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The effects associated with interatomic hoppings of excitons and the excitonic Bose condensate formation in
strongly correlated spin crossover systems are considered in the framework of the effective Hamiltonian for the
two-band Kanamori model. The appearance of antiferromagnetic ordering due to the exciton order is found even
in the absence of interatomic exchange interaction. The spectrum of excitonic excitations is calculated at various
points of the temperature vs crystal field phase diagram. Outside the region of exciton ordering, the spectrum
has a gap, which vanishes at the boundary of the exciton condensate phase. The nonuniform spectral weight
distribution over the Brillouin zone is found. The role of electron-phonon interaction is discussed as well.
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I. INTRODUCTION

The excitonic condensation and the excitonic insulator
state have been under study for a long time, starting with the
theoretical papers [1–3]. As shown by Keldysh and Kopaev
[3], the modified Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity can be efficiently applied to describe
metal-insulator phase transitions in semimetals. The Keldysh-
Kopaev model of an excitonic insulator has become the
standard method of describing electronic correlations in the
weak-interaction limit. In this model the conditions for the
excitonic ferromagnetic phase formation has been found [4].
Recently, a new direction in the field of excitonic magnetism
had been developed in Mott insulators with a lowest singlet
and excited triplet ionic states, the singlet-triplet physics was
discussed in the literature in various contents: magnon con-
densation in quantum dimer models [5–8], bilayer magnets
[9], excitons in rare-earth filled skutterudites [10], and spin-
state transition in Fe-pnictides [11]. The exchange interaction
over an excited triplet term may result in the antiferromagnetic
(AFM) interaction and formation of excitonic magnetism
[12]. The formation of AFM order in a singlet-triplet model
may be considered as the Bose condensation of triplet ex-
citons. The Higgs-mode excitations were identified in the
spin-wave dispersion measured in Ca2RuO4 by inelasting neu-
tron scattering [13] and in Raman spectra [14].

In Mott insulators with strong spin-orbit coupling (SOC)
like 4d and 5d oxides with t4

2g configuration, e.g., Re3+, Ru4+,

Os4+, Ir4+, the ions in octahedral oxygen coordination have
spin S = 1 and effective orbital moment Leff = 1. Due to
strong SOC the ground state may be stabilized with a singlet
total momentum J = 0 and a Van Vleck excitation to a triplet
state J = 1. Thus the Van Vleck magnetism appears in the
singlet-triplet physics. There are some other Mott insulator
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materials where singlet-triplet physics is involved. In rare-
earth perovskites LnCoO3 the strong crystal field stabilizes
the singlet S = 0 state of a Co3+ ion. Above this low-spin
(LS) state there are an excited intermediate-spin state with
S = 1 (IS) and a high-spin state with S = 2 (HS). Thus a
singlet-triplet model is the appropriate model to study exci-
tonic effects. The origin of the excitonic gap is different from
the Van Vleck magnetism, nevertheless the properties of both
models are rather similar. The two-band Hubbard model is
widely used to describe a singlet-triplet physics in LnCoO3

[15–21].
One more example of the singlet-triplet physics is given

by spin crossover in 3d-metal oxides under high pressure (see
the review paper [22] and the recent paper on spin crossover in
FeBO3 [23]). For oxides with d5 cations Mn2+, Fe3+ both spin
states have nonzero spin values, the HS with S = 5/2, and the
LS with S = 1/2, so magnetic properties are expected at all
pressures. Contrary, oxides with d6 cations Fe2+, like FeO and
ferropericlase FexMg1−xO (x = 0.15–0.20), the LS has S = 0
and the HS has S = 2. Below critical pressure Pc = 55 GPa
the HS state is stable, while above Pc the LS nonmagnetic state
is realized at room temperature [24–27]. Similar to LnCoO3

such a Mott insulator may be considered within the two-band
Hubbard model (with the exception of a few situations when
the value of spin S = 2 and not S = 1 is essential). In our pre-
vious paper [28] we have derived the singlet-triplet effective
Hamiltonian within a two-band Hubbard-Kanamori model in
the regime of strong electronic correlations. This model for
two electrons per atom describes two ionic states, the singlet
and the triplet, separated by a spin gap which can change its
sign by increasing a crystal field parameter. It corresponds
to the HS state at low pressure and the LS at high pressure.
The electron nearest neighbor hopping results in the AFM
exchange interaction between the HS terms, and also in the
interatomic hopping of local excitons that has not been studied
in Ref. [28]. A mean field phase diagram obtained in Ref. [28]
contains the AFM HS phase and nonmagnetic LS phase. The
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HS exchange interaction results in a shift of the crossover
point to higher pressure. The excitonic phase has been found
on the border of spin crossover.

Here we have studied the exciton dispersion and have
found the formation of the gapless boson spectrum at the
boundary of the exciton condensate phase. A peculiar result
obtained here is the appearance of AFM excitonic ordering
even in the absence of interatomic exchange interaction. The
nonuniform excitonic spectral weight over the Brillouin zone
is found.

The spin crossover at zero temperature is a quantum phase
transition occurring when varying pressure (crystal field). It is
characterized by a topological order parameter defined by the
geometrical Berry phase, which undergoes a steplike change
by 2π at the transition point [29]. Thus, it is of interest to study
how quasiparticle (one-particle) and collective excitations
change with spin crossover transition. In Ref. [30] we showed
that the electronic band structures in the LS and HS states are
topologically nonequivalent and cannot be transformed into
each other smoothly across a spin crossover transition. We are
familiar with Ref. [16], where, within the framework of the
effective Hamiltonian obtained from the two-band Hubbard-
Kanamori model, the spectrum of collective excitations in
the exciton phase was studied in detail—here we study the
exciton spectrum outside the ordered phase, but our results
qualitatively agree at its border with Ref. [16] and show an
appearance of the Goldstone gapless mode when the system
enters the exciton condensate phase.

The results presented in this paper are obtained using the
X -operator technique for the two-band Hubbard-Kanamori
model. For a more detailed understanding of the obtained
results, in Sec. V an artificially simplified two-level model
of one-electron states interacting with phonons is introduced.

It is defined by the Hamiltonian written in analogy with
the Hamiltonian of the original problem in the fermion
creation/annihilation operators representation. In the frame-
work of such a model, the role of the electron-phonon
interaction in formation of the dispersion of excitons and the
exciton condensate is discussed. It is found that, contrary
to the diagonal electron-phonon interaction, the nondiagonal
one leads to the opening of a gap in the excitonic excitation
spectrum at the boundary of the excitonic condensate phase.

II. EFFECTIVE HAMILTONIAN

A minimal model of strongly correlated spin crossover
systems is the two-band Hubbard-Kanamori model. Its Hamil-
tonian can be written as

H = H� + Ht + HCoulomb. (1)

Here the first term

H� = ε1

∑
i,γ

c†
1iγ c1iγ + ε2

∑
i,γ

c†
2iγ c2iγ (2)

contains the one-ion energy of one-particle electron states
with the energy levels ε1 and ε2 = ε1 + �, where � is the
crystal field energy (for convenience one can assume ε1 = 0),
c†
λiγ creates a fermion at orbital λ = 1, 2, site i, and with spin

projection γ = ±1/2. The second term is

Ht = t11

∑
〈i, j〉,γ

c†
1iγ c1 jγ + t22

∑
〈i, j〉,γ

c†
2iγ c2 jγ

+ t12

∑
〈i, j〉,γ

(c†
2iγ c1 jγ + c†

1iγ c2 jγ ), (3)

where tλλ′ is the nearest neighbor hopping parameter. The third
term

HCoulomb =U
∑
λ,i

c†
λi↑c†

λi↓cλi↑cλi↓ + V
∑

λ �=λ′,i

c†
λi↑c†

λ′i↓cλi↑cλ′i↓ + V
∑

λ>λ′,i,γ

c†
λiγ c†

λ′iγ cλiγ cλ′iγ

+ JH

∑
λ>λ′,i,γ

c†
λiγ c†

λ′iγ cλ′iγ cλiγ + JH

∑
λ �=λ′,i

c†
λi↑c†

λ′i↓cλ′i↑cλi↓ + J ′
H

∑
λ �=λ′,i

c†
λi↑c†

λi↓cλ′i↑cλ′i↓ (4)

includes the one-site Coulomb interaction energy. Electron-
electron interaction is considered in the Kanamori approx-
imation [31]. It preserves the multiplet character of the
electron-electron interaction as much as possible. U is the
parameter that describes the direct repulsion between two
electrons in the same orbital. V describes the direct repul-
sion between two electrons in different orbitals. It is assumed
that this repulsion is equal between all different orbitals. The
process where two electrons are interchanged is described by
the exchange integral JH . The process where two electrons
residing in the same orbital scatter on each other and are
transferred from one orbital into another is characterized by
the integral J ′

H .
An important feature of such a two-orbital model is a

possibility of formation, at half-filling (Ne = 2 is an aver-
age number of electrons on a crystal lattice site) and in the
zero hopping approximation tλλ′ = 0, of various localized

two-electron states with spin values S = 0, 1, which makes
possible a spin crossover with varying �. Within the region

� < �C =
√

(U − V + JH )2 + J ′
H

2 the ground state is the
triplet HS state (S = 1) |σ 〉 with the energy EHS:

|σ 〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c†
1↑c†

2↑|0〉, σ = +1,

1√
2
(c†

1↑c†
2↓|0〉 + c†

1↓c†
2↑|0〉), σ = 0,

c†
1↓c†

2↓|0〉, σ = −1,

while at � > �C the ground state is the singlet (S =
0) state |s〉 = C1(�)c†

1↑c†
1↓|0〉 − C2(�)c†

2↑c†
2↓|0〉 with the

energy ELS, where C1(�) =
√

1 − C2
2 (�) and C2(�) =

x/2(1 + x + √
1 + x) are the normalizing coefficients [28]

(x = J ′
H

2
/�2).
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To obtain an effective Hamiltonian it is convenient to use
Hubbard X -operators X p,q = |p〉〈q| [32] built on the eigen-
states of the Hamiltonian H� + HCoulomb:

(H� + HCoulomb)|p〉 = Ep|p〉, (5)

with the number of electrons taking values Ne = 1, 2, 3. Since
the Hubbard operators form a linearly independent basis, any
local operator can be represented as a linear combination
of the X operators, including the one-electron annihilation
operator

cλiγ =
∑

pq

|p〉〈p|cλiγ |q〉〈q| =
∑

pq

χλγ (p, q)X p,q
i . (6)

Since the number of eigenstates |p〉 and |q〉 is finite, the pairs
(p, q) can be numbered by an index m (or n) for convenience
[33]. The notation of the diagonal X -operators X p,p remains
unchanged.

Using Eq. (6), the anomalous averages 〈c†
2 f γ c1 f γ 〉 without

and with a spin projection change 〈c†
2 f γ̄ c1 f γ 〉 (γ̄ = −γ ) can

be written as

〈c†
2 f γ c1 f γ 〉 ≈ −γ

√
2
(
C2

〈
X s,0

f

〉 + C1
〈
X 0,s

f

〉)
, (7)

〈c†
2 f γ̄ c1 f γ 〉 ≈ −2γ

(
γ + 1

2

)(
C2

〈
X s,+1

f

〉 + C1
〈
X +1,s

f

〉)

+2γ

(
γ − 1

2

)(
C2

〈
X s,−1

f

〉 + C1
〈
X −1,s

f

〉)
. (8)

Here and below, angular brackets denote thermodynamical
averages.

As follows from Eqs. (7) and (8), the exciton pairing is
described by nonzero averages of singlet-triplet excitations.
The Hamiltonian defined by Eq. (1) can be rewritten in the
X -operator representation as

H =
∑
i,p

EpX p,p
i +

∑
〈i, j〉

∑
mn

tmnX †m
i X n

j , (9)

where Ep is the multielectron eigenstate energy and tmn =∑
λ,λ′,γ tλλ′χ∗

λγ (m)χλ′γ (n) is the renormalized hopping inte-
gral.

Using the Hamiltonian in Eq. (9) as an initial one, we
can obtain an effective Hamiltonian by excluding interband
(between the lower and upper Hubbard subbands) hopping in
a second order perturbation theory over interatomic electron
hopping similar to the t-J model derivation from the Hubbard
model. To do this, we apply the projection operator method
developed in Ref. [34] for the Hubbard model and in Ref. [35]
for the p-d model (see also Refs. [15,16]).

Let us define projection operators P1 and P2:

P1 =
⎛
⎝∑

γ

X 1γ ,1γ
i +

∑
γ

X 2γ ,2γ
i + X s,s

i +
∑

σ

X σ,σ
i

⎞
⎠

×
⎛
⎝∑

γ

X 1γ ,1γ

j +
∑

γ

X 2γ ,2γ

j + X s,s
j +

∑
σ

X σ,σ
j

⎞
⎠,

where X 1γ ,1γ

i and X 2γ ,2γ

i are X operators constructed on states
of doublets |1γ 〉 = c†

1γ |0〉 and |2γ 〉 = c†
2γ |0〉 with one elec-

tron, respectively. Due to electron-hole symmetry, instead of

single-particle states, one can use three-particle states |1γ 〉 =
c†

1γ c†
2↑c†

2↓|0〉 and |2γ 〉 = c†
1↑c†

1↓c†
2γ |0〉. The P2 operator can

be found from the condition of projection operators basis
completeness

P2 = 1 − P1.

For P1 and P2 the multiply condition is satisfied:

PnPm = δmnPn.

Let us multiply the Hamiltonian in Eq. (9) on the left and
on the right by the operators Pn. P1HP1 and P2HP2 describe
processes in the lower and upper Hubbard subbands, respec-
tively. In this case, interband electron hopping are described
by the terms P1HP2 and P2HP1. To exclude interband jumps,
we apply the method of operator perturbation theory. Let us
represent the Hamiltonian in the form

Hη = H ′ + ηH ′′,

where H ′ = P1HP1 + P2HP2, H ′′ = P1HP2 + P2HP1, and η

is a formal parameter (we set it equal to one at the end).
The essence of this method is that, by applying the canonical
transformation

Heff = exp (−iηF )H exp (iηF ),

we can choose the operator F in such a way that the terms
of the Hamiltonian Heff, which are linear in η, i.e., precisely
those terms that are responsible for interband hopping, vanish.
This requirement leads to the following equation for the F
operator:

H ′′ + i[H ′, F ] = 0. (10)

Here Heff is defined as

Heff = Heff(η = 1) = H ′ + 1
2 i[H ′′, F ]. (11)

Omitting the solution (10) and (11) given in Ref. [34], as a
result, we obtain

Heff = P1HP1 + P2HP2 − 1

�g
[P1HP2, P2HP1],

where �g is the energy interval between the centers of the
upper and lower Hubbard subbands (charge-transfer energy).

The obtained effective Hamiltonian is

Heff = HS + Hnn + Hex. (12)

Here the first term describes an AFM exchange contribution
to the Heisenberg-like Hamiltonian

HS = 1

2
J
∑
〈i, j〉

(
SiS j − 1

4
nin j

)
, (13)

where Si is the S = 1 spin operator: S+
i =√

2(X +1,0
i + X 0,−1

i ), S−
i = √

2(X 0,+1
i + X −1,0

i ), and
Sz

i = X +1,+1
i + X −1,−1

i [36]; J = (t2
11 + 2t2

12 + t2
22)/�g is the

interatomic exchange interaction; ni = 2(X s,s
i + ∑

σ X σ,σ
i ) =

2(nLS
i + nHS

i ) is the particle number operator at site i [nLS(HS)
i

is the occupation operator of the LS (HS) state]. Using the
completeness condition X s,s + ∑

σ X σ,σ = 1, one can show
that 〈ni〉 = 2(〈nLS

i 〉 + 〈nHS
i 〉) = 2(nLS + nHS) = 2.

235120-3



YU. S. ORLOV et al. PHYSICAL REVIEW B 106, 235120 (2022)

The next term

Hnn = 1

2
J̃
∑
〈i, j〉

X s,s
i X s,s

j , (14)

where J̃ = [1 − (2C1C2)2](t2
11 − 2t2

12 + t2
22)/�g, represents a

density-density type interaction of LS states.
The third term in Eq. (12),

Hex = − εS

2

∑
i

(
X s,s

i −
+S∑

σ=−S

X σ,σ
i

)
+

∑
σ

∑
〈i, j〉

×
[

1

2
J ′

ex

(
X σ,s

i X s,σ
j + X s,σ

i X σ,s
j

) − 1

2
J ′′

ex(−1)|σ |

× (
X σ,s

i X σ̄ ,s
j + X s,σ

i X s,σ̄
j

)]
, (15)

contains singlet and triplet energies as well as interatomic
hoppings of excitons with the amplitude J ′

ex as well as
creation/annihilation processes of biexcitons on neighboring
sites with the amplitude J ′′

ex. In the absence of any cooper-
ative interactions, at negative values of the spin gap εS =
EHS − ELS the ground state is the HS state, whereas at pos-
itive spin gap values, the ground state is the LS state; J ′

ex =
2C1C2(t11t22 − t2

12)/�g, J ′′
ex = (t11t22 − t2

12)/�g, σ̄ = −σ . The
Hubbard operators X σ,s

i and X s,σ
i in Eq. (15) describe Bose-

like excitations (excitons) between the LS singlet state |s〉
and the HS triplet state |σ 〉. The first term within the square
brackets in Eq. (15) describes the excitonic dispersion by
means of interatomic hoppings (such a dispersion was consid-
ered long ago in the work of Vonsovskii and Svirskii [37]).
The second term in Eq. (15) contains creation/annihilation

processes of biexcitons at neighboring sites of a lattice, which
makes the dispersion more complicated compared to the usual
one obtained within the tight-binding method [37]. Near the
spin crossover, the normalization constants defined above take
values C1 ≈ 1 and C2 ≈ 0, thus, J ′

ex ≈ 0 [28]. At such cir-
cumstances, the biexciton excitations play the main role in the
formation of the excitonic dispersion.

III. PHASE DIAGRAMS IN THE MEAN FIELD
APPROXIMATION

In the mean field approximation (MF) for two AFM sub-
lattices A and B, the terms in Eqs. (13)–(15) can be expressed
as the following Eqs. (16)–(18):

HMF
S = zJmB

∑
iA

Sz
iA

+ zJmA

∑
iB

Sz
iB

− zJ
1

4
nB

∑
iA

niA

− zJ
1

4
nA

∑
iB

niB − 1

2
zJNmAmB + 1

2
zJN, (16)

where z is a number of nearest neighbors and mA(B) = 〈Sz
iA(B)

〉
is an A(B)-sublattice magnetization;

HMF
nn = zJ̃nLS,B

∑
iA

nLS
iA + zJ̃nLS,A

∑
iB

nLS
iB − zJ̃

N

2
nLS,AnLS,B.

(17)

The interaction proportional to J̃ leads to an additional
cooperation mechanism, but in the following we will mainly
neglect it to simplify the results, since it does not influence the
behavior of phase diagrams qualitatively, leading only to the
sublattices LS energies renormalization:

HMF
ex =

∑
F

∑
σ=±1,0

⎧⎨
⎩zJ ′

ex�
σ
ex,F̄

∑
iF

(
X s,σ

iF
+ X σ,s

iF

) − (−1)|σ |zJ ′′
ex�

σ
ex,F̄

∑
iF

(
X s,σ̄

iF
+ X σ̄ ,s

iF

)

−1

2
zN

(
J ′

ex�
σ
ex,F �σ

ex,F̄ − (−1)|σ |J ′′
ex�

σ
ex,F �σ̄

ex,F̄

)⎫⎬⎭ − εS

∑
iA

X s,s
iA

− εS

∑
iB

X s,s
iB

+ N
εS

2
, (18)

where F = (A, B) (F̄ = A if F = B and vice versa),
�σ

ex,A(B) = 〈X s,σ
iA(iB )〉 are the excitonic order parameter com-

ponents, which satisfy the equation (�σ
ex)† = 〈X σ,s〉 = �σ

ex
at thermodynamic equilibrium. Note that, when �σ

ex �= 0, a
quantum mechanical mixture of the LS and HS states is
present, albeit in the absence of spin-orbital interaction.

By solving the eigenstate problem

HMF
eff |ψ〉k = Ek|ψ〉k, (19)

where |ψ〉k = CLS,k|s〉 + ∑
σ CHS,k|σ 〉 are the eigenstates of

the Hamiltonian HMF
eff = HMF

S + HMF
nn + HMF

ex , and using the
roots corresponding to the minimum of the free energy F =
−kBT ln Z , where Z = ∑

k e−Ek/kBT is the partition function,
various thermodynamic averages included in HMF

eff can be

calculated:

�σ
ex,A(B) =

∑
k

〈
ψk

∣∣X s,σ
iA(iB )

∣∣ψk
〉
e−Ek / kBT

Z
,

mA(B) =
∑

k

〈
ψk

∣∣Sz
iA(B)

∣∣ψk
〉
e−Ek / kBT

Z
,

nHS,A(B) =
∑

k

〈
ψk

∣∣∑
σ X σ,σ

i

∣∣ψk
〉
e−Ek / kBT

Z
.

Thus, when solving Eq. (19), one deals with a self-consistent
problem of finding the eigenstates and the eigenvalues of
the effective Hamiltonian in the mean field approximation.
Figures 1 and 2 show the dependence of the excitonic order
parameter components �σ

ex, the HS state occupation nHS, and
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FIG. 1. The calculated phase diagrams of the excitonic order parameter components �σ
ex for the sublattices A and B at zero value of the

interatomic exchange interaction J; the parameters are z = 4, J ′′
ex = 0.5J0, J0 = 28 K; (ε∗

S , T ∗) is the tricritical point. The values of �σ
ex,A(B) at

the point (εS/J0 = 0.1, T/J0 = 0.1) on (a), (b) and (d), (e) are shown for example. Here and below at points A, B, C, D in (c) the excitonic
spectrum is calculated. The white line shows the boundary of the second order phase transition. The red curve indicates the right boundary of
the metastable state region.

magnetization m for the two sublattices A and B on tempera-
ture T and spin gap (crystal field) εS . The calculations were
done omitting the interatomic exchange (J = 0). However, to
compare conveniently with the J �= 0 case [28], T and εS are
shown in units of the exchange integral J = J0 = 28 K [38];
z = 4, J ′′

ex = 0.5J0. From Figs. 2(a) and 2(c) it is seen that
nHS,A = nHS,B; mA = −mB, so the long-range antiferromag-
netic ordering is realized [Figs. 2(b) and 2(d)] even at J = 0,
since �+

ex,A(B) �= �−
ex,A(B) [Figs. 1(a) and 1(b) and Figs. 1(d)

and 1(e)], �0
ex,A = �0

ex,B [Figs. 1(c) and 1(f)], and �
+/−
ex,A =

FIG. 2. The phase diagrams of (a) and (c) the HS state occupa-
tion and (b) and (d) magnetization for both sublattices demonstrating
the AFM order without interatomic exchange interaction; (ε∗

S , T ∗) is
the tricritical point.

−�
+/−
ex,B ; for example, in Fig. 1 the values of �σ

ex,A(B) at the
point (εS/J0 = 0.1, T/J0 = 0.1) are shown.

The phase diagrams in Figs. 1 and 2 clearly show an exis-
tence of a special point, which is the tricritical point (T ∗, ε∗

S ),
where the line of the second order phase transitions smoothly
transforms into the line of first order phase transitions. In the
region εS > ε∗

S [see Figs. 2(b) and 2(d)] the system undergoes
a second order phase transition from an antiferromagnetic
(HS) state to a paramagnetic state with rising temperature;
contrarily, at εS < ε∗

S there is a first order phase transition.
We note that all the presented phase diagrams are asym-

metrical with respect to the change of the sign of the spin
gap. Contrarily, the toy model considered below in Sec. V
possesses such a symmetry. The difference in the multielec-
tron terms (the phase diagrams in Figs. 1 and 2 are obtained
using the two-electron singlet and triplet terms) is related to
the different degeneracy multiplicity of the HS and LS states,
which leads to a broken symmetry with respect to the spin gap
sign inversion.

IV. SPECTRUM OF EXCITONS

Let us consider the two-particle Green functions at finite
temperatures in terms of the initial fermion operators to de-
scribe collective (in terms of the electron system) excitonic
excitations without a spin projection change

G(2)

=
⎛
⎝

〈〈
c†

1 f γ c2 f γ

∣∣∣ c†
2gγ c1gγ

〉〉
ω

〈〈
c†

1 f γ c2 f γ

∣∣∣ c†
1gγ c2gγ

〉〉
ω〈〈

c†
2 f γ c1 f γ

∣∣∣ c†
2gγ c1gγ

〉〉
ω

〈〈
c†

2 f γ c1 f γ

∣∣∣ c†
1gγ c2gγ

〉〉
ω

⎞
⎠

(20)
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and with a spin projection change

Ḡ±
(2)

=

⎛
⎜⎝

〈〈
c†

1 f γ c2 f γ̄

∣∣∣ c†
2gγ̄ c1gγ

〉〉
ω

〈〈
c†

1 f γ c2 f γ̄

∣∣∣ c†
1gγ̄ c2gγ

〉〉
ω〈〈

c†
2 f γ c1 f γ̄

∣∣∣ c†
2gγ̄ c1gγ

〉〉
ω

〈〈
c†

2 f γ c1 f γ̄

∣∣∣ c†
1gγ̄ c2gγ

〉〉
ω

⎞
⎟⎠.

(21)

Using Eq. (6), one can write Eqs. (20) and (21) as

G(2) ≈ 1

2

(
C2

2 − C2
1

)(G0
f g(ω) −L0

f g(ω)

L0
f g(ω) −G0

f g(ω)

)
(22)

and

Ḡ±
(2) ≈ (

C2
1 − C2

2

)(G±
f g(ω) −L±

f g(ω)

L±
f g(ω) −G±

f g(ω)

)
, (23)

where

Gσ
f g(ω) = 〈〈

X s,σ
f

∣∣ X σ,s
g

〉〉
ω
, (24)

Lσ
f g(ω) = 〈〈

X σ̄ ,s
f

∣∣ X σ,s
g

〉〉
ω
. (25)

The “+(−)” sign in Eq. (23) corresponds to the γ =↑ (↓) spin
projection in Eq. (21).

Within Hubbard-1 approximation 〈X σ ′ �=σ,σ

f 〉 = 0. In the
two-sublattice case one obtains

Gσ
AA,k(ω) = FA,σ

[−J ′
ex(k)Gσ

AB,k(ω)

+ (−1)|σ |J ′′
ex(k)Lσ

AB,k(ω) − 1
]
/(ω − εB),

(26)

Gσ
AB,k(ω) = FB,σ

[−J ′
ex(k)Gσ

AA,k(ω)

+ (−1)|σ |J ′′
ex(k)Lσ

AA,k(ω)
]
/(ω − εA), (27)

Lσ
AA,k(ω) = FA,σ

[
J ′

ex(k)Lσ
AB,k(ω)

− (−1)|σ |J ′′
ex(k)Gσ

AB,k(ω)
]
/(ω + εB), (28)

Lσ
AB,k(ω) = FB,σ

[
J ′

ex(k)Lσ
AA,k(ω)

− (−1)|σ |J ′′
ex(k)Gσ

AA,k(ω)
]
/(ω + εA), (29)

where εA(B) = εS + σ 1
2 zJmA(B), FA(B),σ = 〈X σ,σ

A(B)〉 − 〈X s,s
A(B)〉;

J ′
ex(k) and J ′′

ex(k) are the Fourier transforms of J ′
ex and J ′′

ex.
Within the region of the exciton ordering, the occupation
numbers and the factors FA(B),σ depend on projection σ and
sublattice numbers. Thus, magnetization is induced even at
J = 0, as it is shown in Figs. 2(b) and 2(d).

From Eqs. (26)–(29), the following excitonic spectrum can
be obtained:

ω2
k,σ = ε2

S + FA,σ FB,σ

(
J ′

ex
2(k) − J ′′

ex
2(k)

)
±2J ′

ex(k)εS
√

FA,σ FB,σ . (30)

The excitonic order parameter does not appear explicitly
in Eqs. (26)–(29) defining the Green functions. However, it
is related to the occupation numbers 〈X σ,σ

A(B)〉 and 〈X s,s
A(B)〉 cal-

culated within the self-consistent problem given by Eq. (19).
Outside the excitonic region (when �σ

ex,A(B) = 0), one has

FIG. 3. The excitonic spectrum ω±
k,σ defined by Eq. (31) at the

points A1, B1, C1, and D1 (along the T/J0 = 0.45 line) of the phase
diagram in Fig. 1(c). Here and below the color is proportional to the
spectral weight of the excitations.

FA(B),σ = F [see Figs. 1(c) and 1(f)]. This way, at J = 0,
instead of Eq. (30), one can use the expression

ω±
k,σ = ±

√
(εS − FJ ′

ex(k))2 − F 2J ′′
ex

2(k). (31)

In Figs. 3–5 the spectrum ω±
k,σ

calculated at different points
labeled as A, B, C, and D in Fig. 1(c) is drawn in the case
of a two-dimensional (2D) square lattice within the param-
agnetic Brillouin zone. Here and below �(0, 0), X (π, 0), and
M(π, π ) are the high-symmetry points. In Fig. 1(c), the
white (before the tricritical point) and red (after the tricritical
point) lines mark the boundary of the region within which the
spectrum defined by Eq. (30) becomes complex, which means
that the normal state of the system is unstable with respect
to the formation of the excitonic condensate. The white curve
strictly coincides with the second order phase transition line.
The red curve indicates what the boundary of the normal

FIG. 4. The excitonic spectrum ω±
k,σ defined by Eq. (31) at the

points A2, B2, C2, and D2 (along the T/J0 = 0.15 line) of the phase
diagram in Fig. 1(c).
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FIG. 5. The excitonic spectrum ω±
k,σ defined by Eq. (31) at the points B3, B2, and B4, (along the boundary of the second order phase

transition) of the phase diagram in Fig. 1(c).

state instability would look like if the region of the first order
phase transition did not exist. However, in our calculations,
this curve enters the excitonic region right after the tricritical
point (ε∗

S, T ∗) and strictly coincides with the right boundary
of the metastable state region, which always exists in the case
of a first order phase transition.

The upper band has a positive spectral weight, which points
at “quasiparticle” excitations, whereas the lower band is of
a “hole” type and has negative spectral weight (Figs. 3–5).
When these bands merge at ω = 0, a transition to a new
state associated with the formation of the excitonic conden-
sate occurs—the whole spectral weight concentrates at the
points � and M (Figs. 3–5). The spectral weight is distributed
nonuniformly among the Brillouin zone. Particularly, it is sup-
pressed around the points (π, 0) and (π/2, π/2) in the lower
band at any value of εS . Concerning the Fermi-type quasi-
particle excitations, their unusual spectral weight distribution
(inversion) due to topological properties of spin crossover
was discussed in our work [30], where the electronic band
structure of the strongly correlated spin crossover systems was
considered both in the LS and HS states.

Figure 5 shows that the gap in the spectrum remains
nonzero throughout the first order phase transition line, and
the value of the gap decreases while approaching the tricritical
point, at which it vanishes.

V. TOY MODEL

The Hamiltonian in Eq. (18) has a significantly com-
plex phase diagram and a multicomponent excitonic order
parameter. Let us try to simplify as much as possible the
case considered above and analyze the influence of electron-
phonon interaction at the formation of excitonic condensate
using an example of an artificially simplified Hamiltonian
of a two-level system with local one-electron states “1” and
“2” with the energies ε1 and ε2 (ε = ε2 − ε1) without strong
electron correlations. Instead of Eq. (15) we will now use
the analogous in essence Eq. (32) in terms of one-particle
fermionic operators cλiγ (c†

λiγ ) of annihilation (creation) of
electrons at site i, state λ = 1, 2 with spin projection γ =
±1/2:

Ĥex = ε1

∑
i,γ

c†
1iγ c1iγ + ε2

∑
i,γ

c†
2iγ c2iγ + J ′

1

2

∑
〈i, j〉,γ

(c†
1iγ c2iγ c†

2 jγ c1 jγ + H.c.) + J ′
2

2

∑
〈i, j〉,γ

(c†
1iγ c2iγ̄ c†

2 jγ̄ c1 jγ + H.c.)

+J ′′
1

2

∑
〈i, j〉,γ

(c†
2iγ c1iγ c†

2 jγ c1 jγ + H.c.) + J ′′
2

2

∑
〈i, j〉,γ

(c†
2iγ c1iγ̄ c†

2 jγ̄ c1 jγ + H.c.). (32)

For example, whereas in Eq. (15) the operator X σ,s
i describes

a transition from the two-particle singlet state |s〉 to the
triplet state |σ 〉, an analogous role in Eq. (32) is played by
the operator structure c†

2 jγ c1 jγ (without a change of a spin

projection) or c†
2 jγ̄ c1 jγ (with a change of spin projection).

Below we will drop the latter: J ′
2 = J ′′

2 = 0, so J ′
1 = J ′

ex and
J ′′

1 = J ′′
ex.

Taking into account the electron-phonon interaction, one
has

H = Hex + H1ph + H2ph, (33)

where

H1ph = h̄ω0(1)

∑
i

(
a†

i ai + 1

2

)
− 1

2
Va

∑
〈i, j〉

(ai + a†
i )(a j + a†

j )

+ g1

∑
i,γ

(ai + a†
i )(c†

1iγ c1iγ − c†
2iγ c2iγ ), (34)

H2ph = h̄ω0(2)

∑
i

(
b†

i bi + 1

2

)
− 1

2
Vb

∑
〈i, j〉

(bi + b†
i )(b j + b†

j )

+ g2

∑
i,γ

(bi + b†
i )(c†

2iγ c1iγ + c†
1iγ c2iγ ). (35)
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The term in Eq. (34) contains the diagonal electron-phonon
interaction. Next, the term in Eq. (35) describes off-diagonal
electron-phonon transition processes between the states 1 and
2. Here g1(2) are the constants of electron-phonon interaction,
ω0(1,2) are the frequencies of a- and b-type phonons. The terms
proportional to Va(b) describe interactions of a (b) phonons at
different sites of a crystal lattice.

Within the mean field approximation applied to the matrix
Green function

Gγ (ω) =
(〈〈

c1 f γ

∣∣ c†
1gγ

〉〉 〈〈
c1 f γ

∣∣ c†
2gγ

〉〉〈〈
c2 f γ

∣∣ c†
1gγ

〉〉 〈〈
c2 f γ

∣∣ c†
2gγ

〉〉
)

ω

=
(

Gγ

11 Gγ

12
Gγ

21 Gγ

22

)
ω

(36)

one has

Gγ

11(22)(ω) = ω ∓ ε
2 ± g1�1ph

(ω − ω1)(ω − ω2)
,

Gγ

12(ω) = Gγ

21(ω) =
(
zJex�ex + g2�2ph

)
(ω − ω1)(ω − ω2)

,

where Jex = J ′
ex + J ′′

ex, �1ph = 〈ai + a†
i 〉, �2ph = 〈bi + b†

i 〉,
�ex = 〈c†

2 jγ c1 jγ 〉 = 〈c†
1 jγ c2 jγ 〉 is the excitonic order param-

eter, and the dispersion is

ω1(2) = ±
[(ε

2
− g1�1ph

)2

+(
zJex�ex + g2�2ph

)2
]1/2

= ±s. (37)

In terms of the Matsubara frequencies ωn and εn, and using the
mean field approximation with respect to the phonon-phonon
interaction Va(b) in Eqs. (34) and (35) one obtains

�1ph = 〈ai + a†
i 〉ωn=0 = 2g1

(h̄ω0(1) − 2zVa)

× 1

β

∑
m,γ

[〈c†
2iγ c2iγ 〉εm − 〈c†

1iγ c1iγ 〉εm ], (38)

�2ph ≡ 〈bi + b†
i 〉ωn=0 = − 2g2

(h̄ω0(2) − 2zVb)

× 1

β

∑
m,γ

[〈c†
1iγ c2iγ 〉εm + 〈c†

2iγ c1iγ 〉εm ]. (39)

Summing over εn in Eqs. (38) and (39), one finally obtains

�1ph = − 4g1

(h̄ω0(1) − 2zVa)
× ε − 2g1�1ph

2s
tanh

(
s

2kBT

)
,

(40)

�2ph = 4g2

(h̄ω0(2) − 2zVb)

(
zJex�ex + g2�2ph

)
s

tanh

(
s

2kBT

)
.

(41)

The expressions for the phonon order parameters given above
are valid in the limit when g1 << ω0(1) and g2 << ω0(2).

Using the expression

〈
c†
λ′gγ cλ f γ

〉 = − 1

π

∫
dω fF (ω,μ)ImGγ

λλ′ ( f − g, ω + iδ)

FIG. 6. The mean-field phase diagrams in the following cases:
(a) g1 = 0.01J0, J ′′

ex = 0, Va = 0; (b) g1 = 0.01J0, J ′′
ex = 0, Va =

0.0124J0, (c) and (d) J ′′
ex = −0.5J0, Va = 0, g1 = 0. In (a) and (b), the

first color scale corresponds to n2, the second corresponds to �1ph,
(ε∗

S , T ∗) is the critical vapor-liquid point.

for the correlation function together with Eq. (36), the occu-
pation numbers of the states 1 and 2 are

n1 = 1

2

[
1 + ε/2 − g1

〈
ai + a†

i

〉
s

tanh

(
s

2kBT

)]
, (42)

n2 = 1

2

[
1 − ε/2 − g1

〈
ai + a†

i

〉
s

tanh

(
s

2kBT

)]
, (43)

and the excitonic order parameter is

�ex = − zJex�ex + g2�2ph

2s
tanh

(
s

2kBT

)
. (44)

Among the solutions of Eqs. (40)–(44) we are inter-
ested in those which correspond to the free energy F =
−kBT ln(e−βω1 + eβω1 ) minimum and satisfy the equation,
defining the value of the chemical potential

n1 + n2 = 1

= − 1

π

∫
dω fF (ω,μ)

[
ImGγ

11(ω + iδ) + ImGγ

22(ω + iδ)
]
.

Let us investigate the roles of various interactions in
Eq. (33). As in Sec. IV, we consider the case of a two-
dimensional square lattice and neglect J ′

ex. The frequencies
ω0(1) and ω0(2) in Eqs. (34) and (35) are supposed to be
equal to 0.1J0. To simplify the discussion we will also assume
that Vb = 0 (an influence of this parameter will be discussed
below).

First, we consider the case g2 = 0. In Figs. 6(a) and
6(b) the phase diagrams of the phonon order parameter
�1ph [Eq. (40)] and the occupation number n2 [Eq. (43)]
are shown at J ′′

ex = 0, g1 = 0.01J0 in the case when Va =
0 (a) and Va = 0.0124J0 (b). In the first case (a) there
is a smooth crossover, whereas in the second (b) there is
an isostructural first order phase transition with the criti-
cal “vapor-liquid” point (ε∗, T ∗) present—above this point,
the system can be smoothly transformed from a state with
n2 = 1 to a state with n2 = 0. The case Va �= 0 and g1 =
0 is trivial, since, according to Eq. (40), �1ph = 0, and
the Hamiltonian Eq. (34) can be diagonalized by a canon-
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FIG. 7. The phase diagrams of (a) the excitonic order parameter
�ex, (b) the occupation number n2 of the one-electron state 2 and the
phonon order parameter �1ph at g2 = 0 and Va = 0. In (b), the first
color scale corresponds to n2, the second corresponds to �1ph

ical transformation as H1ph = ∑
q ω(q)(a†

qaq + 1/2), where

ω(q) = h̄ω0(1)

√
(1 − 4Va

h̄ω0(1)
(cos qx + cos qy)), which describes

an ideal gas of phonons, in which, as in Fig. 6, there is no
phase transition. Comparing Figs. 6(a) and 6(b), it can be seen
that the intersite interaction Va provides the cooperativity nec-
essary for a phase transition. Each of the interactions Va and
g1 separately does not lead to a phase transition (the presence
of one of them separately is necessary, but not sufficient).
In the following we will exclude the phonon mechanism of
cooperativity by assuming Va = 0.

Whereas the phase diagram shown in Fig. 6(a) corresponds
to the quantum phase transition at T = 0 in the absence of
cooperativity, in Fig. 6(b) there is a first order phase transition
at finite temperatures up to the critical point T ∗. In Figs. 6(c)
and 6(d) the phase diagram of the excitonic order parameter
�ex given by Eq. (44) and the phase diagram of the occupation
number n2 given by Eq. (43) are shown at J ′′

ex = −0.5J0 when
Va = 0 and g1 = 0. In such a case there exists the second
order phase transition into the excitonic condensate phase [see
Fig. 6(c)].

The results of calculations in the case when �ex, n2, and
�1ph are nonzero at the same time, but Va is zero, are shown
in Figs. 7(a) and 7(b) at J ′′

ex = −0.5J0 and g1 = 0.01J0. From
Figs. 6(a), 6(b) and 7(b) it is clear that n2 and �1ph behave
similarly [see Eqs. (40) and (43)].

Analogously to Eq. (20) one obtains the two-electron
Green function

〈〈c†
1 f γ c2 f γ |c†

2gγ c1gγ 〉〉 = (n1 − n2)

(ω − ω+)(ω − ω−)
[ω + ε − 2g1

× �1ph + (n1 − n2)J ′
ex(k)], (45)

ω±(k) = ± [(ε − 2g1�1ph + (n1 − n2)J ′
ex(k))2

− (n1 − n2)2J ′′2
ex(k)]1/2. (46)

The spectrum of excitons given by Eq. (46) at the points
A, B, C, and D of the phase diagram Fig. 7(a) is shown in
Fig. 8. We define the excitonic spectrum gap as Eg = ω+(k) −
ω−(k), where k = �(M ). The diagonal electron-phonon in-
teraction does not lower the symmetry of the Hamiltonian in
Eq. (32), so the gap Eg is zero at the boundary of the excitonic
condensate phase (see Fig. 8, B and C).

Let us now discuss the case g1 = 0, but g2 = 0.01J0 (J ′′
ex =

−0.5J0 as before) shown in Fig. 9. Due to Eq. (44) the
behavior of �ex and �2ph is qualitatively identical. In this
case, the nondiagonal electron-phonon interaction lowers the
symmetry of the Hamiltonian in Eq. (32), thus, the gap Eg is

FIG. 8. The spectrum of excitons ω±(k) given by Eq. (46) calcu-
lated at the points A, B, C, and D of the phase diagram Fig. 7(a) when
g2 = 0.

finite and remains open at the excitonic condensate boundary
(see Fig. 10, points B and C).

As one can see from Figs. 8 and 10 (similarly to Figs. 3–5),
the spectral weight is distributed nonuniformly among the
Brillouin zone. We note that since at ε = 0 a change of the
ground state takes place, the system cannot be smoothly (adi-
abatically) transformed from the state at point A to the state at
point D. This way, across the line ε = 0, as one can see from
Eq. (46) (n1 = n2 = 0.5 at ε = 0), the gap becomes zero even
when the nondiagonal electron-phonon interaction is present.

VI. DISCUSSION AND CONCLUSIONS

Using Eq. (1), one can consider two limiting cases. In
the first (weakly correlated), when HCoulomb << H� + Ht , one
deals with a two-band semiconductor or a semimetal, de-
pending on the t/� ratio. In this case, the Bose-Einstein or
BCS formation of excitonic condensate is possible. In the
second case (strongly correlated), when the energy of the
Coulomb interaction of electrons is comparable to the crys-
tal field energy HCoulomb ∼ H� and larger than their kinetic
energy HCoulomb > Ht , there appears a possibility for the spin
crossover and formation of localized magnetic excitons. In the
present paper we have shown in the framework of the two-
band Hubbard-Kanamori model that the condensation of such
excitons takes place near the spin crossover and leads to the
appearance of the antiferromagnetic ordering even when an
interatomic exchange interaction is absent. In other words, the
appearance of magnetism caused by excitonic condensation is
found. It should be noted that in the exciton dielectric model at
weak electron-electron interaction, the formation of excitonic
condensate can lead to magnetic ordering without exchange
interaction in a similar way [4].

Close to the phase transition point the elementary excita-
tion spectra are known for their significant dependency on the
type of statistics: whereas in the fermion system, a gapped
branch with a gap width proportional to the order parameter

FIG. 9. The phase diagrams of the (a) excitonic order parameter
�ex, (b) occupancy n2, and (c) phonon order parameter �2ph in the
case g1 = 0.
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FIG. 10. The spectrum of excitons ω±(k) given by Eq. (46) cal-
culated at the points A, B, C, and D of Fig. 9(a) when g2 �= 0.

exists as well as a gapless branch, in the Bose system only
the latter exists. This is due to the fact that fermionic systems
have both individual gapped and collective gapless excita-
tions, while Bose systems can only have collective excitations
(as was shown using the diagrammatic approach in Ref. [39]).

In the present paper we have obtained the spectrum of exci-
ton excitations and shown its instability towards the formation
of the excitonic Bose condensate. This spectrum describes
collective, from the point of view of the electronic (Fermi)
system, excitations, but one can interpret this spectrum as a
quasiparticle (one-particle) one with respect to Bose-type par-
ticles described by the Hamiltonian in Eq. (15). Everywhere
outside the excitonic condensate phase there is a gap in the
spectrum, which becomes zero at the boundary of the second
order phase transition, which agrees with the general idea,
that, below the point of a phase transition, there should arise
a gapless Goldstone mode, describing collective excitations
in the excitonic condensate phase [16,40]. In other words,
the appearance of such a gapless mode is preceded by the
closing of the gap in the quasiparticle excitations spectrum.
The nondiagonal electron-phonon interaction (contrary to the
diagonal one) leads to the opening of a gap in the individual
excitonic excitations spectrum at the boundary of the second
order phase transition, which is consistent with the result of
Ref. [40], where it was shown that the collective Goldstone
mode acquires mass due to nondiagonal electron-phonon
interaction. In this case, the Bose spectrum of excitations
(one-particle excitonic and collective in the excitonic phase)
has a gap on both sides of the phase transition. According to
the authors of Ref. [40], this circumstance plays an important
role in the photoinduction of an excitonic condensate and can
provide a new strategy of enhancing the order parameter in
analogous systems (such as superconductors). An interesting
feature of the spectra that we obtained is the nonuniform

spectral weight distribution among the Brillouin zone. In this
connection, it is interesting to investigate the behavior of
collective excitations in the exciton condensate phase.

Let us discuss the possibility of experimental realization of
our results. As was mentioned in the Introduction, LaCoO3

and other rare earth cobaltites with competition between mag-
netic and nonmagnetic terms can be described by our model,
see also the review [15] and papers [16–21]. In LaCoO3, con-
tinuous occupation of the magnetic term with heating prevents
a thermodynamic phase transition. Another external force that
may induce spin crossover in LaCoO3 is a strong magnetic
field. Several experiments have confirmed the LS-HS state
transition in magnetic field 65 T [41–44]. Field-induced ex-
citon condensation in LaCoO3 has been discussed in papers
[45–47].

The crossover between magnetic HS and nonmagnetic
LS states under high pressure in ferropericlase FexMg1−xO
was mentioned in the Introduction. In the limit T → 0 the
crossover becomes a quantum phase transition of a pure topo-
logical nature and emerges as the quantum transition between
the ground states with the distinct winding numbers [48,49].
To check the prediction [29] that spin crossover at zero
temperature is a quantum phase transition with topological
Berry-type phase as the order parameter, the detailed study of
nuclear forward scattering at pressures up to 60 GPa and tem-
perature between 8 and 300 K have been carried out [50]. The
finite temperature is expected to smooth the quantum phase
transition. What was found in experiment [50] is the first
order transition from magnetic HS state to nonmagnetic LS
state as the vertical line on a (P, T ) plane with Pc = 55 GPa.
The excitonic phase may be expected at low temperatures at
pressure around 55 GPa.

Another possible experiment related to our conclusions is a
study of the excitonic dispersion even far from spin crossover.
It may be done both in LaCoO3 and under high pressure in
ferropericlase FexMg1−xO. Inelastic neutron scattering exper-
iments had shown its capabilities to measure dispersion of
various boson-type excitations like phonons, magnons, etc.
For experiments under high pressure RIXS might be more
available.
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