) + �k, Ex = E (0)
x + E (1)

x . (6)

By definition the function ε (0) is the total coordinate-dependent
dielectric function with the reference value of the cladding
fluid refractive index, whereas �ε is the increment of the
dielectric constant of the cladding fluid. Substituting the above
expansions into Eq. (1) we have up to the first perturbation
order

∇2E (0)
x + ε (0)(k(0) )2E (0)

x = 0, (7)

∇2E (1)
x + ε (0)(k(0) )2E (1)

x

= −�ε(k(0) )2E (0)
x − 2ε (0)�kk(0)E (0)

x . (8)

Following Zel’dovich we multiply Eq. (8) by E (0)
x and integrate

within the limits specified below∫ h/2

−h/2
dy

∫ d

−d
dzE (0)

x

[∇2E (1)
x + ε (0)(k(0) )2E (1)

x

]

= −
∫ h/2

−h/2
dy

∫ d

−d
dz

[
�ε(k(0) )2 + 2ε (0)�kk(0)](E (0)

x

)2
,

(9)

where d > b is an arbitrary distance from the grating. By
applying Green’s theorem together with Eq. (7) one rewrites
the left-hand side of Eq. (9) in the following manner:∫ h/2

−h/2
dy

∫ d

−d
dzE (0)

x

[∇2E (1)
x + ε (0)(k(0) )2E (1)

x

]

=
∫

	

d	

(
E (0)

x

∂E (1)
x

∂n
− E (1)

x

∂E (0)
x

∂n

)
, (10)
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FIG. 2. Fano resonance shift and differential sensitivity. (a) The vacuum wavelength of the symmetry protected BIC as a function of the
cladding fluid refractive index. (b) Differential sensitivity obtained from Eq. (15)—circles, and through the shift of the Fano resonance—dots
at θ = 2◦. The dash line shown the upper limit of sensitivity Eq. (16). (c) Shift of the Fano resonance obtained at θ = 2◦, nc = 2.0 with
�n = 0.01.

where 	 is a path encircling the integration domain of the
left-hand side in the clockwise direction. The integrals along
the lines y = −h/2 and y = h/2 cancel each other due to
periodicity while the integral along z = −d can be neglected
because we assume that the BIC field decays faster in the
substrate because of a lesser refractive index. This leads us
to ∫ h/2

−h/2
dy

∫ d

−d
dzE (0)

x

[∇2E (1)
x + ε (0)(k(0) )2E (1)

x

]

=
∫ h/2

−h/2
dy

(
E (0)

x

∂E (1)
x

∂z
− E (1)

x

∂E (0)
x

∂z

)∣∣∣∣
z=d

. (11)

Equating the right-hand side of Eq. (11) to that of Eq. (9) and
inserting the following asymptotic expressions:

∂E (0)
x

∂z
= −κ

(0)E (0)
x ,

∂E (1)
x

∂z
= 1

2κ
(0)

[
�ε(k(0) )2 + 2ε (0)

∞ k(0)�k
]
E (0)

x − κ
(0)E (1)

x ,

(12)

one has

�k

�ε
= −k(0)

2
I, (13)

where

I =
∫

Sc
dS(E (0)

x )2 + 1
2κ(0)

∫ h/2
−h/2 dy[E (0)

x (y, d )]
2

∫
Stot

dSε (0)
(
E (0)

x
)2 + ε

(0)
∞

2κ(0)

∫ h/2
−h/2 dy

[
E (0)

x (y, d )
]2 . (14)

Thus, for the differential sensitivity S = �λBIC/�nc we have

S = λncI. (15)

On approach to the cutoff of the first-order diffraction chan-
nels κ → 0 we have

S = λBIC

nc
, (16)

which coincides with the upper sensitivity limit predicted in
Ref. [17]. Before proceeding to numerical validation of the
newfound results some comments are due on the choice of d .

It is obvious that d should be taken large enough to guarantee
that the far-field asymptotic behavior be given by Eq. (4).
In the domain of specular reflection at the normal incidence
the evanescent fields of the second-order diffraction channels
decay faster than e−2πz/h. Therefore, for a practical choice
it is sufficient to take d > λBIC. At the save time, from the
computation viewpoint the choice of d determines the size
of the computational domain. Technically, d is the distance
at which the PML absorbers are placed to set up reflectionless
boundary conditions. Thus, application of Eqs. (14) and (15)
allows us to predict the sensitivity of BICs with the evanescent
fields extended beyond the computational domain.

IV. NUMERICAL VALIDATION

In Fig. 2(a) we plotted the vacuum wavelength of the
symmetry protected BIC at different values of nc. One can
see from Fig. 2(a) that λBIC decreases with the increase of
nc especially at larger values of nc. In Fig. 2(b) we plotted
the values of differential sensitivity obtained by two differ-
ent methods. The “theoretical” result is obtained by directly
applying Eq. (15) meanwhile the “numerical” values are ob-
tained finding the shift of a BIC-induced Fano resonance
under illumination by a plane wave at the incidence angle
θ = 2◦. To keep the approach consistent while changing nc,
the incidence angle θ is defined in reference to the wave
vectors in the outer space (air), so the incident angle within
the cladding fluid θc is found through the formula

nc sin (θc) = sin (θ ). (17)

The typical picture of the shift in the resonance position is
shown in Fig. 2(c). In Fig. 2(b) we also plotted the maximal
value of the sensitivity according to Eq. (16). One can see
from Fig. 2(b) that with the increase of nc, the sensitivity
approaches the upper limit given by Eq. (16). Notice that, at
larger nc, the numerically observed sensitivity deviates from
the theoretical expressions [(14), (15)]. This is because the
first-order frequency cutoffs are lower at θ �= 0◦ according to
Eq. (3), see also Fig. 2(b). In our case, the onset of diffraction
at nc = 2.21 destroys the high-Q resonance with the chosen
angle of incidence θ = 2◦ although the BIC proper is not
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yet destroyed. Finally, notice that the observed sensitivity
enhancement can be easily understood from Fig. 2(a) which is
complemented with subplots of two BIC profiles. One can see
that, at larger nc, the BIC fields are further extended into the
upper half-space providing a better overlap with the cladding
fluid.

V. CONCLUSION

In this paper, we have demonstrated an approach allowing
to achieve the upper sensitivity limit for an all-dielectric sen-
sor based on an optical bound state in the continuum (BIC).
The analytic expressions for computing the bulk sensitivity
from the BIC vacuum wavelength and mode profile have been
derived as Eqs. (14), and (15). The most remarkable feature
of the obtained expressions is that the maximal sensitivity is
independent of the material and geometric parameters of the
grating once the BIC approaches the first diffraction order
threshold. This feature allows for freedom in choosing of
the constituent dielectric. All that is necessary for achieving
the maximal sensitivity is to vary the geometric parameters
for the BIC eigenfrequency approaching the cutoffs of the
first-order diffraction channels. The BICs are topologically
protected objects [8,46,47] and, therefore, they are not de-
stroyed under variation of geometric parameters complying
with the structure point-group symmetry as far as the BIC
eigenfrequency remains in the spectral domain of the specular
reflection [34]. In the regime of the maximal sensitivity the
vacuum wavelength of the in-� BIC is always given by

λBIC = nch, (18)

while the maximal sensitivity is simply Smax = λBIC/nc. Notice
that, due to the scaling invariance of Maxwell’s equations,
λBIC can be tuned to any desired wavelength by isometric
transformation of the grating.

In the numerical example proposed, the maximal sensi-
tivity has been achieved with a relatively large value of the
cladding fluid refractive index nc = 2.21. This, of course,
out of the range required in practical applications which
are stuck around the refractive index of water. Importantly,
achieving the maximal sensitivity requires the refractive index
of the cladding larger than that of substrate. If the situa-
tion is the opposite, the first-order diffraction channels will
first open in the substrate [30] destroying the BIC before
the maximal overlap with the cladding has been achieved.
There are two possible solutions to this problem. The first
is, obviously, applying a low index substrate [48]. The
second is using a substrate of a properly chosen Bragg re-
flector [49] which would isolate the lower half-space by a
photonic band gap for the outgoing waves of the first order
of diffraction. This problem will be addressed in the future
studies.
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[38] X. Gao, B. Zhen, M. Soljačić, H. Chen, and C. W. Hsu, Bound
states in the continuum in fiber Bragg gratings, ACS Photonics
6, 2996 (2019).

[39] H. Hemmati and R. Magnusson, Resonant dual-grating
metamembranes supporting spectrally narrow bound states in
the continuum, Adv. Opt. Mater. 7, 1900754 (2019).

[40] H. Zhang, T. Wang, J. Tian, J. Sun, S. Li, I. De Leon, R. P.
Zaccaria, L. Peng, F. Gao, X. Lin, H. Chen, and G. Wang,
Quasi-BIC laser enabled by high-contrast grating resonator for
gas detection, Nanophotonics 11, 297 (2022).

[41] G. Finco, M. Z. Bideskan, L. Vertchenko, L. Y. Beliaev, R.
Malureanu, L. R. Lindvold, O. Takayama, P. E. Andersen, and
A. V. Lavrinenko, Guided-mode resonance on pedestal and
half-buried high-contrast gratings for biosensing applications,
Nanophotonics 10, 4289 (2021).

[42] G. C. Park and K. Park, Critically coupled Fabry-Perot cavity
with high signal contrast for refractive index sensing, Sci. Rep.
11, 19575 (2021).

[43] S. Mesli, H. Yala, M. Hamidi, A. BelKhir, and F. I. Baida,
High performance for refractive index sensors via symmetry-
protected guided mode resonance, Opt. Express 29, 21199
(2021).

[44] S. Jia, Z. Li, and J. Chen, High-sensitivity plasmonic sensor
by narrowing Fano resonances in a tilted metallic nano-groove
array, Opt. Express 29, 21358 (2021).

[45] Lumerical FDTD Solutions, https://www.lumerical.com.
[46] E. N. Bulgakov and D. N. Maksimov, Topological Bound States

in the Continuum in Arrays of Dielectric Spheres, Phys. Rev.
Lett. 118, 267401 (2017).

[47] E. N. Bulgakov and D. N. Maksimov, Bound states in the
continuum and polarization singularities in periodic arrays of
dielectric rods, Phys. Rev. A 96, 063833 (2017).

[48] E. F. Schubert, J. K. Kim, and J.-Q. Xi, Low-refractive-index
materials: A new class of optical thin-film materials, Phys.
Status Solidi B 244, 3002 (2007).

[49] R. G. Bikbaev, D. N. Maksimov, P. S. Pankin, K.-P. Chen, and
I. V. Timofeev, Critical coupling vortex with grating-induced
high q-factor optical Tamm states, Opt. Express 29, 4672
(2021).

033518-5

https://doi.org/10.1364/OE.411749
https://doi.org/10.3390/s17081861
https://doi.org/10.1364/PRJ.6.000726
https://doi.org/10.3390/ma11040526
https://doi.org/10.1038/s41566-019-0394-6
https://doi.org/10.1364/OL.44.005362
https://doi.org/10.1364/OME.395833
https://doi.org/10.1021/acsphotonics.9b00434
https://doi.org/10.1088/2040-8986/aac75b
https://doi.org/10.1088/1361-6463/ac2115
https://doi.org/10.1103/PhysRevA.41.5187
https://doi.org/10.1364/JOSAA.29.000994
https://doi.org/10.1021/acsphotonics.6b00860
https://doi.org/10.1364/OE.27.018776
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1088/1367-2630/aa849f
https://doi.org/10.1364/JOSAB.35.001218
https://doi.org/10.1103/PhysRevA.98.053840
https://doi.org/10.1364/OE.27.018180
https://doi.org/10.1103/PhysRevA.99.063805
https://doi.org/10.1021/acsphotonics.9b01202
https://doi.org/10.1002/adom.201900754
https://doi.org/10.1515/nanoph-2021-0368
https://doi.org/10.1515/nanoph-2021-0347
https://doi.org/10.1038/s41598-021-98654-w
https://doi.org/10.1364/OE.424930
https://doi.org/10.1364/OE.430684
https://www.lumerical.com
https://doi.org/10.1103/PhysRevLett.118.267401
https://doi.org/10.1103/PhysRevA.96.063833
https://doi.org/10.1002/pssb.200675603
https://doi.org/10.1364/OE.416132

