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This article theoretically solves the problem of the thermally activated motion of gas of non-interacting magnetic vortices/skyrmions
in the field of defects located randomly, i.e., anchoring centers. The properties of the anchoring centers can also fluctuate. The factor
that drives the gas of quasiparticles can be of any physical nature (fields, currents, gradients of the magnetic characteristics of the
magnet, and so on). The process of vortices motion is described as a sequence of thermally activated separation of vortices from
the attracting centers. The cases of some model distribution functions of the energy barriers are considered: 1) the barriers are
of the same height; 2) the heights of the barriers are distributed evenly; and 3) the heights are distributed according to the normal
law. Within these models, analytical expressions for the drift velocity and the diffusion gas coefficient of quasiparticles are obtained.

Index Terms— Magnetic nanostripes, magnetic vortex, pinning, skyrmion.

I. INTRODUCTION

AT PRESENT, the magnetic objects that are character-
ized by a special state of magnetization, i.e., magnetic

excitations in the form of vortex structures (magnetic vortices,
skyrmions, and vortex domain walls), are being studied with
great interest. It is connected with the possibility to use
them as a basis for general-purpose sensors, fast and reliable
information storage systems, and other spintronics devices.
The reasons why in this context the interest is focused on
vortex structures are related to the special physical properties
of these objects.

Under certain conditions, the state of magnetization in a
magnetic vortex is quite stable, and the methods of controlling
this state are sufficiently developed. It allows considering
the structures with a vortex distribution of magnetization as
promising variants of information carriers of the new genera-
tion. The state of magnetization of an individual vortex can be
identified with a bit of information. Moreover, the distribution
of magnetization in a magnetic vortex can be characterized by
two parameters: the p = ±1 polarity, which sets the direction
of the magnetic moment of the vortex core (along or against
the selected axis) and the q = ±1 chirality, i.e., the circula-
tion of magnetization around the selected axis (clockwise or
anticlockwise). The state of each of the p and q parameters,
or a combination of them, sets a value of more than one bit
on a single vortex/skyrmion. This circumstance gives hope for
the creation of devices with a high recording density without
the loss of information storage reliability in the near future.

Ferromagnetic nanofilm is one of the most promising
objects for spintronics devices. Such a nanofilm may contain a
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swarm of such vortices [1]–[13]. The state of vortices can be
controlled by both external fields and spin-polarized currents
(see [14]–[16]) and even by mechanical stress gradients (for
example, [17] and [18]). The stability of the vortex distribution
of magnetization is determined by the thickness of the mag-
netic film [19], so the thickness of the nanofilms should satisfy
the requirement of the stability of the vortex distribution.

In theoretical descriptions of the dynamics of a vortex
magnetic structure, the method of collective variables in the
rigid vortex model [20]–[22] proved to be productive. In this
case, the coordinate and velocity of the center, i.e., the core
of the vortex, are used as parameters that characterize the
state of the vortex, and the distribution of magnetization
inside the vortex is considered to be practically unchanged.
The core is the central part of the vortex with a strongly
inhomogeneous distribution of magnetization going out from
the plane of the magnet. Subsequently, this approach has
been successfully developed and exploited by many authors
(see [23]–[28]). Within this approach, the Lagrangian of the
magnetic subsystem is used to obtain the equation of motion
of the magnetic vortex as a quasiparticle in the form

G3 × v̈ + �μv̇ + G × v + �Dv + ∇W = 0. (1)

G and G3 are gyrovectors of the first and third orders,
respectively [20], [25]–[27], perpendicular to the plane of the
magnet. v is the velocity of the core. W is the potential energy
possessed by the vortex.�D and �μ are the tensors of the effective coefficients of the
friction force and the effective mass of the vortex, respectively.
The points above the vectors mean the time differentiation.
Thus, it is possible to describe the dynamics of magnetic vor-
tices as particles moving under the action of forces, according
to (1). The core size is on the order of tens of nanometers.

Due to the small size of the vortex core and its small
mass Mvort ∼ 10−22 kg [29]–[31], the thermal random
walk of the vortices similar to the Brownian [32]–[36] is
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essential. Some ideas about the nature of such motion have
already been formed for particles with zero values of G3 and�μ [37]–[39]. In particular, it is shown that the standard
deviation of a particle increases over time according to the
Einstein–Smoluchowski law with a coefficient determined by
the expression

χ = kB T
D

G2 + D2
(2)

where kB is Boltzmann’s constant and T is the temperature.
In some real situations, the motion of vortices/skyrmions

cannot be considered as motion in a homogeneous matrix.
In thin low-dimensional magnets (nanowires and nanostripes),
as a rule, there are defects that create a random or modulated
force field (see [40] and [40]), where the vortex moves like
a particle. It is especially important to accept the factor of
inhomogeneous force field in polycrystalline magnets or com-
posites. Therefore, more and more attention has recently been
paid to the effects of the interaction of vortices–quasiparticles
with inhomogeneities of the magnetic structure. The inho-
mogeneities may be presented by the surface defects of the
magnet, fluctuations in local anisotropy, changes in the mag-
netic properties in the complex at the boundaries of different
magnetic phases, and so on (see [42]–[48] and [51]).

It is obvious that the interaction of vortices/skyrmions with
inhomogeneities of the matrix where the swarm of quasipar-
ticles moves significantly affects the behavior of the system.
Therefore, the study of the gas vortices dynamics in the field
of anchoring centers that prevent movement is of great interest.
It is reasonable to expect that the sliding of quasiparticles is
similar to the thermally activated movement of dislocations or
domain walls.

Thermally activated motion due to thermal rattling (accom-
panied by breakdowns from the anchoring centers and rapid
movement between them) is the predominant mechanism for
the gas propagation of quasiparticles through a magnet [52].
The method that is actively used to describe the kinetics of
chemical reactions, which is based on the Arrhenius law,
is productive to study such a motion. We will use this law
later to set the waiting time for the jump of the vortex to the
next anchoring center.

The interaction of vortex structures with magnetic inhomo-
geneities shows a variety depending on the type and configura-
tion of the defect. The potential of such interaction can result
in both the reflection of the vortex core from the defect and
its capture. The vortex fixation can be realized, for example,
on inhomogeneities of magnetic anisotropy (fluctuations in
the direction of the local axis or the anisotropy constant) both
point and extended [51], [53]–[56].

Thus, the core of the magnetic vortex/skyrmion near the
magnetic inhomogeneity or directly on it behaves as a quasi-
particle in the energy well-formed by the potentials of the
defect [57] and external forces (if any). Fig. 1 shows the
nanofilm model that is considered in this article with linear
randomly arranged defects. In the depicted model, the anchor-
ing centers are linear extended defects oriented perpendicular
to the long axis of the tape and creating potentials that
prevent the movement of the vortex along the x-axis. It is
obvious that, in the most general case, not only the coordinates

Fig. 1. Model of a nanofilm with a schematically shown distribution of the
potential energy of the vortex depending on the coordinate. The inhomogeneity
of the potential can be caused by inhomogeneities of the magnetic structure
of the magnet in the x1, x2, x3, . . . coordinates.

of the anchoring centers are random but also their other
characteristics: the profiles of potential barriers, their heights,
and their length.

The fluctuations in the magnetic parameters of defects sig-
nificantly complicate the theoretical analysis of the nature of
the magnetic vortices motion, so, in order to obtain practically
significant results, computer modeling is often resorted to
(see [58]–[60]).

In this article, we present a statistical description of the time
evolution of a conglomerate of magnetic vortices/skyrmions
as a gas of non-interacting quasiparticles involved in 1-D
motion in the field of magnetic structure defects under the
influence of a constant external force. The approximation of
isolated quasiparticles is justified in the case of their low
concentration if the nature of their interaction is short range
(the case of skyrmions). The nature of the interaction of
magnetic vortices is long range. However, the model of gas of
non-interacting vortices is applicable for temperatures above
some critical TK T , above which the nature of the interaction
is short range [61], [62]. In addition, we will assume that
the barrier heights are much greater than the interparticle
interaction energy.

For the needs of spintronics, it is precisely systems with
an average distance between vortices that are so large that
the influence of neighboring cores on each other’s magnetic
states is of interest. This motion can serve as a model for
the gas propagation of vortices (skyrmions and vortex domain
walls) in ferromagnetic inhomogeneous nanofilms. The main
task is to describe the development with the time distribution
of random coordinates of the vortex cores.

II. EVOLUTION OF THE SPATIAL DISTRIBUTION OF THE

VORTEX GAS IN THE FIELD OF IDENTICAL

DEFECTS (MODEL 1)

To describe the nature of the vortices displacement under
the influence of a driving force in a random field of defects,
we calculate the average number of trajectories of the ρ(x, t)
cores, resulting in a favorable outcome, i.e., the core is in the
x-coordinate at the t time. Let the core be located at the origin
of the coordinates at the initial moment of time. It is important
to note that the free movement of magnetic vortices in a mag-
net in the absence of a driving force is impossible [61]–[63],
unlike skyrmions. In addition, the force under which the vortex
moves is so great that, as a result of the thermal motion, the
jumps of the cores in the opposite direction are quite rare and
do not affect the resulting drift motion.
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Under the action of the driving force, the quasiparticles
break off the defect and begin to move, which can have
a complex character. However, within a short time, due to
damping, a steady state occurs. In this mode, the trajectory
of the core asymptotically tends to the direction along the
x-axis. However, depending on the chirality/polarity, these
trajectories gravitate toward the side surfaces of the nanostripe.
This phenomenon follows from (1); it is well known and is
called the skyrmion Hall effect. Thus, in the interval from
defect to defect, the motion of quasiparticles is practically
rectilinear and uniform. Moreover, the times of movement of
the cores between the anchoring centers are negligible for the
times when the vortices are in a bound with defects.

Indeed, the constant component of the force acts on the
vortex, the thermal rattle in the local minimum of the potential
energy is not symmetric, and the vortex disruption in the
direction of the force action is preferred (see Fig. 2). Let us
take an elementary event: the core is in the x-coordinate at
the t time. It has born a thermally activated disruption from
certain obstacles in the number of n pieces at certain time
points from the corresponding intervals; they are dxk and dtk .
The probability of such an elementary event can be written as

d P(el)
n (x, t) =

n�
k=1

ρ(�xk)ρ(�tk)ρ(Wk)dxkdtkdWk

× δ

�
x −

n�
k=1

�xk

�
δ

�
t −

n�
k=1

�tk

�
. (3)

The notations that have been introduced are as follows: �xk =
xk − xk−1 is the increment of the core coordinate as a result
of the jump; �tk = tk − tk−1 is the time taken to move the
core between neighboring anchoring centers; Wk is the height
of the energy barrier with the k number; ρ(Wk) is the density
of the distribution of the barriers’ heights

ρ(�xk) = μe−μ�xk , ρ(�tk) = νke−νk �tk (4)

are the distribution densities of the jump lengths and their
durations, respectively (Poisson’s law); μ is the linear coordi-
nate density of the distribution of the anchoring centers; and
νk is the frequency of attempts of the core disruption from the
defect, which is determined by the Arrhenius law

νk = ν0 exp

�
− Wk

kB T

�
. (5)

The ν0 constant, as a rule, has the frequency order of the
ferromagnetic resonance in the magnet. The Dirac functions
in expression (3) select from the variety of distributions of
xk-coordinates and the tk moments of time only those that
satisfy the condition that the vortex hits the x final coordinate
by the t time.

It is important to note that the values of the frequency νk , ν0,
and energy Wk are determined by the physical characteristics
of magnetic vortices, such as the effective mass, the profile of
the magnetization distribution functions, and the size of the
core.

To calculate the probability of a complex event of hitting
the x-coordinate by the t time, it is necessary to sum expres-
sion (3) over all possible configurations {Wk, xk, tk} that lead

Fig. 2. Scheme of the potential of the anchoring center without an external
force (dashed curve). The dashed inclined line shows the contribution to the
potential energy from an external factor. Superimposing a straight line distorts
the symmetric potential (solid curve), resulting in a preferred jump of the
particle (shaded circle) in the direction indicated by the arrow.

to a favorable result

d Pn(x, t) =
	

Wn

· · ·
	

W1

	 t

0
· · ·

	 t2

0

	 x

0
· · ·

	 x2

0
d P(el)

n (x, t).

(6)

Here, due to the vortex drift mainly in the positive direction
of the x-axis, the integration is performed according to the
scheme: x1 from 0 to x2, then x2 from 0 to x3, and so on.
As a result, we obtain

d Pn(x, t)

μdx
= (μx)n−1e−μx

(n − 1)!
×

	
Wn

· · ·
	

W1

	 t

0
· · ·

	 t2

0

n�
k=1

ρ(�tk)ρ(Wk)dtkdWk

× δ

�
t −

n�
k=1

�tk

�
. (7)

Further calculation (7) for an arbitrary distribution ρ(Wk)
is not possible due to the connection of functions (4) and (5)
in the general case, but it is permissible for the special case of
the same energies of all anchoring centers Wk = W0. For this
case, the energy distribution density is described by the Dirac
function: ρ(Wk) = δ(Wk − W0) with


 ∞
0 δ(Wk − W0)dWk =

1. Then, the integration over tk time points is significantly
simplified and follows the same scheme as the integration over
coordinates. As a result, for (7), we obtain

d Pn(x, t)

(μdx)(νdt)
= (μxνt)n−1e−μx−νt

(n − 1)!2 = ρn(x, t). (8)

The ρn(x, t) value can be given the meaning of the dimen-
sionless density of the number of possible trajectories (in the
{W, x, t} configuration space), resulting in the vortex core is
in the x-coordinate at the t time and breaking off from the n
anchoring centers.

To calculate the final expression for ρ(x, t) for all possible
n, it is necessary to sum

ρ(x, t) =
∞�

n=1

ρn(x, t). (9)
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For an approximate calculation (8), we replace the summa-
tion with integration and use Stirling’s formula to represent
the factorial by means of analytical functions

ρ(x, t) ≈ 1

2π
e−μx−νt

∞�
n=1

�
μxνte2

�n−1

(n − 1)2n−1

≈ 1

2π
e−μx−νt

	 ∞

0

�
μxνte2

�n−1

(n − 1)2n−1 dn. (10)

The sum in (10) contains a large number of random terms;
in addition, these terms are fairly well localized by functions
from n. Therefore, according to the central limit theorem,
this sum can be considered extremely close to the Gaussian
function. This allows us to attempt to reduce the integral
in (10) to an exponential form with the expansion of the
integrand to terms of the second order of smallness relative to
some n0 corresponding to the maximum of the integral	 ∞

0

�
μxνte2

�n−1

(n − 1)2n−1 dn

=
	 ∞

0
exp

�
ln

��
μxνte2

�n−1

(n − 1)2n−1

��
dn

≈
	 ∞

−∞

�
exp

�
(n0 − 1 + ξ) ln

�
μxνte2�

− (2n0 − 1 + 2ξ)

×
�

ln(n0 − 1) + ξ

n0 − 1
− ξ2

2(n0 − 1)2

���
dξ

= n2n0−2
0 e2(n0−1)

(n0 − 1)2n0−1

	 ∞

−∞
exp

�
−ξ2 2n0 − 3

2(n0 − 1)2

+ ξ

�
2 + 2 ln

�
n0

n0 − 1

�
− 2n0 − 1

n0 − 1

��
dξ

=


π

n0

�
n0

n0 − 1

�2n0−1

e2(n0−1) ≈


π

n0
e2n0 . (11)

Here, we use the n0 � 1 condition. The value of the
n0 parameter corresponding to the extremum of integrand (10),
with (8), is determined by the obvious equality�

μxνte2
�n−1

(n − 1)!2 =
�
μxνte2

�n

n!2 . (12)

It is obtained

n0 = √
μxνt . (13)

With (11) and (13) for function (10), it is obtained

ρ(x, t) = 1�
4π(μxνt)

1
2

e−(
√

μx−√
νt)

2

. (14)

This function actually shows the evolution of the spatial
distribution of the vortex/skyrmion gas over time.

Surface (14) is shown in Fig. 3. The coordinate distribution
has an obvious maximum, which moves in the direction of the
force action over time and is smoothed out (the half-width of
the bell increases). This can be interpreted as follows. At the
initial time, a large number of vortex cores (gas) are collected
at the initial coordinate. After actuating the force and starting
the countdown, the gas begins to spread through the magnet,

Fig. 3. (a) Distribution of the vortex gas depending on the coordinate and
time. To demonstrate the evolution of the coordinate distribution, (b) shows
sections of the ρ(x, t) surface at some moments of time. The dashed lines
show the half-widths of the distributions that mean an increase in the
dispersion of the coordinates of the quasiparticles over time. The curves are
plotted at the following time points: 1—νt = 1; 2—νt = 10; 3—νt = 20; and
4—νt = 30. Hereinafter, the dots show the results of modeling the gas vortex
propagation by the Metropolis method taking into account the Arrhenius law
(up to a factor of the order of unity).

bearing thermal activated jumps. The most probable velocity
V of particle flow can be easily calculated by examining
distribution (14) for extremum

V = ν

μ
= ν0

μ
exp

�
− W0

kB T

�
. (15)

At the same time, due to the random nature of the acts
of disruption from the anchoring centers, the dispersion of
the spatial distribution of particles increases. The growth of
the spread of the coordinates of the quasiparticles gas can
be estimated as the half-width of the distribution (14). The
ρ(x, t) maximum value at the t time with (15) is equal to
∼1/(4πνt)1/2. Then, the coordinate values that correspond
to the half of the bell height ρ(x, t) are determined by the
following equation:

1�
4π(μxνt)

1
2

e−(
√

μx−√
νt)

2 = 1

2

1√
4πνt

. (16)

The analytical solution of (17) is possible under the (
√

μx−√
νt) � 1 assumption, i.e., in a relatively long time after the

start of the movement. When the stationary mode of motion
begins for the variance of the coordinates, we obtain

σ 2
x = (�x)2 ≈ 16 ln(2)

ν0t

μ2
exp

�
− W0

kB T

�
. (17)

Furthermore, we consider a more general case of the chaotic
distribution of the Wk energy barriers’ heights. Due to the
difference in the Wk energies, the integration over the tk
times of expression (7) is so difficult that this procedure
loses its practical meaning. At the same time, understanding
that the ρ(x, t) function is localized and close to the normal
distribution (due to the validity of the central limit theorem)
allows us to advance in approximate calculations.

We expect that the ρ(x, t) deviation from the normal
distribution is insignificant, but they can also be minimized
by using the refinement technology described, for example,
in [64] and [65]. The principle of the method is the identical
multiplication of the calculated function by the exponent
containing the α fitting parameter, which depends on the x and
t arguments of the ρ(x, t) desired function. This parameter is

Authorized licensed use limited to: State Public Scientific Technological Library-RAS. Downloaded on July 12,2022 at 05:17:59 UTC from IEEE Xplore.  Restrictions apply. 



ORLOV et al.: DRIFT OF MAGNETIC VORTICES IN RANDOM FIELD OF ANCHORING CENTERS 2301110

then selected so that the desired function is best approximated
to the maximum of the normal distribution. It is in this case
that we allow the minimum error of the ρ(x, t) calculating.
Later, we will operate only with the integral part of the
expression (7)

In =
	

Wn

· · ·
	

W1

	 t

0
· · ·

	 t2

0

n�
k=1

ρ(�tk)ρ(Wk)dtkdWk

× δ

�
t −

n�
k=1

�tk

�
. (18)

We change the expression as follows:
In = e−αt I ∗

n , I ∗
n = Ineαt . (19)

Then, we perform an approximate calculation of I ∗
n similar to

the proof of the central limit theorem. The Fourier image of
the I ∗

n value with (4) is as follows:
�(ω, α)

=
	 ∞

0
eiωt I ∗

n dt

=
	

Wn

· · ·
	

W1

	 t

0
· · ·

	 t2

0

n�
k=1

ρ(�tk)ρ(Wk)e
(iω+α)�tk dtkdWk

=
n�

k=1

	
W

	 t

0
ρ(Wk)νke(iω+α−νk )tk dtkdWk . (20)

If we assume that the activation energies of all the anchoring
centers are distributed according to the same laws, then
multiple integral (20) can be represented as the product of
the same type of integrals

�(ω, α) = un(ω, α). (21)

The notation is introduced

u(ω, α)=
	

W

	 t

0
νρ(W )e(iω+α−ν)t dtdW ≈

	
W

νρ(W )

ν−iω − α
dW.

(22)

Then, calculation (22) in the Gaussian approximation is
performed

�(ω, α) = exp(n ln(u(ω, α)))

≈ un(0, α) exp

�
−ω2 n

2

∂2 ln(u)

∂(iω)2

����
ω=0

+ iωn
∂ ln(u)

∂(iω)

����
ω=0

�
. (23)

After the inverse Fourier transformation, for integral (19), it is
obtained

In = e−αt

2π

	
e−iωt�(ω, α)dω

= un(0, α)e−αt

√
4πσ 2

exp

�
− (t − t0)

2

2σ 2

�
. (24)

It can be written for expression (7) with (24)

ρn(x, t) = un(0, α)(μx)n−1e−μx−αt

(n − 1)!
× 1√

4πσ 2
exp

�
− (t − t0)

2

2σ 2

�
. (25)

The notations are introduced

t0 = n
∂ ln(u)

∂ω

����
ω=0

, σ 2 = n
∂2 ln(u)

∂(iω)2

����
ω=0

. (26)

The minimum error of the Gaussian approximation is achieved
if t = t0. Then, for (9), we get

ρ(x, t) =
∞�

n=1

un(0, α)(μx)n−1e−μx−αt

√
4πσ 2(n − 1)! . (27)

The α fitting parameter is defined from the condition

t = n0
∂ ln(u)

∂ω

����
ω=0

. (28)

Here, n0 is defined by scheme (12).
The final expression for ρ(x, t) is calculated similar to

reasoning (10)–(14). As a result, we get

ρ(x, t) ≈ u0√
4πσ 2

e−μx−αt+n0 , n0 = μxu0

u0 =
	

W

νρ(W )dW

ν − α
. (29)

Expression (29) is easy to test on the case of non-fluctuating
barrier heights: ρ(W ) = δ(W − W0) and ν =
ν0 exp(−W0/(kB T )). As a result, from (28) and (29), we get
α = ν − (μxν/t)1/2, u0 = (νt/(μx))1/2, n0 = (μxνt)1/2,
and σ 2 = t2/(μxνt)1/2; therefore, the expression for ρ(x, t)
is exactly the same as the result previously obtained (14).

Then, the general rule (28) and (29) is used to calculate the
nature of the movement of the quasiparticles gas in situations
closer to the reality of the fluctuating height of the W energy
barriers.

III. SMOOTH DISTRIBUTION OF ACTIVATION

ENERGY (MODEL 2)

In this section, we consider a model of a magnet where the
activation energy of the anchoring centers is distributed evenly
in the W1, . . . , W2 range. For the energy distribution density,
we have ρ(W ) = 1/(W2 − W1) = ρ0; then, for (22), we get

u(ω, α) =
	 W2

W1

ν0ρ0 exp(−W/(kB T ))dW

ν0 exp(−W/(kB T )) − iω − α

= ρ0kB T ln

�
iω + α − ν0 exp(−W1/(kB T ))

iω + α − ν0 exp(−W2/(kB T ))

�
. (30)

First, the value of the α fitting parameter is determined. For
this purpose, it is necessary to return to (28) and (29)

t = n0
∂ ln(u(ω, α))

∂(iω)

����
ω=0

= μxρ0kB T
∂u(ω, α)

∂(iω)

= μxν0e−βmid(sinh(ζ )/ζ )�
α − ν0e−β1

��
α − ν0e−β2

� . (31)

Some notations are used for short. They are β1,2 =
W1,2/(kB T ), βmid = (β1 +β2)/2, and ζ = (β2 −β1)/2. Hence,
for the fitting parameter, we get

α = ν0e−βmid cosh(ζ )

− ν0

�
μx

ν0t

sinh(ζ )

ζ
e−βmid + e−2βmid sinh2(ζ ). (32)
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The change in time and the ρ(x, t)-coordinate in this case
is similar to the (14) distribution (see Fig. 3). There is some
difference in the speed of the particle train propagation as
(33), shown at the bottom of the page. The ρ0(x, t) coefficient
is defined as it was before by expressions u0 and σ 2, and
because of its bulkiness, its explicit form is not given. The
study on the extremum of expression (33) allows to calculate
the propagation speed of the particle train. In this case, the
expression for speed is given as follows:

V = ν0

μ

ζ

sinh(ζ )
e−βmid

= ν0

2μkB T

exp(−(W2 + W1)/(2kB T ))

sinh((W2 − W1)/(2kB T ))
(W2 − W1). (34)

Without fluctuations of the (ζ = 0) energy, limiting
case (34) can be obtained from formula (15). The dependence
of velocity (34) on the ζ parameter, i.e., on the value of
the random activation energy spread, needs a comment. As ζ
increases, the speed of the wall decreases. This effect can be
explained by the following qualitative considerations. Due to
the exponential dependence of the frequencies ν on β, the main
contribution to the resulting time for a quasiparticle to reach
a certain coordinate x is made by high barriers. The vortices
cores spend much time on such centers of anchoring. We can
see that the lower the temperature, the stronger the sampling
effect. At low temperatures, even small differences in the
(W2 −W1) activation energies result in catastrophic differences
in the lifetimes at the barriers. In the limit of the ζ maximum,
when it can be assumed that the β2 � β1 expression for the
velocity takes the form

V ≈ ν0

μ
β2e−β2 = ν0

μ

W2

kB T
e− W2

kB T . (35)

Expression (35) shows that, at T → 0, the motion looks as if
there is only one, the most effective anchoring center in the
gas path, where the lifetime determines the average velocity
of the vortex.

To estimate the time dependence on the degree of the
coordinates hardcover of the vortices cores, it is necessary
to repeat procedure (15)–(17) with calculated parameter (32).
By using the �x � V t assumption, the expression is obtained

σ 2
x ≈ 16 ln(2)

ν0te−βmid

μ2

ζ 2 cosh(ζ )

sinh2(ζ )

= 16 ln(2)
ν0t

μ2

�
W2 − W1

2kB T

�2

exp

�
− W2 + W1

2kB T

�
× cosh

�
W2 − W1

2kB T

��
sinh

�
W2 − W1

2kB T

��−2

. (36)

With the growth of the ζ range, where the heights of the
energy barriers fluctuate, the dispersion of the coordinates of
the quasiparticles behaves nonmonotonically. This effect will
be discussed later in Section V.

The above circumstances indicate the need to consider the
random nature of the fixing field in the theoretical description
of the processes of vortices/skyrmions motion. It is especially
important at low temperatures.

IV. NORMAL ACTIVATION ENERGY

DISTRIBUTION (MODEL 3)

In this section, another special case of the model distribution
of the activation energy in the range from 0 to ∞ according
to the law is considered

ρ(W ) = r0 exp

�
− (W − W0)

2

2σ 2
W

�
r0 = 2�

2πσ 2
W

�
1 + Erf

�
W0/

�
2σ 2

W

�� . (37)

W0 is the most probable value of the height of the defects
potential barrier. σ 2

W is the dispersion of the binding energy.
Then, for function (22), we get

u(ω, α) = r0

	 ∞

0

ν0e− W
kB T e

− (W−W0)
2

2σ2
W

ν0e− W
kB T − (iω + α)

dW

= 2A√
π(1 + Erf(Aβ0))

	 ∞

0

e−A2(β−β0)
2

1 − ηeβ
dβ. (38)

The introduced notations are β = W/(kB T ), β0 = W0/(kB T ),
A2 = (kB T )2/(2σ 2

W ), and η = (iω + α)/ν0.
It is not possible to perform calculation (38) in general form

for a wide temperature range. Therefore, the extreme cases of
high and low temperature are considered. A2 → 0 is the low-
temperature limit, where the denominator in integrand (38) is
a much faster function of β than the numerator, and with a
clear maximum at ηeβ = 1. In this case, the “slow” function
can be taken out of the integral sign as an ordinary constant
with the β value that corresponds to the zero value of the
denominator. Then, the expression for u can be presented as

u = 2A√
π(1 + Erf(Aβ0))

e−A2(ln(η)+β0)
2
	 ∞

0

1

1 − ηeβ
dβ

= 2A√
π(1 + Erf(Aβ0))

e−A2(ln(η)+β0)
2

ln

�
η − 1

η

�
. (39)

With the expression for the equation of the α fitting parameter,
we get (28)

ν0t = μx

η

2Ae−A2(ln(η)+β0)
2

√
π(1 + Erf(Aβ0))

ρ(x, t) = ρ0(x, t) exp

⎛⎜⎝−μx − ν0te−βmid cosh(ζ ) +
�

μxν0t
sinh(ζ )

ζ
e−βmid + �

ν0te−βmid sinh(ζ )
�2

+ μx

2ζ
ln

⎛⎜⎝
�

μx
ν0 t

sinh(ζ )
ζ

e−βmid + e−2βmid sinh2(ζ )
� 1

2 + e−βmid sinh(ζ )�
μx
ν0 t

sinh(ζ )
ζ

e−βmid + e−2βmid sinh2(ζ )
� 1

2 − e−βmid sinh(ζ )

⎞⎟⎠
⎞⎟⎠. (33)
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×
�

1

η − 1
− 2A2(ln(η) + β0) ln

�
η − 1

η

��
. (40)

The η parameter should be taken at ω = 0. If the smallness
of A2 for (40) is considered, we can get

ν0t

μx
= ϕ

η(η − 1)

ϕ = 2kB T e
− W 2

0
2σ2

W�
2πσ 2

W

�
1 + Erf

�
W0/

�
2σ 2

W

�� . (41)

Having solved the equation, we have

α = ν0η = 1

2
ν0

�
1 −


1 + 4

μx

ν0t
ϕ

�
. (42)

With α for the u0 value (39), we can have

u0 ≈ ϕ ln

�√
1 + 4μxϕ/(ν0t) + 1√
1 + 4μxϕ/(ν0t) − 1

�
. (43)

In this case, the ρ(x, t) function takes the form

ρ(x, t) = ρ0(x, t) exp

�
−μx − ν0t

2

�
1 −


1 + 4

μx

ν0t
ϕ

�
+ μxϕ ln

�√
1 + 4μxϕ/(ν0t) + 1√
1 + 4μxϕ/(ν0t) − 1

��
.

(44)

As it has been before, the study of expression (44) for the
extremum determines the value of the V velocity

V ≈ ν0

μ

e1− 1
ϕ

ϕ

= ν0

μ

�
2πσ 2

W

2kB T

⎛⎝1 + Erf

⎛⎝ W0�
2σ 2

W

⎞⎠⎞⎠
× exp

⎛⎝1+ W 2
0

2σ 2
W

−
�

2πσ 2
W

2kB T

⎛⎝1+Erf

⎛⎝ W0�
2σ 2

W

⎞⎠⎞⎠e
W0

2σ2
W

⎞⎠.

(45)

The calculation of the half-width of the ρ(x, t) function by
procedure (15)–(17) with (45) and by using the �x � V t
condition allows to obtain an approximate expression for the
dispersion in the low-temperature limit

σ 2
x ≈ 8 ln(2)

ν0t

μ2

e1− 1
ϕ

ϕ2

�
1 + 4e1− 1

ϕ

� 3
2

= 2 ln(2)
ν0t

μ2

2πσ 2
W

(kB T )2

⎛⎝1 + Erf

⎛⎝ W0�
2σ 2

W

⎞⎠⎞⎠2

× exp

⎛⎝1 + W 2
0

σ 2
W

−
�

2πσ 2
W

2kB T

⎛⎝1 + Erf

⎛⎝ W0�
2σ 2

W

⎞⎠⎞⎠e
W 2

0
2σ2

W

⎞⎠

×
⎛⎝1+4 exp

⎛⎝1−
�

2πσ 2
W

2kB T

⎛⎝1+Erf

⎛⎝ W0�
2σ 2

W

⎞⎠⎞⎠e
W 2

0
2σ2

W

⎞⎠⎞⎠
3
2

.

(46)

The fast function is the expression in the numerator with
a maximum at β = β0 in the high-temperature limit in
integrand (38). Therefore, approximate expression (38) takes
the form

u = 1

1 − ηeβ0

	 ∞

0

A√
π

e−A2(β−β0)
2

dβ = 1

1 − ηeβ0
. (47)

If this expression for the fitting parameter is considered,
we obtain the following equation:

ν0t = μxeβ0
1�

1 − ηeβ0
�2 . (48)

In this case for the main distribution parameters, we get

α = ν0e−β0

�
1 −


μx

ν0te−β0

�
, u0 =

�
ν0te−β0

μx
. (49)

As a result, for the ρ(x, t) function in the high-temperature
limit, we have an expression that coincides with the ρ(x, t)
value that has been obtained before for the case δ-shaped
distribution of barrier heights

ρ(x, t) = ρ0(x, t) exp
�
−μx − ν0te−β0 + 2

�
μxν0te−β0

�
.

(50)

The velocity of the quasiparticles gas in this case is deter-
mined by the expression

V = ν0e−β0

μ
= ν0

μ
e− W0

kB T . (51)

The σ 2
W � (kB T ) condition is satisfied at high temperature,

and we get the limiting case of non-fluctuating heights of the
anchoring centers barriers (15). Then, for the value of the
coordinate spread and in the high-temperature limit, we have

σ 2
x ≈ 16 ln(2)

ν0te−β0

μ2
= 16 ln(2)

ν0t

μ2
exp

�
− W0

kB T

�
. (52)

V. DISCUSSION OF THE RESULTS

In this article, the problem of the coordinates distribution
of the magnetic vortices array moving under the influence
of a constant force in a 1-D randomly distributed field of
defects in space has been solved. Defects act as anchoring
centers that ensure the capture of vortices. Disruptions of
magnetic vortices from such centers are provoked by thermal
motion. The lifetime of the vortex on the defect is deter-
mined by the temperature and height of the energy barrier
that the vortex core, as a quasiparticle, has to overcome.
Thus, the consideration of the drift motion of the vortex
cores means the solution of the gas motion problem of
quasiparticles in a random field of linear extended anchoring
centers.

Special cases of model-defined activation energy distrib-
utions are considered in detail: a δ-shaped distribution (all
barrier heights are the same—model 1), a smooth distribution
in a certain energy range (model 2), and a distribution given by
a normal law (model 3). For these cases, analytical expressions
for the most probable velocity of the vortex core are obtained.
Comparative graphs of the dependence of these velocities
on temperature [see formulas (15), (34), (45), and (51)] are
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Fig. 4. Temperature dependences of the velocity displacement of the
maximum coordinate of the ρ(x, t) function for the models under study.
Solid curve 1 means that all the heights of the energy barriers of the
anchoring centers are the same. Solid curve 2 is the barrier energies are
evenly distributed. Sections 3a and 3b of solid curves are the energies that
are distributed according to the normal law in the low- and high-temperature
ranges, respectively. At significant temperatures, curves 1 and 3b are almost
indistinguishable, so graph 3b is highlighted with a thicker line. The dashed
curve shows the assumed dependence of the velocity on the temperature
for the normal distribution of the activation energy in the range of average
temperatures (kB T ∼ W0). Curve 2 shows the energy spread interval:
�W = 0, . . . , 2W0. Curve 3 is for the dispersion value of the energy spread:
σ 2

W = W 2
0 .

shown in Fig. 4. As the temperature increases, the drift
velocity of the quasiparticles gas tends to V0 = ν0/μ, which
is natural.

Fig. 5 shows the dependence of the most probable gas
velocity of the vortex cores on the magnitude of the activation
energies spread at fixed average energy W0 and temperature
kB T = 0.4W0. The phenomenon of a decrease in the drift
velocity with increasing chaos in the activation energies for
a model with a smooth distribution is explained at the end
of Section III. Such arguments are even more suitable for
explaining the graph in Fig. 5(b). Indeed, in a model with a
normal distribution of barrier heights, the heights themselves
are not limited from above, and theoretically, anchoring centers
with energies significantly exceeding W0 as the most probable
value can be realized. This cannot happen in the model with a
smooth distribution since the energy values of the vortex cores
at specific defects cannot exceed the 2W0 value.

For this reason, there is the highest velocity without any
chaos inside the parameters of the anchoring centers at low
temperatures with comparable dispersions of models 2 and 3.
Then, the speed in model 2 takes place in descending
order. The lowest value of the drift velocity is obtained in
model 3 for the normal energy distribution.

It is important to recall that the arguments about the sig-
nificant role of rarely implemented but high barriers in model
3 are valid at low temperatures, including the context of the
condition: kB T � σW . Qualitative considerations suggest that,
in the opposite case, if conditions W0 � kB T , σW � kB T , and
σW � W0 are met simultaneously, model 3 should change into
model 1, where there is no chaos in the activation energies.
Indeed, in this case, we must consider the denominator of the

Fig. 5. Dependence of the velocity of the maximum of the ρ(x, t) function
on the spread interval of the energy barriers’ heights. (a) Model of smooth
distribution of activation energies. (b) Distribution according to the normal
law.

Fig. 6. Schematic representation of the evolution over time of the magnetic
vortices/skyrmions concentration. The most likely coordinates at different
points of time are shown by vertical arrows. In addition to shifting of the
most probable coordinate, the density of quasiparticles decreases.

integrand to be slowly changing despite the implementation
of condition W0 � kB T when choosing the method of
approximate integration of expression (38). This can lead to
the repetition of calculations (47)–(52), i.e., to results that
coincide with model 1, where the barrier parameters do not
fluctuate. Thus, we state the fulfillment of the natural limiting
case: at σ 2

W → 0, model 3 changes into model 1 in a wide
temperature range. Deviations that are similar to Graph 3a in
Fig. 4 are realized only when the temperature tends to zero.

The increase in the spread of the vortices coordinates over
time can be considered as a process similar to diffusion as a
result of thermal motion, superimposed on the drift displace-
ment with the velocities that have already been calculated (see
Fig. 6). Then, the time dependence of dispersion (17), (36),
(46), and (52) can be considered as the laws of diffusion in
the corresponding models. In the expressions, the coefficients
before the t time have the meaning of the diffusion coefficients
of the vortex gas χ = σ 2

x /t in the defect field.
The dependence of the coefficients on the degree of the

barriers’ heights spread of the �W = W2 − W1 anchoring
centers for model 2 and σ 2

W for model 3 is of great interest.
In the high-temperature limit, there is no dependence of
the diffusion coefficients on the energy spread, and for all
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Fig. 7. Dependence of the dimensionless diffusion coefficients of the
vortex gas on the value of the activation energy spread for (a) model of
smooth distribution of barrier heights and (b) for the normal distribution. The
curves are constructed under the following conditions: βmid/(kB T ) = 3 and
W0/(kB T ) = 3.

models, the coefficient tends to the value: χ ≈ 16 ln(2)ν0/μ
2.

At low temperatures, we have a peculiarity like in the case
of the particle train velocity V . For models 2 and 3, the χ
dependences on the degree of chaos in the energies are shown
in Fig. 7.

For model 3, the χ parameter at all other equal conditions
has a much lower value than for model 2. We associate it with
the fact that the barriers’ heights spread in model 2 is clearly
limited by the �W interval, in contrast to the normal dis-
tribution, where the realizations of energies that significantly
exceed the W0 values are possible. The realizations limit the
growth rate of the gas localization region of quasiparticles over
time. The property of the normal distribution also explains a
more pronounced dependence χ(σW ) in model 3.

An interesting fact is that the graphs in Fig. 7 are non-
monotonic. With a small value of the (ζ � βmid or σW � W0)
activation energy spread, when almost all defects are the same
in their effect on vortices, a slight increase in ζ and σW is
accompanied by a natural increase in σ 2

x , as a response of
the system to a more chaotic “input signal.” However, with
the growth of chaos in the barriers’ heights of the anchoring
centers at low temperatures, a significant role is played by rare
but more rigid defects, where the quasiparticles gas can fix
itself and slows down the expansion of its localization area.
It results in the diffusion coefficients decrease. The motion
of the vortices gas, in this case, looks as if most of the
quasiparticles are delayed at one (several) high barrier with the
growth of ζ (or σW ), which limits the spread of coordinates
and the drift velocity, which follows from (34) and (45).

VI. CONCLUSION

Theoretical consideration of the nature of the array motion
of non-interacting magnetic vortices/skyrmions in a field of
randomly located defects with random parameters has shown
that this motion in the nanofilm is a stationary drift dis-
placement of a swarm of vortices, such as a quasiparticles
gas. This displacement is superimposed by a process of
particle dispersal that is similar to the phenomenon of dif-
fusion. As a result of consideration of the particle distribution
function in space, analytical expressions have been obtained
for the drift velocity and the diffusion coefficient depending
on the temperature and the spread of the random activation
energy.

In the low-temperature range, when the energy of thermal
motion is much less than the average value of the energy
barriers’ height, the features of the dependence of the diffusion
coefficient on the dispersion of the activation energy of the
anchoring centers have been found, i.e., nonmonotonicity
associated with the determining role of the magnet defects
with the maximum value of the barrier height.

In conclusion, it is important to note that the effects
discussed in this article may be of great importance in
understanding the nature of the vortices/skyrmions motion in
randomly inhomogeneous magnets. It is especially important
to understand the processes in the context of designing devices
for non-volatile information storage devices, field sensors,
and other spintronics devices, where the controlled motion of
vortices is supposed to be used.
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