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Fabry-Perot bound states in the continuum in an anisotropic photonic crystal
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An anisotropic photonic crystal containing two anisotropic defect layers is considered. It is demonstrated
that the system can support a Fabry-Perot bound state in the continuum (FP-BIC). A fully analytic solution of
the scattering problem as well as a condition for FP-BIC have been derived in the framework of the temporal

coupled-mode theory.

DOI: 10.1103/PhysRevB.106.245403

I. INTRODUCTION

The bound state in the continuum (BIC) is a nonradiative
eigenstate of an open system whose eigenvalue lies in the
continuum of propagating waves [1-4]. BICs were first dis-
covered when solving the problem of the eigenenergy of a
particle in a spherical quantum well [5]. Von Neumann and
Wigner found special oscillating potentials tending asymp-
totically to zero far from the quantum well, the destructive
interference on which allows a particle to stay localized even
at energies above the potential well. The BIC is a general
wave phenomenon, which is always caused by the destructive
interference of waves leaking from a system. For convenience,
BICs are classified into the following categories, according to
the types of their formation: symmetry-protected, Friedrich-
Wintgen, Fabry-Perot, and accidental [6].

Theoretically, BICs have an infinite Q-factor, since they
do not radiate into the environment. To excite and detect the
resonance, the BIC should be coupled with the propagating
waves. Then, the BIC transforms into a quasi-BIC with a finite
Q-factor. Varying the parameters of the system near the BIC,
one can control the coupling between the resonance and the
continuum, i.e., the resonant Q-factor. Quasi-BICs with a con-
trollable Q-factor have been proposed for various photonics
applications, e.g., lasers [7-9], light filters [10-12], sensors
[13-15], waveguides [16-19], and amplification of nonlinear
effects [20-22].

BICs can be implemented in three-, two-, and one-
dimensional structures extended in at least one spatial
dimension [1]. BICs in a one-dimensional photonic structure
were first implemented in Ref. [23], where the authors created
a trilayer waveguide made of anisotropic materials, which
supported a BIC with a theoretically infinite path length.
In one-dimensional structures based on photonic crystals
(PhCs) with anisotropic layers, BICs were studied theoreti-
cally [24-27] and experimentally [28,29].
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In this work, we consider a one-dimensional anisotropic
PhC consisting of alternating isotropic and anisotropic
layers. Introducing one anisotropic defect layer in this PhC,
one can engineer symmetry-protected BICs [24,25] as well
as Friedrich-Wintgen BICs [26]. Here, we study the case of
two anisotropic defect layers, which allow us to set up a
Fabry-Perot BIC. Since each separate defect can exhibit a
BIC-induced resonance, they are equivalent to two perfectly
reflecting mirrors arranged in such a way that the waves are
reflected in antiphase and compensate each other, making it
possible to obtain a Fabry-Perot BIC [30-34].

II. MODEL

The model under scrutiny is a one-dimensional PhC con-
sisting of alternating isotropic and anisotropic layers with
two anisotropic defect layers (ADLs), ADL 1 and ADL 2;
see Fig. 1(a). The refractive index of the isotropic layer is
n, = /€, and the layer thickness is d,. The anisotropic layer
with thickness d, has the ordinary refractive index n, = /&,
and the extraordinary refractive index n, = /e, for the waves
polarized along the y-axis (y-wave) and x-axis (x-wave) direc-
tion, respectively. The layer thicknesses are quarter-wave and
are determined by the equation

koMpsg Tw

kodo = kede = = 5 >
4 2Wppg

ey

where k, . = kon,.., ko = @/c is the wave number in vacuum,
w is the light frequency, c is the speed of light, wps is the
photonic band gap (PBG) center frequency, and Ay is the
corresponding wavelength.

Half-wave defect layers, ADL 1 and ADL 2, with the
thickness dapr. = 2d, are made of the same materials as the
anisotropic layer and characterized by the permittivity tensor.
The dielectric tensor is determined by the direction of unit
vectors

e1,2 = (cos (¢12), sin (¢12), 0)° 2)
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FIG. 1. (a) Model of an anisotropic PhC with two defects. (b) Reflectance of the PhC for y-waves (blue) and x-waves (red) calculated
by the Berreman method. The parameters are n, = 1, d, = 0.25 um, n, = 2, d, = 0.125 um, N = 8, m = 20, ¢, = ¢, = 0 (dashed line), and
¢ = 2.47 /180, ¢, = 2.57 /180 (solid line). (c) Distributions of the local field intensity |Ey ,|*/|Eo|* at a frequency of /27 = 1.00045 pm™!
corresponding to the resonance in (b). (d) TCMT model of an anisotropic PhC with two defects.

with respect to the coordinate axes. With given directions of vectors e; 5, the permittivity tensor takes the form

e, — {88 cos>(¢1,2) + £, 5in’(¢1,2)

sin (2¢1.2) (g0 — £,)/2

The defect layers, ADL 1 and ADL 2, are separated by the
PhC containing 2N + 1 layers, where N is the number of full
periods between defects. The parameters of the modeling are
n, = /6o =1,d, =0.25pm, n, = \/e, = 2,d, = 0.125 um,
m = 20.

All the PhC layers for the y-waves have the refractive index
n,, while the refractive index for the x-waves alternates along
the z-axis. Therefore, a PBG arises for the x-waves only, while
the y-waves form a continuum of propagating waves. The
anisotropic PhC is transparent to y-waves and nontransparent
for x-waves at the normal incidence. The above is illustrated
by the spectra in Fig. 1(b) calculated by the Berreman transfer-
matrix method [35] with a finite number m of periods to the
left and to the right of the ADLs. At the angles of rotation
of the ADL optical axes ¢, » = 0, both polarizations are fully
decoupled [24]. Rotating the optical axes of the defect layers,
one can mix the two polarizations and localize the x-wave.
The localization manifests itself in the form of resonant fea-
tures in the y-polarized spectrum in Fig. 1(b). One of the
resonant features is extremely narrow, which is indicative of
a high Q-resonance (Q ~ 10°) to be confirmed by a large
amplitude of the localized wave shown in Fig. 1(c). It can

sin 2¢1,2) (6. — €,)/2 } 3)

€0 SIN%(P1.2) + £, 08> (P12)

(

be seen that the x-component is localized within the ADLs
similar to an ordinary defect mode. At the same time, the
y-component is localized between ADLs, which is distinctive
for the FP-BIC [1].

III. TCMT EQUATIONS FOR INDIVIDUAL RESONATOR

Each ADL supports a resonant eigenmode that induces the
Fano resonance demonstrated in Fig. 1(b). Thus, each ADL
can be considered as a resonator, and PhCs on both sides
can be considered as waveguides. In the case of two ADLs,
the resonators are coupled via waves supported by the central
PhC waveguide. To understand the optical properties of the
system of two coupled resonators, we built a fully analytic
model based on the temporal coupled-mode theory (TCMT)
[36-39]. Here we start with the individual resonator.

Let us consider the two-channel scattering. For the incident
light polarized along the y-axis, the S-matrix is implicitly
defined by the equation

“
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where s} are the amplitudes of plane waves in the far-field
with a subscript m = 1, 2 corresponding to the left and right
half-spaces, and superscripts © and © standing for the inci-
dent and outgoing waves, respectively. We assume that the
system is illuminated by a monochromatic wave of frequency
. Below, we introduce the vectors of incident and outgoing
amplitudes |s®(¢)), which oscillate in time with the harmonic
factor e, According to [37], the TCMT equations take the
form

djzy) = —(iwg + y)a(r) + (d*[s* (1)),
s7(t)) = Cols™ (1)) + a(t)|d), 5)

where 60 is the matrix of the direct (nonresonant) process,
wo 18 the resonance frequency, y is the radiation decay rate,
a is the amplitude of the resonance eigenmode, and |d) is
the 2 x 1 vector of the coupling constants, which satisfies the
conditions

(dld) =2y, (6)
Cold*™) = —|d). @)
The solution for the S matrix is
5, =G DT ®)
i(wg—w)+y’

where the direct process matrix is given by

— oV
CO =e (l 0) B (9)

and the coupling vector is

_(d _ e Y .
|d)—<_d), d=e" \/;(l—i-z). (10)

The different signs in the coupling vector (10) correspond to
the antisymmetric mode. The generalization onto the symmet-
ric case is straightforward.

IV. TWO COUPLED CLOSED RESONATORS

Let us consider the eigenvalue problem for two coupled
BICs at ¢1’2 =0,

LE) = —iwo&Eo, (11)
where
- 0 V x
L= (—Vx 0 ) (12)
is the Maxwell operator, wy is the eigenfrequency,
E
Ey = (H) 13)

is the eigenvector, and

& = <8 (Il) (14)

The eigenvector £ corresponds to the symmetry-protected
BIC [24]. Now, we consider two identical resonators separated
by a PhC waveguide, each supporting a BIC as shown in

Fig. 1(d). Since the symmetry is not broken, the resonators are
only coupled via the evanescent tails of the BIC eigenmodes
due to the tunneling across the PBG. Each eigenmode is a
solution of the source-free Maxwell equation with the permit-
tivity tensor corresponding to each single resonator,

LE, = —iwoa,zEl,z. (15)

The eigenmodes E;, are localized at each individual res-
onator. The temporal Maxwell equations
-~ ~dE
LE =6—
dt

should be solved with the new permittivity tensor (see Fig. 1
in the Supplemental Material [40]),

(16)

~ [& ifz<0
={= ’ 17
¢ {52 if z>0. a7
Let us find the solution in the form
E@) = a1()E; + ax(t)Es. (18)

Substituting (18) into (16) and using the normalization
condition

/ dZE} 8 5B s = 1, (19)
we can find
ol @)= Ha) e
where
I = /dzEIngz = /dzE;aE 21
and
L= / dZEIEE, = / dZEIEE,. 22)

Taking into account

Ly <1, (23)

d
(v a)@)-a) e
v wo/\a2 dt \@
where the tunneling coupling constant is

v =wy(l; — b). (25)

we arrive at

V. TWO RESONATORS COUPLED
WITH TWO WAVEGUIDES

Let us now consider the case ¢, # 0.The BICs in the
ADLs now became quasi-BIC, i.e., the resonators are now
coupled with y-waves. The TCMT equation for amplitudes of
the resonant modes is

i(w) —w) + iv a
iv i(w —w)+yn)\a
dl (s(+) _ s&eikL)

- (dz(si“ - sﬁe"kl‘))’ (26)
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FIG. 2. Reflectance spectra obtained using (a)—(c) the Berreman transfer-matrix method and (d)—(f) the TCMT model at N = 3 (a),(d);
N =4 (b),(e); and N = 7 (c),(f). The other parameters are the same as in the caption to Fig. 1.

where L is the distance between the resonators as shown in The above set of equations can be solved for a; and a,. The

Fig. 1(d). For the reflected waves, we have reflection amplitude is then found from Eq. (29):
sV = diay + ie’ Vs _, p = A" [dX(i(wr—w)+ys) + 2idida eV D (iv — dydre™)
= dhay + iV TP (27) — & D (i) — 0) + )], (31)
At the same time, for the waves between the resonators, we  where
can write ) . L
o ~ (w — w) +n v — didre' (32)
s, = —dia) +ie"sy’, iv—dide™t (0 — )+ 1
s. = —doay +ie'Vsy. (28) In the case of a single defect layer, the direct process matrix
Combining Egs. (27) and (28), we find (9) has the form
5O = dyay — idye' V) gy — I Gy = oot ((1) (1)) (33)
S2 — dzdz _ ldlez(lll+kL)a _ 61(21//+kL) (+) (29)
) i.e., the y-wave, propagating through the defect layer, accu-
Substituting Eq. (28) into Eq. (26), we obtain mulates the phase k,dpr , and then
i(w —w)+y  iv—didye™ \ (a — kodari — /2 34
< v — dldzeikl‘ l(a)z _ (,()) + v w o ADL / ( )
(s — zsg)e’(kL ) Then, the coupling constant (10) takes the form
= <d2(s(+> ls<+>ez(kL+1p))) (30) d1,2 — eikodADL/zm' (35)
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FIG. 3. Reflectance spectra obtained using (a)—(c) the Berreman transfer-matrix method and (d)—(f) the TCMT model at N = 8 (a),(d);
N =10 (b),(e); and N = 12 (c),(f). The other parameters are the same as in the caption to Fig. 1. The blue dashed line in (a) at an angle of
¢ = 2.4 /180 corresponds to the spectrum in Fig. 1(b). The red lines in (a)—(c) correspond to eigenfrequencies w; (dashed line) and w, (solid
line) obtained from Eq. (36). The red cross corresponds to the FP-BIC frequency position obtained from Eqgs. (43) and (44).

The expressions for w; > and y; » were obtained in [25],

Wepg

W12 = O + ——q(1 — g)sin (Tq)¢7 5 + O(¢},),

T
2w 2 2 4
a2 =—=q(l —q)cos” (q/2i, + 0(¢1,). (36)

where g = n,/n,. The equations for E;, were derived in
[24]; see Egs. (8)—(12) in the latter reference. In Fig. 1 in
the Supplemental Material [40], we plotted the field E;»
distributions. The phase kL (26) accumulated by the y-wave
in propagation between ADL 1 and ADL 2 [see Fig. 1(d)] is

kL = k,N(d, + d,) + kod,. (37)

VI. RESULTS AND DISCUSSION

Figures 2—4 show the reflectance spectra calculated by the
Berreman transfer-matrix method and the TCMT. It can be
seen that two resonant lines approach each other with an
increase in the number of periods N in the PhC between

the ADLs. At N =4, 8, 12, 16, 20, 24, 28, 32 and so on, the
width of one of the resonant lines collapses if ¢; = ¢ =
7 /72.

The collapses of the resonant lines result from the coupling
between the resonant modes localized in both ADLs, which is
evidenced by the avoided crossing. In Figs. 3(a)-3(c), the red
dashed line shows the resonant frequency w,; as a function of
the rotation angle for the structure containing only ADL 1.
The red solid line shows the resonant frequency w, for the
structure containing only ADL 2, the rotation angle of which
is fixed. Both lines are obtained using Eqs. (36). It can be seen
that, in the system with two ADLSs, the resonant lines pass
below and above the resonance frequencies w;,. The cou-
pling between the resonant modes is due to the off-diagonal
elements of the matrix A, Eq. (32); see Ref. [41] for more
details. The tunneling coupling constant v (25) tends to zero
with the increase of the number of periods between the ADLs,

lim v =0, (38)

N—o0
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FIG. 4. Reflectance spectra obtained within the TCMT model at N = 24 (a), 25 (b), 26 (c), 27 (d), 28 (e), and 32 (f). The remaining
parameters are the same as those in the caption to Fig. 1. Red crosses correspond to FP-BIC frequency positions obtained from Eqs. (43) and

Eq. (44).

since the field distributions E; , are evanescent functions de-
caying exponentially outside the ADL [42], i.e., ;> =0 in
Egs. (21) and (22); see Fig. 1 in the Supplemental Material
[40]. This explains the repulsion of the resonant lines with
decreasing N.

It can be seen in Fig. 4 that at large N the spectra replicate
[see Figs. 4(a), 4(e) and 4(f)] with a period of AN = 4. This
can be explained by the fact that in Eq. (31) we can ignore the
terms that include v at large N. The resulting equation does
not change with an increase in L by an integer number £ of
half-waves

p(kL) = p(kL + £71). (39)

According to Eq. (37) it can be shown that with our calculation
parameters k,d, = /2 and k,d, = 7w /4 for @ = wppg, the
smallest integer is £ =3 at AN = 4. The spectra obtained
with the TCMT, Fig. 2, and Figs. 3(d) and 3(e) are con-
sistent with the spectra obtained by the Berreman method,
Figs. 2(a)-2(c) and Figs. 3(a)-3(c). The difference between
the two methods is observed when the approximations used to
build the TCMT, ¢, » < 1 and v < 1, break down; see Fig. 3
in the Supplemental Material [40].

The parameters at which the resonant line collapses can be
found by solving the eigenvalue problem, which is formulated
as

Ala) = 0. (40)

The BIC can be found as a solution of Eq. (40) with a real
eigenfrequency w = wy,c. However, there is a more convenient
way to obtain the FP-BIC condition for N > 1. The two
ADLs can act as a pair of perfect mirrors that trap waves
between them. The FP-BICs are formed when the resonance
frequency or the spacing, L, between the two ADLs is tuned
to make the round-trip phase shifts add up to an integer mul-
tiple of 2z [1]. Then, the equation for the FP-BICs has the
following form:

Vres + koL = 1¥, (41)

where Vs = arg(S;) found from Eq. (8) is the phase of the
resonant reflection from the ADL, and ¢ is an integer number.
From Eq. (35), ¥es has the following form:

Yres = 2Wqg = ¥ + 7 /2 = ko, (42)
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where ¥, = arg(d) is the phase of the coupling constant
Eq. (10). Taking into account that k, = wgcn,/c and the
expression for L (37), we can obtain the equation for the
FP-BICs frequencies,

wilc @3)
Wi = .
" nolda + N(do + de) + d,]
The required value ¢ is defined using Eq. (36) as follows:
Wge = ©12(P12). (44)

The solution of Eqgs. (43) and (44) is shown in Figs. 3
and 4 by red crosses. It can be seen that for N = 12
[Fig. 3(f)], the FP-BIC frequency found from the above equa-
tions matches the numerical data to a good accuracy, while
for N = 24,28, 30 it corresponds to the exact position of
the resonant line collapse. The deviation at N = 12 is be-
cause Eq. (41) neglects the tunneling coupling constant v
[Eq. (38)].

VII. CONCLUSIONS

In this work, Fabry-Perot BICs are found in an anisotropic
photonic crystal containing two anisotropic defect layers.
Each defect layer can separately support a symmetry-
protected BIC, thereby acting as an ideal mirror in the
Fabry-Perot resonator. A fully analytic model is proposed
to solve the scattering problem within the framework of
the temporal coupled-mode theory. The spectra found using
the analytic model are consistent with the numerical spec-
tra obtained using the Berreman transfer-matrix method. The
analytic model explains the spectral features, particularly the
avoided crossing of the resonant lines, collapses of the reso-
nant lines in the Fabry-Perot BIC points, and the periodicity
of the spectra in the case of defect layers at a large distance
from one another. The proposed model can be used to design
microcavities with a controllable Q-factor [28,29].
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