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Ballistic transport of interacting Bose particles in a tight-binding chain

P. S. Muraev ,1,2 D. N. Maksimov,1,3 and A. R. Kolovsky 1,2

1Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
2School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia

3IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia

(Received 16 July 2022; accepted 17 November 2022; published 6 December 2022)

It is known that the quantum transport of noninteracting Bose particles across a tight-binding chain is ballistic
in the sense that the current does not depend on the chain length. We address the question whether the transport
of strongly interacting bosons can be ballistic as well. We find such a regime and show that, classically, it
corresponds to the synchronized motion of local nonlinear oscillators. It is also argued that, unlike the case
of noninteracting bosons, the transporting state responsible for the ballistic transport of interacting bosons is
metastable, i.e., the current decays in the course of time. An estimate for the decay time is obtained.
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I. INTRODUCTION

In the past decade much effort has been invested in un-
derstanding the quantum transport of Bose particles across
a one-dimensional lattice connecting two particle reser-
voirs [1–7]. Several theoretical approaches have been used
to analyze this problem, including straightforward numerical
simulations of the master equation for bosons in the lattice,
quantum jump methods, and the semiclassical (mean-field)
and pseudoclassical approaches. The last two approaches are
especially important for developing an intuitive physical pic-
ture because they map the quantum transport problem to the
classical problem of excitation transfer in a chain of coupled
nonlinear oscillators with the edge oscillators driven by ex-
ternal forces, where the type of driving force is determined
by the ergodic properties of the particle reservoirs. Namely, if
reservoirs justify the Born-Markov approximation, the edge
oscillators are driven by the complex white noise whose
intensity is proportional to the particle density in the reser-
voir [1–3]. For non-Markovian reservoirs the white noise has
to be superseded by the narrow-band noise with the spectral
density spanning a finite frequency interval [4]. Typically, this
is the case where Bose particles in reservoirs are close to
condensation. At last, one may consider the situation where
the spectral density of the colored noise is given by the δ

function, i.e., we have a periodic driving. Experimentally,
this case is realized, for example, in a chain of capacitively
coupled transmons where the first transmon is excited by a
microwave generator [8–10], or in an array of optical cavities
with the Kerr nonlinearity where the first cavity is excited by
a laser. We mentioned that the minimal-size chains consisting
of two cavities are currently used to study a number of other
fundamental problems [11–17]. In the present paper, however,
we focus exclusively on the transport problem where the main
question is the current of Bose particles across the chain. As
the main result, we show that edge-driven systems can ex-
hibit an exotic transport regime where the current of strongly

interacting bosons is independent of the chain length and is
insensitive to a weak disorder. This relates the reported results
to the problem of superfluidity of Bose gases [18,19].

II. THE MODEL

We consider a chain of coupled nonlinear quantum oscil-
lators of a finite length L, where the first oscillator in the
chain is driven by a monochromatic field while the last oscil-
lator is subject to decay. Referring to laboratory systems, this
model describes, for example, the chain of coupled transmons
where the first transmon is excited by the microwave field and
the transmitted signal is read from the last transmon. In the
rotating-wave approximation the quantum Hamiltonian of the
system under scrutiny has the form

Ĥ =
L∑

�=1

h̄(ω� − ν)n̂� − h̄J

2

(
L−1∑
�=1

â†
�+1â� + H.c.

)

+ h̄2U

2

L∑
�=1

n̂�(n̂� − 1) +
√

h̄�

2
(â†

1 + â1), (1)

where the index � labels the chain site, â� and â†
� are the cre-

ation and annihilation bosonic operators commuting to unity,
n̂� = â†

� â� is the number operators, ω� are the linear frequen-
cies (on-site energies), J is the hopping matrix element, U
the interaction constant (nonlinearity), and the Rabi frequency
� characterizes the strength of the external monochromatic
driving with the frequency ν. We shall denote the detuning
ν − ω� by �� where the absence of the subindex � will imply
identical on-site energies.

Since only the last oscillator is subject to decay, the gov-
erning master equation for the system density matrix R̂ reads

∂R̂
∂t

= − i

h̄
[Ĥ, R̂] − γ

2
(â†

LâLR̂ − 2âLR̂â†
L + R̂â†

LâL ), (2)
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where γ is the relaxation constant. We mention in passing that
the results reported below also hold true in the case where the
other oscillators are also subject to decay but their decay rates
γ� � γ . To address the quantum-to-classical correspondence,
we incorporate in the Hamiltonian (1) and the master equa-
tion (2) the effective Planck constant h̄, the physical meaning
of which will be explained in the beginning of Sec. V.

Our main object of interest is the single-particle density
matrix (SPDM)

ρ̂(t ) = Tr[â†
� âmR(t )]. (3)

The diagonal elements of this matrix give the occupation
numbers of the chain sites while the subdiagonal determines
the current across the chain,

j(t ) = 1

L − 1
Tr[ ĵρ̂(t )], (4)

where ĵ is the single-particle current operator with the el-
ements j�,�′ = J (δ�,�′+1 − H.c.)/2i. At the same time, as it
follows from the continuity equation, the stationary current
j̃ = j(t → ∞ is given by the stationary population of the last
site multiplied by γ , i.e., j̃ = γ |ãL|2.

III. SEMICLASSICAL ANALYSIS

The semiclassical approximation associates the mean val-
ues of the creation and annihilation operators times

√
h̄ with

the conjugated canonical variables a� and a∗
� . Then the gov-

erning (Gross-Pitaevskii) equations take the form

iȧ1 = (−� + U |a1|2)a1 − J

2
a2 + �

2
,

iȧ� = (−� + U |a�|2)a� − J

2
(a�+1 + a�−1),

iȧL = (−� + U |aL|2)aL − J

2
aL−1 − i

γ

2
aL. (5)

Due to contraction of the phase volume for γ �= 0, an arbitrary
trajectory a(t ) evolves to some attractor in the multidimen-
sional phase space of the system [20,21]. In what follows
we focus on attractors which ensure the ballistic transport of
excitations from the first to the last oscillator. We begin with
the case of the vanishing interparticle interaction where the
system has a single attractor—a simple focus.

A. Vanishing interparticle interaction

For U = 0 the system of coupled differential equations (5)
can be decoupled by introducing the new canonical variables
given by the eigenmodes X ( j)

� of the undriven (� = 0) chain.
Since we excite the first oscillator and the stationary current
is proportional to the squared amplitude of the last oscillator,
we have

j̄ ∼
∣∣∣∣∣

L∑
n=1

X (n)
1 X (n)

L

� − εn

∣∣∣∣∣
2

, (6)

where εn are the chain complex eigenfrequencies with
Re[εn] ≈ −J cos(πn/L) and Im[εn] ∼ γ . It follows from
Eq. (6) that the stationary current as a function of the detuning
shows L peaks in the interval |�| < J/2—the phenomenon
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FIG. 1. Stationary values of the squared amplitudes in a chain of
length L = 2 as a function of the detuning � are shown by the dashed
and solid lines for U = 0 in (a), and U = 0.5 in (b). The parameters
are J = 0.5, γ = 0.2, and � = 0.5. The current across the chain is
proportional to |a2|2 depicted by the red solid line.

known as resonant transmission. Resonant transmission is
illustrated in Fig. 1(a) for L = 2. If |U | � J , the transmission
peaks slightly bend to the left or right, depending on the
sign of U . However, with a further increase of the interaction
constant, the discussed simple attractor shows a cascade of
bifurcations [22], leading to a number of qualitatively dif-
ferent transport regimes. We also would like to mention that
the resonant transmission Eq. (6) is sensitive to the on-site
disorder ω� due to the presence of the product X (n)

1 X (n)
L in

Eq. (6), which tends to zero in the regime of Anderson’s
localization.

B. Strong interparticle interaction

Next, we address the case |U | > J and, to be specific,
we shall consider positive U from now on. In this case the
attractor, which ensures the ballistic transport, corresponds to
the synchronized motion of the oscillators,

a�+1 ≈ a�eiφ, φ ≈ arcsin(γ /J ). (7)

Equation (7) is illustrated in Fig. 2 for L = 8 and in Fig. 1(b)
for L = 2. The crucial feature of the solution (7), which later
on will be referred to as the transporting state, is the existence
of the critical detuning �cr above which the basin of the
discussed attractor shrinks to zero.

Let us discuss the results shown in Fig. 1(b) in more
detail. First, we notice that in the interval 0 < � < �cr the
squared amplitudes |a�|2 grow approximately linear with
the detuning, i.e., |a�|2 ≈ �/U . For γ = 0 this linear depen-
dence exhibits the phenomenon of capturing in the nonlinear
resonance [20,21]. In the presence of dissipation, however,
the nonlinear resonance degenerates into the limit cycle. This
transformation of the nonlinear resonance into the limit cycle
can be studied in full detail for L = 1, i.e., for the dissipa-
tive driven nonlinear oscillator. In that system the stationary
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FIG. 2. The stationary complex amplitude of the local oscillators
in a chain of length L = 8 for −4 < � < 2.5. The dashed line is
Eq. (8). The other system parameters are as in Fig. 1.

amplitude of the oscillator is given by the relation [23]

a = �/2

U |a|2 − � − iγ /2
, (8)

where |a|2 obeys the algebraic equation

|a|2 = (�/2)2

(U |a|2 − �)2 + (γ /2)2
. (9)

We found that Eqs. (8) and (9) provide a good approximation
for the amplitude of the first oscillator in the chain if L > 1
(see the dashed line in Fig. 2). Thus, we can use Eq. (9) to
obtain an estimate for �cr,

�cr ≈ U (�/γ )2. (10)

It is seen in Fig. 1(b) that, when we exceed this critical value,
the amplitude of the last oscillator in the chain drops almost
to zero, which results in the abrupt decrease of the current.

C. Basin size

For future purposes we need to know the basin of the
discussed attractor. Although visualizing the attractor basin
in a multidimensional phase space is difficult, one can easily
estimate its size [24]. To do this we randomly perturbed the
stationary amplitude of the last oscillator as aL → aL + ξ ,
where ξ samples the Gaussian distribution with the width σ ,
and checked whether the perturbed trajectory attracts back
to the solution (7). Approximating the attractor basin by the
circle (more precisely, the basin projection on the aL plane)
we expect that the number of not-attracted trajectories grows
with an increase of σ as

S ∼ σ 2 exp

(−r2

2σ 2

)
, (11)
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FIG. 3. Main panel: Approximation of the numerical data by the
function (11) for � = 1.90. Inset: The basin size as a function of the
detuning �. The system parameters are the same as in Fig. 1.

where r is the circle radius. Next, interpolating the numerical
data by the function (11) we find r = r(�) (see Fig. 3). It
is seen in Fig. 3 that the basin size decreases approximately
linearly with �.

D. Adiabatic passage

We conclude this section by a remark that the results pre-
sented in Figs. 1 and 2 can be fairly reproduced by using the
adiabatic passage where the detuning � is slowly changed
in time. For the figure parameters we found no difference
between the stationary and quasistationary solutions if the
sweeping β,

β = d�/dt,

is smaller than 100 tunneling periods T = 2π/J per unit inter-
val of �. It should be also stressed that, since we chose U > 0,
we consider positive β. Specifically, in our adiabatic protocol
we started from � = −4 and a� = 0. Then, � was increased
with the rate β = 1.2 × 10−3 leading to results identical to
those in Figs. 1 and 2. If the sweeping direction were inverted,
we would observe very different dynamical regimes, includ-
ing the limit cycle in the frequency interval 0.37 < � < 0.78
(L = 2) where the oscillator amplitudes periodically change
in time [25].

IV. QUANTUM DYNAMICS

In this section we compare the results of the semiclassical
analysis with the solution of the master equation (2). We solve
the master equation in the Hilbert space given by the direct
sum of the subspaces associated with the fixed number of
particles in the chain, N = 0, 1, . . . , Nmax, where Nmax is the
truncation parameter. We control the accuracy by checking the
convergence of the results as Nmax is increased.

First, we study the transporting state of the system for U =
0. We find this state by sweeping the detuning � with a fixed
rate β in the interval |�| � J . We take the precaution that
the rate β is small enough to ensure the adiabatic regime. The
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FIG. 4. Eigenvalues of the SPDM for U = 0 and h̄ = 1 (top) and
U = 0.5 and h̄ = 0.25 (bottom). The sweeping rate of the detuning
� is β = 1.2 × 10−3. The dashed and solid lines are the exact result
and the result of the pseudoclassical approach (average over 3600
realizations), respectively.

upper panel in Fig. 4 shows eigenvalues λn = λn(�) of the
stationary SPDM of the system with L = 2 sites. Notice that
the matrix has only one nonzero eigenvalue and this holds true
for arbitrary L. Comparing the result shown in Fig. 4(a) with
the result of the semiclassical analysis we conclude that the
stationary SPDM is determined by the stationary solution ã =
a(t → ∞) of the classical Eqs. (5) through the relation ρ̃�,m ∼
ã∗

� ãm.
Next, we consider the case U = 0.5 where we expect sim-

ilarities with the result depicted in the bottom panel in Fig. 1.
Indeed, it is seen in Fig. 4(b) that the number of bosons in
the chain (which is given by Tr[ρ̂] = ∑

n λn) initially grows
linearly with �, however, for � ≈ 1.0 it drops back to zero.
We also notice that for U �= 0 the system SPDM may differ
from a pure state, i.e., λ2 �= 0.

Summarizing the obtained results, we come to the follow-
ing intermediate conclusion. One finds an excellent agreement
between the classical and quantum approaches in the case
U = 0 and a strong discrepancy in the case U �= 0. In the next
section we quantify this discrepancy by using the pseudoclas-
sical approach.

V. PSEUDOCLASSICAL APPROACH

First, we clarify the meaning of the effective Planck
constant entering Eqs. (1) and (2). It follows from these equa-
tions that the actual parameters, which determine the quantum
dynamics, are U ′ = h̄U and �′ = �/

√
h̄. Remarkably, the

indicated scaling of the interaction constant and the Rabi
frequency does not alter the classical dynamics of the sys-
tem where we associate operators

√
h̄â and

√
h̄â† with the

canonical variables a and a∗. Thus, the effective Planck con-
stant h̄ determines the mean number of bosons in the system.
The larger is this number, the closer is the quantum system
to its classical counterpart. The pseudoclassical approach is

an approximation to the exact quantum dynamics through a
series expansion in the parameter h̄. It substitutes the master
equation for the system density matrix by the Fokker-Planck
equation for the classical distribution function f = f (a, a∗, t )
and, in this sense, is equivalent to the truncated Wigner func-
tion approximation [26–29] in the single-particle quantum
mechanics. Explicitly, we have [4]

∂ f

∂t
= {H, f }

+γ

2

[
∂ (aL f )

∂aL
+ ∂ (a∗

L f )

∂a∗
L

]
+ h̄γ

2

∂2 f

∂aL∂a∗
L

, (12)

where

H =
L∑

�=1

[
−(� + h̄U )|a�|2 + U

2
|a�|4

]

−J

2

L∑
�

(a∗
�+1a� + c.c.) + �

2
(a1 + a∗

1 ), (13)

and {. . . , . . .} denote the Poisson brackets.
Let us discuss the meaning of different terms in the dis-

played equation. The first term on the right-hand side of this
equation is the Liouville equation for the conservative chain.
The second term describes the contraction of the phase vol-
ume in the dissipative chain and thus can be referred to as
friction. Finally, the last term describes the diffusion. Using
Eq. (12) the SPDM is found as the phase-space average,

ρ�,m(t ) =
∫

a∗
�am f (a, a∗, t )dada∗. (14)

Usually, one evaluates the multidimensional integral in
Eq. (14) by putting into correspondence to the Fokker-Planck
equation (12) the following Langevin equation,

iȧ� = ∂H

∂a∗
�

− i
γ

2
δ�,La� +

√
h̄γ

2
δ�,Lξ (t ), (15)

where ξ (t ) is the δ-correlated white noise. Then the elements
of SPDM are calculated as

ρ�,m(t ) = a∗
� (t )am(t ) − 1

2δ�,m, (16)

where the bar denotes the average over different realizations
of the stochastic force ξ (t ).

A. Comparison with the exact results

The primary advantage of the pseudoclassical approach
as compared to the straightforward solution of the master
equation is the simplicity of numerical simulations which
allows us to go deep in the semiclassical region. Of course,
on the quantitative level, the pseudoclassical approach gives
some systematic error. However, on the qualitative level, it
correctly reproduces all main results of the quantum analysis.
We illustrate this statement in the lower panel in Fig. 4 where
we compare the SPDM calculated by using the pseudoclassi-
cal approach (solid lines) with the exact result (dashed lines)
for h̄ = 0.25. It is seen in Fig. 4(b) that the pseudoclassical
approach correctly captures the decay of the SPDM long
before �cr. In the next section we use it to study this decay
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FIG. 5. The mean number of bosons in the dimer times the ef-
fective Planck constant according to the pseudoclassical approach
(solid lines, average over 3600 realizations) for different values of the
effective Planck constant. The other system parameters are J = 0.5,
U = 0.5, � = 0.5, γ = 0.2, and the sweeping rate β = 1.2 × 10−3.
The dashed line shows the classical result.

for the values of the effective Planck constant which are inac-
cessible in the exact quantum simulations. In fact, within the
pseudoclassical approach the variation of the effective Planck
constant affects only the noise intensity while in the quantum
equation of motion it rescales the interparticle interaction and
the amplitude of the driving force, which requires a propor-
tional increase of the truncation parameter Nmax.

B. Lifetime of the transporting state

The quantum dynamics of the system calculated by using
the pseudoclassical approach is exemplified in Fig. 5. Shown
are the mean number of bosons in the chain n̄, n̄ = Tr[ρ̂] =∑

n λn, times the effective Planck constant. It is seen that
for h̄ → 0 the quantum dynamics converges to the classical
result, where the destruction of the ballistic transport takes
place at �cr ≈ 3.0. The results depicted in Fig. 5 suggest the
other critical detuning,

�qu = �qu(h̄, β ) � �cr,

at which the numbers of bosons in the chain are maximal.
The fundamental reason for the inequality �qu � �cr is the
metastable character of the quantum attractor associated with
the discussed transporting state.

To determine the lifetime τ = τ (�, h̄) of the transporting
state we evolve the system to � < �qu and then fix this detun-
ing for the rest of time (see Fig. 6). Then, by approximating
the decay dynamics by the exponential function, we extract τ .
The dependence of the lifetime τ on � is depicted in the inset
in Fig. 6. This result suggests the following estimate for the
lifetime,

τ ∼ exp
( r

h̄

)
, (17)
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FIG. 6. Main panel: The mean number of bosons in the dimer
times the effective Planck constant as a function of time for � = 1
(blue line), � = 1.24 (green line), and � = 1.30 (brown line). The
value of the effective Planck constant h̄ = 1/16. The dashed line
shows the result in the classical limit. The inset shows the lifetime
of the transporting state as the function of � for L = 2 (open circles)
and L = 8 (asterisks).

where r = r(�) is the basin size of the classical attractor.
Roughly, Eq. (17) compares the minimal-size wave packet
with the basin size, and to ensure the exponentially long life-
time of the considered transporting state, one should satisfy
the condition r(�) � h̄.

C. Long chain

We repeated the above numerical simulations for the chain
of length L = 8 and obtained essentially the same results (see
the inset in Fig. 6). The only different aspect is that for a long
chain we can address the Anderson problem. It was found that
the discussed transporting state is insensitive to a weak on-site
disorder |ω� − ω| � ε � �. One finds a qualitative explana-
tion for this result in terms of the synchronization theory. In
fact, the considered system of coupled nonlinear oscillators
can be viewed as one of the physical realizations of the Ku-
ramoto model [30]. The important property of the Kuramoto
model is that synchronization may occur for oscillators with
different eigenfrequencies. In our case this means that the
nonlinear oscillators will be synchronized also in the presence
of an on-site disorder, i.e., different linear frequencies ω�.

VI. CONCLUSION

We study the transport of interacting Bose particles in the
open Bose-Hubbard chain where the particles are injected in
the first site of the chain and withdrawn from the last site.
The analysis is done by using the pseudoclassical approxima-
tion which puts in correspondence to the open Bose-Hubbard
model the chain of coupled nonlinear oscillators and where
the transport of particles corresponds to the transport of ex-
citations from the first to the last oscillator. It is shown that
one can observe the ballistic transport of excitations by cap-
turing the system into the classical attractor which describes
the synchronized oscillators. The quantum counterpart of this
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attractor corresponds to the quantum transporting state which,
however, has a finite lifetime as seen in Fig. 6. We obtain an
estimate [Eq. (17)] for the lifetime of this state and argue that
it becomes exponentially long in the pseudoclassical limit.

ACKNOWLEDGMENT

This work has been supported by Russian Science Founda-
tion through Grant No. N19-12-00167.

[1] A. Ivanov, G. Kordas, A. Komnik, and S. Wimberger, Bosonic
transport through a chain of quantum dots, Eur. Phys. J. B 86,
345 (2013).

[2] G. Kordas, D. Witthaut, P. Buonsante, A. Vezzani, R. Burioni,
A. Karanikas, and S. Wimberger, The dissipative Bose-Hubbard
model, Eur. Phys. J.: Spec. Top. 224, 2127 (2015).

[3] A. R. Kolovsky, Z. Denis, and S. Wimberger, Landauer-
Büttiker equation for bosonic carriers, Phys. Rev. A 98, 043623
(2018).

[4] A. A. Bychek, P. S. Muraev, D. N. Maksimov, and A. R.
Kolovsky, Open Bose-Hubbard chain: Pseudoclassical ap-
proach, Phys. Rev. E 101, 012208 (2020).

[5] P. S. Muraev, D. N. Maksimov, and A. R. Kolovsky, Resonant
transport of bosonic carriers through a quantum device, Phys.
Rev. A 105, 013307 (2022).

[6] L. Amico, M. Boshier, G. Birkl, A. Minguzzi, C. Miniatura,
L.-C. Kwek, D. Aghamalyan, V. Ahufinger, D. Anderson, N.
Andrei, A. S. Arnold, M. Baker, T. A. Bell, T. Bland, J. P.
Brantut, D. Cassettari, W. J. Chetcuti, F. Chevy, R. Citro, S. D.
Palo et al., Roadmap on Atomtronics: State of the art and
perspective, AVS Quantum Sci. 3, 039201 (2021).

[7] J. W. Z. Lau, K. S. Gan, R. Dumke, L. Amico, L.-C. Kwek, and
T. Haug, Atomtronic multi-terminal Aharonov-Bohm interfer-
ometer, arXiv:2205.01636.

[8] J. Raftery, D. Sadri, S. Schmidt, H. Türeci, and A. A. Houck,
Observation of a Dissipation-Induced Classical to Quantum
Transition, Phys. Rev. X 4, 031043 (2014).

[9] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and
A. A. Houck, Observation of a Dissipative Phase Transition in a
One-Dimensional Circuit QED Lattice, Phys. Rev. X 7, 011016
(2017).

[10] G. P. Fedorov, S. V. Remizov, D. S. Shapiro, W. V. Pogosov,
E. Egorova, I. Tsitsilin, M. Andronik, A. A. Dobronosova, I. A.
Rodionov, O. V. Astafiev, and A. V. Ustinov, Photon Transport
in a Bose-Hubbard Chain of Superconducting Artificial Atoms,
Phys. Rev. Lett. 126, 180503 (2021).

[11] K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and
B. Deveaud-Plédran, Coherent Oscillations in an Exciton-
Polariton Josephson Junction, Phys. Rev. Lett. 105, 120403
(2010).

[12] M. Abbarchi, A. Amo, V. Sala, D. Solnyshkov, H. Flayac, L.
Ferrier, I. Sagnes, E. Galopin, A. Lemaître, G. Malpuech, and
J. Bloch, Macroscopic quantum self-trapping and Josephson
oscillations of exciton polaritons, Nat. Phys. 9, 275 (2013).

[13] B. Cao, K. W. Mahmud, and M. Hafezi, Two coupled nonlinear
cavities in a driven-dissipative environment, Phys. Rev. A 94,
063805 (2016).

[14] W. Casteels and C. Ciuti, Quantum entanglement in the spatial-
symmetry-breaking phase transition of a driven-dissipative
Bose-Hubbard dimer, Phys. Rev. A 95, 013812 (2017).

[15] S. R. K. Rodriguez, W. Casteels, F. Storme, N. Carlon Zambon,
I. Sagnes, L. Le Gratiet, E. Galopin, A. Lemaître, A. Amo, C.
Ciuti, and J. Bloch, Probing a Dissipative Phase Transition via
Dynamical Optical Hysteresis, Phys. Rev. Lett. 118, 247402
(2017).
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