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Quantum versus classical nature of the low-temperature magnetic phase transition in TbAl3(BO3)4
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Specific heat CB of a TbAl3(BO3)4 crystal was studied for 50 mK < T < 300 K with emphasis on T < 1 K
where a phase transition was found at Tc = 0.68 K. Nuclear, nonphonon (Cm), and lattice contributions to CB

were separated. Lowering of Tc with an increase in magnetic field parallel to the easy magnetization axis (B‖)
was found. It was established that Cm and a Grüneisen ratio depend on B‖ and T in a way characteristic of
systems in which a classical transition is driven by quantum fluctuations (QFs) to a quantum critical point at
T = 0 by tuning a control parameter (B‖). The B‖ − T phase diagram was constructed, and the dynamical critical
exponent 0.82 � z � 0.96 was assessed. Nature of the transition was not established explicitly. Magnetization
studies point at the ferromagnetic ordering of Tb3+ magnetic moments, however, lowering of Tc with increase in
B‖ is opposite to the classical behavior. Hence, a dominant role of QFs was supposed.

DOI: 10.1103/PhysRevB.105.094418

I. INTRODUCTION

Quantum phase transitions (QPTs) induced at zero-
temperature T by quantum fluctuations (QFs) as the result of
tuning a certain control parameter, e.g., pressure or magnetic
field B, are a topical subject of research in condensed-matter
physics [1]. As the phenomena appearing at inaccessible
experimentally T = 0, they are much more difficult for in-
vestigation than the classical phase transitions, induced by
thermal fluctuations. Their existence can be recognized only
by investigating certain unusual properties induced by them
at finite T near the quantum critical point (QCP). For
example, near QCP, unconventional superconductivity and
pronounced non-Fermi-liquid effects in metallic systems were
observed [2]. Moreover, at the classical transitions, some
thermodynamic quantities being the second derivatives of the
thermodynamic potential diverge, whereas due to the third
law of thermodynamics, some of these divergences, e.g., of
specific heat, disappear at QCP. According to Refs. [3,4], in
such a case, the parameter �,

� = − 1

T

(∂S/∂B)T

(∂S/∂T )B
= − (∂M/∂T )B

CB(T )
= 1

T

(
∂T

∂B

)
S

(1)

called the magnetic Grüneisen ratio is much more informa-
tive because it should diverge and change sign at QCP. � is
proportional to the ratio of the sensitivity of entropy S to the
control parameter B (i.e., ∂S/∂B), growing near QPT, to the
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sensitivity of S to T (i.e., ∂S/∂T ), growing near the classical
transition. By using standard thermodynamic transformations
and the Maxwell relation, it can be shown (1) that � is the
ratio of the measurable quantities, i.e., of the minus derivative
of magnetization M with respect to T at fixed B to the specific
heat CB or the (multiplied by 1/T ) adiabatic change in T under
the influence of B. The latter value is the main parameter
characterizing magnetocaloric effect.

Whereas many papers considered QPTs in metallic, heavy-
fermion, and/or superconducting systems [2], experimental
papers on QPTs in insulating anti- or ferromagnets are scarce
and, in majority, consider pyrochlores [5] or organic systems
in which magnetic moments arranged in chains or planes are
considered by using the Ising or Heisenberg models, e.g.,
Refs. [6–8]. Whereas the quantum Ising system located in B
perpendicular to the Ising axis is the basic and intuitively clear
example of the system showing QPT, the bulk TbAl3(BO3)4

crystal seems to be a unique ferromagnetic Ising system in
which the temperature of the magnetic transition, discovered
by us below 1 K and reported initially in Ref. [9], is low-
ered and driven to (as we suppose) QCP by B applied along
the Ising axis. This is a counterintuitive behavior because in
“normal” ferromagnets, B applied along the easy axis supports
the low-temperature phase and lifts the transition temperature.
Our paper is aimed: (i) at presenting measurements of CB and
M of the TbAl3(BO3)4 single crystal, demonstrating the pres-
ence and evolution of the magnetic transition under influence
of B, (ii) at analyzing whether near the transition point, the
specific heat, magnetization, and �-parameter behaviors as
functions of T and B‖ are consistent with universal behaviors,
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FIG. 1. Specific heat of the TbAl3(BO3)4 single crystal. (a) Trigonal structure of TbAl3(BO3)4 with lattice parameters a = 9.2926(9) and
c = 7.2516(4) Å. Magnetic Tb3+ ions are located inside the deformed (blue) trigonal prisms, located along the threefold c axis, and formed by
six O2− ions. (b) Total specific heat CB measured in B = 0 with a standard calorimeter (STD), vertical puck (VP), and dilution refrigerator (DR).
The red solid line presents the estimated Cl . In the inset, C1 and y0 coefficients of the curves defined by Eq. (5) and fitted to the experimental
data shown in the panel (e) are presented as a function of B‖. (c) Nonphonon contribution Cm to CB for several B‖ values. (d) Experimental
Cm(T, B = 0) function (circles), estimated nuclear specific heat CN (blue dashed line), and fit of the CN (T ) + C1T y0 function to Cm(T, B = 0)
(red solid line). Near 330 mK a sinusoidal apparatus effect is visible. (e) Determined Cmc(T ) (i.e., Cm(T ) corrected for the apparatus effect
for B‖ � 0.475 T and Cm(T ) for B‖ > 0.475 T), symbols, and Cm(T ) = CN (T ) + C1T y0 functions fitted to these curves (red solid lines). To
maintain readability, the curves for different B‖ values are shifted along the vertical axis by the values given in parentheses. (f) B‖ − T phase
diagram found based on Cm(T, B‖) functions (symbols). The inset presents the schematic phase diagram in which a line of classical phase
transition ends at QCP.

independent of a physical mechanism of the transition,
predicted by the renormalization group theory for the second-
order phase transitions, (iii) at analyzing if these behaviors
are characteristic of the transitions having a quantum charac-
ter, i.e., influenced by QFs, and (iv) at considering possible
mechanisms of the transition found.

It should be noted that RT3(BO3)4 crystals with R = Y, or
a rare-earth ion, and T = Al, Ga, Cr, or Fe, attract attention
because they are suitable for laser applications (e.g., alumi-
noborates doped with Nd are used in self-doubling frequency
lasers), show large magnetoelectric effect [10,11] and dif-
ferent magnetocrystalline anisotropy for various R ions [12].
Thus, deep knowledge of their properties over a wide temper-
ature range is highly desirable.

II. EXPERIMENT

RAl3(BO3)4 compounds with R = Y, Sm–Yb crystallize in
a trigonal structure (space-group no. 155, R32), Fig. 1(a), with
three formula units in the trigonal unit cell [13]. Magnetic
R3+ ions are located inside the deformed trigonal prisms
formed by six O2− ions. The R-O6 prisms, separated along
the c axis by B-O3 triangles, form chains along the threefold
c axis. Between the neighboring chains, other B-O3 triangles
and oxygen octahedra containing Al3+ ions are located.

For the 0.514(2)-mg plate, cut perpendicularly to the
c axis from the TbAl3(BO3)4 single crystal grown by using
the flux method [14,15], specific heat, and magnetization were
measured as a function of T and magnetic field applied along
B‖ and perpendicularly B⊥ to the c axis.

CB was measured by means of the relaxation method by
using the Quantum Design Physical Property Measurement
System (PPMS), equipped with the Dilution Refrigerator and
Heat Capacity Options. To gather the data for estimating the
lattice specific heat Cl , the measurements were performed
from 50 mK to 300 K for B = 0. Since these studies showed
that a certain unknown phase transition appears at 0.68 K, the
detailed CB studies were performed for the 50 mK–4 K range
for B = 0 and for several B‖ and B⊥ values up to 3 T. It was
verified that for both zero and nonzero B, no CB singularities
appear above 4 K. Near the discovered transition, CB was
measured each 2 mK, whereas outside this region, over the
range of 50 mK–1 K, each ∼10 mK.

By using the Quantum Design MPMS-XL superconduct-
ing quantum interference device magnetometer equipped with
the Helium 3 option, M(T ) functions were measured for sev-
eral B‖ values (0.01, 0.1, 0.2, 0.25, and 0.35 T) for 0.5 K
� T � 1 K. At T = 0.5 K, the M(B) function was measured
for B‖ and B⊥.
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FIG. 2. Magnetization of the TbAl3(BO3)4 single crystal (not
corrected for demagnetizing effects). Main panel, M versus B‖ and
B⊥ at T = 0.5 K. The inset, M/B versus T for B‖ = 0.01, 0.1, 0.2,
0.25, and 0.35 T. The arrow indicates evolution of the transition
temperature with an increase in B‖.

III. RESULTS

Results of the CB and M measurements are presented in
Figs. 1 and 2.

In order to extract the most interesting for the present
studies, magnetic or nonphonon contribution Cm to CB, we
modeled Cl (T ) with the expression,

Cl (T ) =
[

3nD

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx

+
nO∑
i=1

ni

(
θi

T

)2 eθi/T

(eθi/T − 1)2

]
kBNA

(1 − αT )
, (2)

which mimics the contribution related to acoustic and some
optical phonons in frames of the Debye model (the first term in
the parentheses), the contribution related to remaining optical
phonons in frames of the Einstein model (the second term in
the parentheses), and takes into account the effect of thermal
lattice expansion by the method proposed in Ref. [16] (the
1 − αT denominator). It was used successfully for describing
the lattice specific heat of many materials, e.g., of layered
cobaltites [17] and olivines [18]. We fitted (2) to the data
measured for TbAl3(BO3)4 in B = 0 above 15 K because as
Fig. 1(b) illustrates, for T > 15 K, all other than Cl contri-
butions can be neglected. The best description of Cl (T ) was
achieved by taking the following values of the fitted parame-
ters: α = 0.00129 K−1, nD = 3, θD = 465 K, nO = 6, and, for
i = 1, 2, ... , 6, respectively, ni = 1, 2, 3, 2, 6, and 6, and
θi = 105, 160, 302, 462, 496, and 565 K. The θi values
represent energies of the lowest optical branches, expressed
in temperature units. They agree qualitatively with the ener-
gies of optical phonons corresponding to translations of the
R3+ ions as well as to translations and librations of the BO3

complexes, given in Ref. [19].
Cm determined as the difference between the measured

CB(T ) and the estimated Cl (T ) is presented in Figs. 1(c)
and 1(d). At low T for B‖ < 0.475 T, the Cm(T, B‖ = const)
functions show: (i) a λ-shaped anomaly [at T = 680(2) mK
for B = 0], which decreases and shifts towards lower temper-
atures with increasing B‖, (ii) a practically field-independent

minimum Cm = 1.10(5) J/(mol K) at Tm = 290(1) mK, and
(iii) upturn with decreasing T below Tm. The temperature
range in which this upturn could be studied in our appara-
tus was limited by a strong increase in the heat relaxation
time with lowering T , and as a result, no reliable specific
heat values could be measured below 160 mK for B = 0 and
200 mK for B‖ = 0.4 T. For B‖ > 0.475 T, Figs. 1(c) and 1(e),
a sudden disappearance of the λ anomaly and of the mini-
mum at Tm are observed, and Cm decreases with decreasing
T monotonically, down to unmeasurable values. Thus, the
lowest experimental points were measured at ∼390 mK for
B‖ = 0.7 T and at ∼640 mK for B‖ = 1 T.

IV. ANALYSIS

The asymmetric λ shape of the anomalies found in the
Cm(T, B = const) functions, their rather large width, and lack
of thermal hysteresis of their appearance on heating and on
cooling the sample allow to assume that they are related to
a second-order phase transition. Of course, the lack of hys-
teresis is the necessary but not sufficient condition only and
the two former arguments are rather heuristic. Thus, a more
detailed analysis whether the specific heat as a function of
temperature and magnetic field shows universal critical behav-
iors characteristic of the second-order transitions, predicted
by the renormalization group theory and independent of a
physical mechanism of the transition, is necessary to identify
the order of the found transition unequivocally. Such analysis
was performed and will be presented below.

The specific heat data, Fig. 1, the magnetization curves
presented in Fig. 2, as well as high sensitivity of the phase-
transition temperature to B‖ suggest the transition to be related
to ordering of magnetic moments of the Tb3+ ions, being the
only magnetic ions in the system. The shape of the magne-
tization curve for B‖, presented in Fig. 2, and the measured
saturation magnetization of TbAl3(BO3)4, 8.2μB/Tb, being
close to the magnetic moment of the free Tb3+ (9μB) ion, sug-
gest that we deal with the ferromagnetic ordering. However,
if it were the classical transition between the paramagnetic
and ferromagnetic phases, induced by thermal fluctuations, B‖
should smear it and shift it towards higher T . Actually, we
observe the opposite counterintuitive effect. The λ anomaly
remains sharp and shifts towards lower T with increase in B‖,
i.e., it behaves in a way characteristic of antiferromagnets.
Thus, we suppose that the transition found has a quantum
character, i.e., it is dominated by QFs, which destroy the
long-range ferromagnetic order. In other words, we deal with
one of the two model cases considered in the physics of
quantum transitions [1,20], shown schematically in the inset
to Fig. 1(f) in which the line of classical transitions ends at
QCP. Below, we analyze, if other characteristics of the tran-
sition support this idea. However, the possibility that Tb-Tb
exchange interactions are not the main driving force leading
to the ferromagnetic order, but some other mechanism is re-
sponsible for the transition evolving to QCP and the ordering
of Tb3+ moments is a side effect only, cannot be excluded
a priori. An ordering of electric quadrupolar moments of the
Tb-O6 complexes, cooperative-Jahn-Teller effect, or a more
complex multipolar ordering [21,22] could be indicated as
such possible mechanisms.
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To interpret the presence of the minimum at Tm and of
the upturn of Cm(T, B = const) on lowering T below Tm for
B‖ < 0.475 T, we assumed Cm to be the sum of the criti-
cal contribution Ccr, related to the phase transition, and the
nuclear specific heat CN , related to excitations of magnetic
Tb nuclei. CN grows on lowering temperature and becomes
a dominating contribution to the measured specific heat CB

below Tm. Following the analysis presented in Ref. [23], we
verified that for TbAl3(BO3)4, the nuclear quadrupole inter-
action can be neglected. Then, the Hamiltonian of the nucleus
can be presented in the form Ĥ = aÎz, where Îz is the operator
of the z component of the nuclear spin, and a is the coefficient
of the interaction between the nuclear magnetic moment and
the hyperfine field Bhyp. For Tb3+, I = 3/2, and the nuclear
magnetic moment is equal to 1.994μN (μN is the nuclear
magneton). Thus, expressing energy in temperature units, we
obtain the following formula for the nuclear contribution to
the molar specific heat of TbAl3(BO3)4:

CN (T ) = R

T 2

a2[cosh(2a/T ) + 4 cosh(a/T ) + 5]

2[cosh(3a/2T ) + cosh(a/2T )]2
, (3)

where |a| = Bhyp1.994μN 2/(3kB) and R denotes the gas con-
stant. In the further analysis, we treated the hyperfine field
Bhyp as the fitted parameter.

According to Refs. [3,4], in the vicinity of a quantum
second-order transition, the scaling relation for the critical
contribution to free energy Fcr has a form

Fcr (T ) = −Rρ0|r|ν(d+z) f̃

(
T

T0|r|νz

)
, (4)

where f̃ (x) is a universal scaling function, d is dimension
of the considered system, r = (B − Bc)/Bc is the control
parameter describing the distance from the QCP at T = 0
and B = Bc, ρ0 and T0 are nonuniversal parameters, ν is the
exponent of the critical behavior of the correlation length
near QCP, ξ ∼ |r|−ν , and z is the “dynamical critical ex-
ponent” describing the correlation length ξτ ∼ ξ z along the
direction of “imaginary time” τ = ih̄/(kBT ). For B = Bc, for
the system evolving along the trajectory denoted as b in the
schematic phase diagram in the inset to Fig. 1(f), the free
energy is a regular function of T that can be expanded into the
Taylor series. However, at B < Bc, for the system evolving
along the a trajectory and meeting on its way the classi-
cal phase transition, the free energy shows a more peculiar
behavior. In the limit of T → 0 and r �= 0, f̃ (x) can be ap-
proximated by the formula f̃ (x → 0) = f̃ (0) + cxy0+1, where
y0 is a positive exponent. Thus, differentiating (4) with respect
to T , one obtains the entropy, and next, by differentiating it
with respect to T and B, one obtains the following formulas
for the critical specific heat Ccr and �, valid for the area below
the line of classical phase transitions, denoted in the inset to
Fig. 1(f) as the ordered phase:

Ccr (T → 0, B) = T
∂S

∂T
= C1(B)T y0 , (5)

C1(B) = R
ρ0cy0(y0 + 1)

T0
y0+1

∣∣∣B − Bc

Bc

∣∣∣ν(d−y0z)

,

�(T → 0, B) = − GB

B − Bc
, with GB = ν(d − yoz)

y0
, (6)

By assuming Cm to be the sum of CN and Ccr (5),

Cm(T, B = const) = CN (T ) + C1(B)T y0 , (7)

and treating Bhyp, C1, and y0 as fitted parameters, a good
description of the experimental Cm(T ) dependence for B = 0
[thick solid red line in Fig. 1(d)] was achieved. The best fit
value Bhyp = 227.7(1) T seems to be reasonable because for
the magnetically ordered terbium metal [24] and alloys [25],
the values of 360 ± 40 T were reported. As Fig. 1(c) shows,
B‖ < 0.4 T has no influence on CN because for these B‖
values, all Cm(T ) curves overlap below Tm. Thus, it was as-
sumed that Bhyp remains constant for B‖ < 0.4 T, then for
larger B‖, it falls down due to destruction of the long-range
order of Tb3+ magnetic moments, and for B‖ > 0.55 T, CN

becomes unmeasurably small. We found that the sinusoidal
anomaly of the experimental Cm(T, B = 0) curve, visible in
Fig. 1(d) between 0.25 and 0.35 K, is not a physical effect
because it is the same for all B‖ � 0.475 T and appears also
for samples of other composition. Thus, it was interpreted
as an apparatus effect and eliminated from the experimental
Cm(T, B‖ = const) curves for B‖ � 0.475 T by subtracting
from them the difference between the experimental and the-
oretical [red solid line in Fig. 1(d)] Cm(T, B = 0) curves for
the range 242 � T � 479 mK. The corrected functions (for
B‖ � 0.4 T) denoted as Cmc are plotted in Fig. 1(e) together
with the curves (7) fitted to them (red solid lines) by taking
Bhyp = 227.7(1) T and fitting C1 and y0. Next, assuming
the λ maxima of the Cm(T, B) functions to correspond to
the phase-transition temperature, we constructed the B‖–T
phase diagram, Fig. 1(f). We found that the power function:
0.681 K − a1Ba2 with a1 = 2.65(5) K, a2 = 2.65(5), and B
given in teslas describes the experimental phase-transition
line very well and gives the hypothetical quantum criti-
cal field value Bc = 0.600(1) T. With this Bc value, the
phase-transition line for 0.35 T � B‖ � Bc can be described
by the typical critical dependence: d1(Bc − B‖)d2 with d1 =
1.75(3) K, d2 = 0.85(1), and B‖ given in teslas. Using this Bc

in the definition of r, we obtained that the 0 � B‖ � 0.475 T
values correspond to 1 � r � 0.21. This result is essential
because usually one assumes the critical behavior to appear
for r < 10−3, thus, the behaviors observed in our experiments
should be extrapolated to smaller r values to get actual critical
behaviors of the studied system.

Plots of the found y0 and C1 values as a function of B‖ [the
inset to Fig. 1(b)] can be approximated by, drawn with the
black solid lines, the field-independent y0 = 2.71(7) value and
the C1(B‖) = c1(Bc − B‖)c2 function with c1 = 45.7 J/(mol
K), c2 = 0.35, and B‖ given in teslas. Comparing the C1(B‖)
function and (6) we get

z = (d − c2/ν)/y0. (8)

The �(T ) functions for different B‖s were estimated by
substituting into (1) the Cmc(T, B‖) functions determined and
the (∂M/∂T )B‖ derivatives, approximated by the difference
quotients, calculated basing on the measured M(T, B‖) func-
tions, Fig. 2. For B‖ = 0.3 T for which M was not measured,
∂M/∂T was estimated as the average of the values calculated
for B‖ = 0.25 and 0.35 T. The results are shown in Fig. 3(b).
In principle, having Cmc(T ) for different B‖s, it was possible to
calculate the entropies S(T, B‖ = const) = ∫

Cmc/T dT and

094418-4



QUANTUM VERSUS CLASSICAL NATURE OF THE … PHYSICAL REVIEW B 105, 094418 (2022)

FIG. 3. The Grüneisen ratio �. (a) � values as a function of B‖,
symbols, and the theoretical g|B − Bc|−s functions fitted to them,
solid red lines, for several T values. Curves for different T s are
shifted along the � axis by the values given in the legend in paren-
theses. The insets, g and s parameters as a function of T . (b) �(T )
for several B‖s, symbols. The blue solid line is the �(T, B‖ = 0.2 T)
function calculated based on the Cmc(T ) curves. (c) Scaling behavior.
�(B̃c − B‖)−σ as a function of T/(B̃c − B‖)ε for ε = 0.48(4), σ = 0,
and B̃c = 0.57(3) T for several B‖s. The black solid line is the ap-
proximation of the scaling function: (x) = 3.2 + 2.4 tanh[19(x −
1.161)]. The curves for B‖ � 0.3 T overlap for the arguments
1.132–1.221.

∂S/∂B. However, CB(T ) was measured for a few B‖ values
only and, hence, the approximation of ∂S/∂B with the differ-
ence quotients was rough. Thus, this method of determining �

was less accurate, and only one of such determined functions
for B‖ = 0.2 T is shown in Fig. 3(b) as an example. The
�(T ) functions were converted into �(B‖) functions, shown
in Fig. 3(a) for several fixed T values. It was found that
they cannot be described by the formula (6), but they can be
approximated by formula,

�(B‖, T = const) = [g(Bc − B‖)]−s. (9)

The functions (9) fitted to the experimental data for different
T s are plotted in Fig. 3(a) with red solid lines, and the g and
s parameters of the best-fit lines are plotted as a function of
T in the insets to Fig. 3(a). As the dashed lines show: (i) the
s(T ) function can be approximated by s(T ) = 1 + 111T 5.1 for
T given in kelvins, which, when extrapolated to T < 0.2 K,
gives the s(T ) ≈ 1 value, consistent with the theoretical pre-
diction (6), and (ii) g(T ) can be approximated by the straight

line g(T ) = 8 − 8T for T given in kelvins, which allows to as-
sume the parameter GB appearing in (6) to be GB ≈ 1/g(0) =
0.125(2). Thus, based on (8) and (6), using the determined y0,
c2, and g(0) parameters, and taking into account experimental
uncertainties, we obtain 1/g(0) = c2/y0 ≈ 0.126(3) and

z = d/y0 − 1/[νg(0)] = d/y0 − 0.126/ν. (10)

By assuming that the we deal with the three-dimensional (3D)
magnetic system (d = 3) and that ν takes a value between
1/2 (found in the molecular field model) and 0.715 (found
for the 3D Heisenberg model), we find the dynamical critical
exponent of the studied system to be 0.82 � z � 0.96.

Seeking for a based on scaling argument for the quan-
tum character of the transition analyzed, we relied on the
observation [26], that for some systems, near QCP with the
critical field B̃c, � scales with T (B̃c − B)−ε with a constant
ε. Thus, we assumed that at quantum criticality, � is a gen-
eralized homogeneous function relative B̃c − B, which fulfills
the relation �(T, B̃c − B) ∼ (B̃c − B)σ[T (B̃c − B)−ε] with
a constant σ and  being a scaling function. If the scaling oc-
curs, it should be possible to find such B̃c, σ , and ε that in the
critical region, the plots �(B̃c − B)−σ versus T (B̃c − B)−ε for
different B values collapse onto a single curve . As Fig. 3(c)
shows, such a collapse of the curves for B‖ = 0.30 and
0.35 T was achieved by taking B̃c = 0.57(3) T, ε = 0.48(4),
and σ = (437 ± 2) 10−6 ≈ 0. Practically zero σ value con-
firms the � scaling assumed in Ref. [26]. The data sets for
B‖ < 0.3 T do not follow the scaling curve, which suggests
that these field values are below the quantum critical region.
The B̃c = 0.57(3) T value found from scaling is slightly
smaller than that found from extrapolation of the phase-
transition line shown in Fig. 1(f), which suggests that the real
QCP is located between 0.57 an 0.6 T.

In order to study influence of the magnetic field directed
perpendicularly to the easy magnetization c-axis (B⊥) on the
observed magnetic phase transition, temperature dependence
of the specific heat CB was measured for several fixed values
of the field applied intentionally perpendicularly to the c axis.
Next, the nonphonon contribution to it Cm, was determined by
subtracting Cl from the measured CB, i.e., in the same way as
for the case of B‖. As Fig. 4 shows, B⊥ applied intentionally
perpendicularly to the c axis, influences the transition weaker
than B‖ does and shifts the transition point, identified as the
Cm maximum, towards lower temperatures. However, it must
be taken into account that in the PPMS system used, the
calorimeter is suspended by eight thin wires and in B⊥ a
torque is applied to the sample. As the result, the sample tilts
and the c axis is no longer perpendicular to the applied field.
Thus, we analyzed whether the shift of the transition can be
attributed to tilting of the sample only, i.e., we assumed that
the perpendicular to the c axis component of the field has no
influence on the transition, and only the parallel component,
appearing in the result of tilting, affects the transition. Then,
based on the phase diagram constructed for B‖, presented
in Fig. 1(f), we determined what B‖, i.e., what tilting angle,
would be necessary to cause the observed shift in the tran-
sition. As indicated in the legend of Fig. 4, the expected tilt
angles are quite probable and grow monotonically up to 20◦.

094418-5



T. ZAJARNIUK et al. PHYSICAL REVIEW B 105, 094418 (2022)

FIG. 4. Cm(T ) functions for several fixed B‖ (dashed curves) and
applied intentionally perpendicularly to the c axis B⊥ (solid lines)
values. In the legend, the expected sample tilting angles (calculated
under assumption that only the B‖ component influences the tran-
sition point) as well as corresponding to them B‖ components are
given.

Thus, we find the assumption, that the transition is insensitive
to B⊥ to be well grounded.

V. CONCLUSIONS

Based on the detailed studies of specific heat CB and mag-
netization M below 1 K, we found a magnetic phase transition
in TbAl3(BO3)4, which shifts to lower temperatures with an
increase in magnetic field B‖, parallel to the easy magnetiza-
tion axis. Determined behaviors of both CB and the Grüneisen
ratio � as a function of T (especially scaling of the latter for
B‖ � 0.30 T) as well as dependence of � on B‖ are char-
acteristic of systems in which the classical phase-transition
line is influenced by QFs and ends at QCP. Vanishing of
the nuclear specific heat for B‖ > 0.475 T confirms that B‖

destroys the long-range magnetic order. The value of the
dynamical critical exponent z was assessed to 0.82 � z �
0.96. However, a physical nature of the transition is not clear.
The interpretation that this is the transition to the ferromag-
netic order of Tb3+ magnetic moments is the most natural,
intuitive, and supported by the studies of M. However, such
a classical transition should be smeared and shifted to higher
T by B‖, whereas we observe the opposite effect. We attribute
this to QFs, which dominate the behavior of the system and
destroy the long-range order, i.e., we suppose the transition
to have quantum character. On the other hand, the behavior
observed would be consistent with the behavior of the transi-
tion to an antiferromagnetic phase, but the studies of M, e.g.,
lack of a metamagnetic transition, linear dependence of M
on B‖, and reaching saturation magnetization nearly equal to
the magnetic moment of free Tb3+ ions in small B‖ ∼ 0.7 T,
contradict this interpretation. Also the possibility, that the
transition is not a magnetic one but related to any other kind of
ordering, e.g., a complex multipolar ordering, and the ordering
of the Tb3+ moments is a side effect only, related to the strong
magnetoelectric effect present in these materials, cannot be
ruled out. Generally, a physical mechanism proposed must
predict not only the decrease in the transition point with an
increase in B‖, but also the other unusual behaviors, such as
Ccr ∼ T y0 and divergence of �, found in the present stud-
ies. To elucidate the physical mechanism responsible for the
transition, detailed neutron-diffraction studies are necessary
but due to the low transition temperature and the presence of
boron, very highly absorbing neutrons, such studies would be
very difficult, although possible [11].
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