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SEQUENCES OF SELECTIVE ROTATION OPERATORS FOR THREE GROUP 

CLUSTERING ON QUTRITS BY MEANS OF QUANTUM ANNEALING 
V. E. Zobov, I. S. Pichkovskiy1 

Kirensky Institute of Physics, Federal Research Center KSC SB RAS 

Abstract 
Recently, it was demonstrated1 that the clustering considered in this articlec, which consists in partitioning a set of data 
points into subsets depending on the proximity of some properties, can be performed using quantum annealing on a 
system of two-level quantum elements - qubits. In previous work2, we proposed to pass from qubits to qutrits - three-
level quantum elements showed the advantages of such a replacement and obtained a time-dependent effective 
Hamiltonian. In the present paper, we have found a sequence of selective rotation operators that allows one to realize 
adiabatic evolution with this effective Hamiltonian in the discrete-time approximation. On five qutrits, represented by 
spins 1S  , we performed a simulation of clustering a set of six points on a plane into three groups by means of quantum 
annealing. 
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1. Introduction 
The main part of modern work in the quantum computation area is based on two-level quantum elements – qubits3, 4. 
However, recently, researchers have become more interested in quantum computing on quantum elements with a large 
number of levels5: with three - qutrits or, in general, d levels – qudits. These computations have several advantages. They 
have greater noise resistance6, 7. By using additional qudit levels, it is possible to more efficiently implement gates and 
algorithms on qubits8-10. Finally, when using n  qudits instead of qubits, the Hilbert space dimension (computational 

basis) will grow  / 2
n

d  times5, 11-13. 

 
To date, several experimental implementations of quantum computations have been performed on systems of qutrits: 
trapped ions14, NV centers in diamond15 - 17, transmons in a superconductor18, 19. To control the qutrits, pulses of an 
electromagnetic field (microwave or laser) are applied to the system, resonant to one or another pair of qutrit levels. 
These pulses cause selective state transformations of the chosen two-level system, which can be represented by selective 
rotation operators. Sequences of selective rotation operators for solving some problems were proposed in theoretical 
works20 - 22. 
 
Recently, we have shown theoretically that on qutrits it is possible to solve artificial intelligence problems: associative 
memory23 or data clustering2, by means of a slow (adiabatic) change in the Hamiltonian in time24. To obtain the 
possibility of experimental implementation of the algorithm, it is necessary to pass from logical operators and evolution 
operators in theoretical formulas to a sequence of selective rotation operators. In the present work, we found such a 
sequence for solving the problem of data clustering. A set of six data points is encoded in the states of a system of five 
spins 1S  , coupled by spin-spin interactions. After applying the found sequence to the system, the set is grouped into 
three clusters according to the proximity of properties. 

2. Adiabatic clustering algorithm on qutrits. 
At present, the quantum adiabatic clustering algorithm has already been realized on qubits1, while on qutrits it has not yet 
been considered. In this paper, we consider the implementation of clustering on a system of qutrits represented by spins 

1S  . As the computational basis, we will use the basis 1 2, ,..., nm m m  of the eigenfunctions of the operators z
iS  of the 

projections of the spins on the Z -axis. Each of the projection im  can take one of three values: 1, 0, -1. We solved the 

clustering problem by means of sufficiently slow (adiabatic) system evolution with an effective time-dependent 
Hamiltonian 0 t T  2: 
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where 0
1

n
x
i

i

H h S


    is the initial Hamiltonian of the interaction with a transverse magnetic field, the ground state of 

which easy to prepare, and fH  is the problem Hamiltonian, the ground state of which encodes the solution of our 

problem. 
 
The problem of clustering is to group data by proximity in the space of some properties. As an example of data, we 

consider points on a two-dimension plate with Cartesian coordinates  ,x y  that represent two properties of that data. The 

proximity of points with numbers i  and j  we have characterized by the Euclidean distance ijR  between them: 

    2 2

ij i j i jR x x y y    , (2) 

where ix , jx , iy  and jy  are the coordinates of points i  and j  on a Cartesian plate. The solution to the clustering 

problem is to find a partition of the set of n  points into k  clusters, that minimize the sum of the sums of the distances 
between the points in each of the clusters. 
 
In previous paper2, for the simplest case of partitioning into three clusters, we proposed to take the problem Hamiltonian 
in the following form: 

 ij
,

1

2f f
i j

H H   (3) 

  ij , , ,
2 1,1 1,1 0,0 0,0 1, 1 1, 1 1f ij i j i j i j

H R           , (4) 

where , ,i j i j i i j j i i j ji iij j j
m m m m m m m m m m m m    is the projector onto eigenstate of two spins at 

points i  and j  with projections im  and jm  respectively. In Hamiltonian (4), each data point i  is associated with an 

operator z
iS . 

 
As a result of adiabatic evolution with Hamiltonian (1) system pass to the ground state of Hamiltonian (3), which 
corresponds to the energy minimum (cost function minimum1, 2). The energy minimum determines the values of spin 
projection im  at the points. The points with the same spin projections belong to the same clusters. Since in (4) three 

projections 1, 0, -1 are equivalent, the ground state is sixfold degenerate. To remove the threefold degeneracy, one could 
fix a value of the projection 1 at the first spin, for example, by applying a strong magnetic field to it. Taking this 
circumster into account, we can simplify calculation and decrease the Hilbert space dimension by factor of three by 
applying Hamiltonian (3) in following form: 

  ij 1
, 1 1

1
2 1 1 1

2f f j j
i j j

H H R
 

    . (5) 

For a simulation closer to the experiment, we express the projection operators in terms of the spin operators of  
individual spin i (j): 

 21 1
1 1 , 0 0 1 ( ) , 1 1

2 2

z z
z z zi i
i i ii i i

S S
S S S

 
       . (6) 

After substitution equations (6) into the Hamiltonian (4) of the interaction between two points takes the form: 

  ij 3 2 2 1z z z z z z z z z z
f ij i j i i j j i i j jH R S S S S S S S S S S     , (7) 

The solution to our problem   has been found in the following form: 

  
0 0

ˆ exp
NT

l
l

Q i H t dt U 


     
   , (8) 
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where Q̂  is the ordering operator in time, and   is the ground state of the initial Hamiltonian 0H . Following2.22-24, the 

operator of adiabatic evolution over time T tN   with the Hamiltonian varying according to the linear law (1), we 
presented in the form of the product of evolution operators by a sequence of N  small time intervals t . On each time 
interval, we neglect the Hamiltonian changing (1) 

 
0exp 1l f

l l
U i t H H

N N

          
   

, (9) 

where l  is discrete time  0 l N  . 

3. Partition of a set of six points into three clusters 
In this section, we have performed a numerical simulation of the proposed quantum algorithm using a simple example. 
Using a random number generator from the range [-10, 10], we obtained the coordinates of six points  
 (4,-2), (-7,7), (6,-9), (-6,8), (-2,-6), (-9,5), (10) 
which we assign numbers from 1 to 6 in the order of the following. Before the simulation, we calculated the distance ijR  

and substitute them in Hamiltonian (5) and (7) (we assign a value 1zS   to the first point (4,-2)). The simulation was 

performed with the following parameters: 4000N  , 0,05t  , 2h  . The result of solving this problem is shown in 
Fig. 1, it can be seen that our algorithm coped with the solution of this problem. 
 

The calculation result (8) is obtained as a superposition of 53 243  states of the computational basis (we fixed the first 

spin in the state with projection value 1zS  ) 

 
2 3 6

2 3 6

1, , ,..., 2 3 6
, ,...,

(t) ( ) 1, , ,...,m m m
m m m

C t m m m   . (11) 

We calculated the time variation of the three lowest instantaneous energy levels of Hamiltonian (5) on the interval  0,T  

and the probability of finding the system in these three states of the computational basis 
2 3 6

2

1, , ,..., ( )m m mC t . At the end of 

evolution at t T , the system located in state 1, 1,0, 1,1, 1    with the fidelity of 0.95 (for the chosen values of the 

parameters). The corresponding clustering result is shown in Fig. 1. Note that the same clustering result corresponds to 

the state 1,0, 1,0,1,0  resulting from the rearranging the spin projections 0 and -1. At the end of evolution at t T , the 

system will be in this state with a probability of 0.05. Such a difference in probabilities was a consequence of the fact 
that the curve for the instantaneous energy level corresponding to this state passes higher over the entire evolution 
interval. The coincidence of the energies of the two states occurs only at t T . Therefore, the probability of finding the 
system in this state is small. The violation of symmetry occurred due to the fixation of the projection value of the first 
spin. If we assign the projection value 0 to the first spin, then the probabilities of finding the system in each of the two 
states will equalize. 
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Fig 1. Result of partition of a set of six data points into three clusters. The first cluster: (‒9, 5), (‒7, 7), and (‒6, 8) is shown by circles; 
the second cluster: (‒2, ‒6) and (4, ‒2) by squares; and the third cluster (6, ‒9) by a triangle. 

4. Engineering of effective interaction
In the simulation performed in the previous section, we use the product of evolution operator (9) with Hamiltonian (7). 
However, in a real system15-19 , the Hamiltonian has another form. In particular, the interaction between qutrit has the 
form of an Ising interaction: 

12 1 2 13 1 3 14 1 4 15 1 5 16 1 6 23 2 3 24 2 4

25 2 5 26 2 6 34 3 4 35 3 5 36 3 6 45 4 5 46 4 6 56 5 6

z z z z z z z z z z z z z z
ss

z z z z z z z z z z z z z z z z

H J S S J S S J S S J S S J S S J S S J S S

J S S J S S J S S J S S J S S J S S J S S J S S

       

       
, (12) 

and does not contain interactions between the squares of the spin operators included in the Hamiltonian (7). Now we find 
rules for transformation from one evolution operator into another. 

First of all, let us approximately represent the evolution operator (9) in the form of a product of three non-commuting 
operators: 

0 0exp 1 / 2 exp exp 1 / 2l f

l l l
U i tH i tH i tH

N N N

                               
, (13) 

where l  is discrete time  0 l N  .

As a transformation tool we take the selective rotation operators20, 22, 25   ,

k n

j

 , which in matrix representation have the 

form: 
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   

   

1 2 2 3

, ,

1 2 2 3

, ,

exp 0 0
1 0 02

0 exp 0 , 0 exp 0 ,
2 2

0 0 1
0 0 exp

2

cos sin 0
1 0 02 2
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2 2 2 2

0 0 1
0 sin

2

z j z j

y j y j

i

i i

i

 

 

             
                       
            

   
 

         
    
 

,

cos
2

 
 
 
 
 
   
 

 (14) 

where   is the angle of rotation around axis  , ,x y z   , the k  and n  are level numbers, j  is spin number. The X-

rotation matrices differ from Y-rotation by the coefficients  i  in front of the sine. To implement selective rotation 

between the levels k  and n  by an angle 2 f ph t   an MW field with the amplitude fh  (in frequency units) and 

frequency equal to the energy difference of the level nk n k      13, 20, 25   is switched on for a finite time

 1p pt t  . The direction of the axis of rotation is determined by the phase of the MW field. 

 
At last, acting simultaneously on two transitions in the course of time pt  by two MW fields with frequencies 12  and 

23 , and amplitudes fh  respectively, one can produce a non-selective spin rotation produce a non-selective spin 

rotation20, 22 specified by the operator exp( )xi S  (or exp( )yi S ), where: p ft h  . Using this rotation we obtained 

the factors 0exp 1 / 2
l

i tH
N

        
 in the evolution operators lU  (13). 

4.1 Transformation of one-spin evolution operators 

Consider the second term exp f

l
i t H

N
    

 in the evolution operators lU  (13). Let us substitute Hamiltonian (5) and 

(7) into this operator. We split it into the product of evolution operators for each interaction, which is possible, since all 
terms in (3) commute with each other. 
 
We start with the single-spin terms contained in Hamiltonian (5): 

    1 1
1 1

2 1 1 1 1z z z
j j j j jj

j j

R R S S S
 

     . (15) 

Take the evolution operator: 1,exp z
j j

l
i tR S
N

    
. Such operators can be obtained by the formula20, 25: 

 
1 2 2 3

1 1 1
, ,

2 2
exp z

j j j j
z j z j

l l l
i tR S tR tR
N N N

 
                  

. (16) 

The next single-spin interactions in (15) are quadratic in the spin operators: 1,exp z z
j j j

l
i tR S S
N

    
. The corresponding 

evolution operators can be obtained by the formula22, 25: 

 
1 2 2 3

1, 1, 1, 1,
, ,

2 2 2
exp exp

3 3 3
z z

j j j j j j
z j z j

l l l l
i tR S S tR tR i tR I
N N N N

 
                           

, (17) 

where I  is unit matrix. 
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4.2 Transformation of two-spin evolution operators 

We will now consider obtaining multipliers of the form exp 3 z z z z
ij i i j j

l
i t R S S S S

N
    

 from multipliers of the form

exp z z
ij i j

l
i t J S S

N
    

. 

At the first stage, we will carry out the following transformation: 

 

 

     

2 3

,

1 2 1 2 2 3

, , ,

exp 3 exp 2

exp exp

z z z z z z
ij i i j j ij i i y j

z z z z z z
ij i i j ij i i jy j y j y j

l l
i t R S S S S i t R S S

N N

l l
i t R S S S i t R S S S

N N



  



  

               
              

. (18) 

Then we repeat it for the resulting multipliers: exp z z z
ij i i j

l
i t R S S S

N
    

: 

 

 

   

     

2 3

,

2 3 1 2

, ,

1 2 2 3 1 2

, , ,

exp 3 exp 2

2 1
exp exp

3 3

1 2
exp exp

3 3

z z z z z z
ij i i j j ij i i y j

z z z
ij j ij i jy i y i

z z z
ij i j ij jy i y i y j

l l
i t R S S S S i t R S S

N N

l l
i t R S i t R S S

N N

l l
i t R S S i t R S

N N



 
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

 

  

               
                
         

   

       

2 3 1 2

, ,

1 2 2 3 1 2 2 3

, , , ,

1 1
exp exp

3 3
z z z z

ij i j ij i jy i y i

y i y i y j y j

l l
i t R S S i t R S S

N N
 

   

 

   

   
                



. (19) 

At the second stage, we will use formula (16) to transform the first factor of the right-hand side with the help of selective 
operators of rotation around the Z-axis: 

 

   

   

1 2 2 3

, ,

2 3 2 3

, ,

1 2

,

4 4
exp 3

3 3

4 2
exp exp

3 3

1 1
exp exp

3 3

z z z z
ij i i j j ij ij

z i z i

z
ij ij jy j y i

z z z z
ij i j ij i jy i

l l l
i t R S S S S t R t R

N N N

l l
i t R i t R S

N N

l l
i t R S S i t R S S

N N

 

 

 

 



                    

                 
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     

         
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,

2 3 1 2 2 3

, , ,

1 2 1 2 2 3 1 2 2 3
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2 1
exp exp

3 3

1
exp

3

y i

z z z
ij j ij i jy i y j y i

z z
ij i jy i y i y i y j y j

l l
i t R S i t R S S

N N

l
i t R S S

N

  

    



  

    



                
      

 (20) 

At the next stage, we will transform another resulting multiplier of the evolution operator 
2

exp
3

z
ij j

l
i t R S

N
    

 also 

with the help of selective operators of rotations around the Z-axis, which is transformed using formula (16): 

 

1 2 2 3

, ,

2 4 4
exp

3 3 3
z

ij j ij ij
z i z i

l l l
i t R S t R t R

N N N

 
                  

, (21) 

At the last stage, it’s necessary to obtain a factor of the form exp z z
ij i j

l
i t J S S

N
    

included in the formulas, containing 

only the interaction of an individual pair of spins, from the general evolution of the system with Hamiltonian (12), 
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containing the sum of all interactions. For simplicity, in Hamiltonian (12), we set the coupling constants between spins 
taking into account the distances between them: 

 
2 3 2 4 2 5 2 6 3 4

3 5 3 6 4 5 4 6 5 6

425 2 194 8 433

24 24 24 24 24

73 421 212 18 170

24 24 24 24 24

z z z z z z z z z z
ss

z z z z z z z z z z

H S S S S S S S S S S

S S S S S S S S S S

      

    

. (22) 

Since the first spin was assigned the value of projection 1, we transferred the interactions with it to the field terms. It was 
possible to take other values of the constants (12), and the value of the exponent could be adjusted by choosing a time 
interval t . 

As an example, we get 5 6exp 170
3

z zi l
t S S
N

   
. To do this, let's create spin inversion operators: 

 

     

     

1 2 2 3 1 21

, , ,

1 2 2 3 1 2

, , ,

1

,

,

.

k y k y k y k

k y k y k y k

z z
k k k k

P

P

P S P S

  

  

  

  



   



 

 (23) 

First, let's do the inversion of the second spin: 

 1
2 2exp expss ss

i i
P i t H P i t H

N N
             

. (24) 

As a result, the next terms will be removed from the effective Hamiltonian:

2 3 2 4 2 5 2 6

425 2 194 8

12 12 12 12
z z z z z z z zS S S S S S S S    . 

Then we multiply the sequence (24) into the sequence: 

 1 1
3 2 2 3exp expss ss

i i
P P i t H P i t H P

N N
              

, (25) 

As result, we remove the terms: 3 4 3 5 3 6

433 73 421

6 6 6
z z z z z zS S S S S S   . 

Finally, we multiply the product of sequences (24) and (25) by the following sequence 

 

1 1 1
4 2 2 3

1
2 2 3 4

exp exp

exp exp

ss ss

ss ss

i i
P P i t H P i t H P

N N

i i
P i t H P i t H P P

N N

  



             
             

, (26) 

which removes the terms: 4 5 4 6

212 18

3 3
z z z zS S S S  . 

To obtain the multiplier 5 6exp 170 z zl
i t S S

N
   

 , it is necessary to perform the same transformations, but the time interval 

must be increased three times. 

5. Calculation and discussion 
Using the rules described in the previous sections, we found the complete sequence of selective rotation operators and 
evolution intervals with the Hamiltonian of the spin-spin interaction, which is necessary for clustering (8). With the help 
of the found sequence, we calculated the clustering of six points into three groups on five qutrits, considered in Section 

3. At the end of evolution at t T , the probability that the system will be in the state 1, 1,0, 1,1, 1    decreased from 

0.95 to 0.89, for the same parameter values. This was a consequence of the transformation from (9) to (13). For 
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increasing fidelity, we should divide evolution (8) on a larger number of time intervals, i.e. increase N  and decrease t
. 

6. Conclusions 
Thus, we have developed the theory of controlling the qutrit system with the help of rotation operators, selective for the 
transitions between the energy levels of the qutrits. We have found sequences of selective rotation operators to engineer 
effective interactions that are linear and quadratic in the spin operators. In particular, the interaction between the squares 
of the operators of two spins was obtained from the Ising interaction. We have demonstrated the possibilities of 
controlling a system of five qutrits by the example of clustering a set of 6 points. The sequences obtained will allow 
experimentally clustering on systems of qutrits controlled by selective operators, for example, on ions in a trap14, on NV-
centers in diamond15 - 17 , or on transmons in a superconductor18, 19. 
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