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We consider bound states in the continuum (BICs) in a 1D multilayered system of an anisotropic defect layer
embedded into an anisotropic photonic crystal. We analytically demonstrate that an anisotropic defect layer
embedded into anisotropic photonic crystal supports accidental BICs. These BICs can be transformed to high-Q
resonances by variation of one of the system’s parameters. At the same time, the BICs are remarkably robust in the
sense that a true BIC can be recovered by further tuning any of the system’s other parameters, leading to tunability
of the resonance position. © 2022 Optica Publishing Group

https://doi.org/10.1364/JOSAB.451034

1. INTRODUCTION

Multilayered microcavities based on 1D photonic crystals
(PhCs) have found a broad range of applications in modern
photonics. The microcavities are widely used in lasers, thermal
emitters, single photon sources, light emitting diodes, filters,
sensors, solar cells, and absorbers [1,2]. The problem of external
control of multilayered microcavity resonances addresses their
spectral positions and quality factors (Q-factors). The first part
of the problem is solved by adjustment of the optical thicknesses
of the layers that shift the spectral position. Various functional
materials have been proposed for this purpose [3–8], specifically
liquid crystals [9–13]. For the second part, the control of the
Q-factor can be achieved by utilizing recently emerged bound
states in the continuum (BICs) [14–18].

Application of BICs allows for engineering optical modes
with tunable Q-factors through controlling the energy decay
rates from the localized state into the continuum of scatter-
ing channels by varying parameters of the BIC host structure.
The Q-factor can reach extremely high values on approach
to the BIC, being restricted only by material losses and fab-
rication inaccuracies. By now, several models for controlling
the Q-factor in multilayered structures have been proposed
theoretically [19–21] and implemented experimentally [22,23].

The system under scrutiny was proposed in our previous
papers where we found that an anisotropic defect layer (ADL)
embedded into an anisotropic PhC can support symmetry pro-
tected BICs due to the orthogonality between the localized state
and the scattering channels [19,21]. Here, we further extend our
studies by analytically and numerically demonstrating that the
proposed system can also support BICs of an interference nature

(accidental [24] or Friedrich–Wintgen [25] BIC mechanisms).
Accidental BICs are a result of fully destructive interference of
outgoing resonant modes when they leak into the scattering
channels, even if the symmetry is broken. Unlike symmetry-
protected BICs, accidental BICs are more robust to variation
of optical and geometric parameters. It is a quite general phe-
nomenon, reported for both 2D [26] and 3D [27–30] photonic
systems.

The simplest scheme for constructing accidental BICs
includes two resonance modes (or resonant pathways) and a
single scattering channel. The last condition can be achieved
in an anisotropic layered structure operating at different total
internal reflection angles [22], in isotropic PhC operating at
Brewster’s angle [23], or in anisotropic PhC [19] at normal
incidence. In this paper, for the first time, we derive analytical
conditions for accidental BICs in anisotropic PhC and examine
their robustness.

2. SYSTEM

The considered system is an anisotropic one-dimensional PhC
with an ADL of thickness L schematically pictured in Fig. 1.
PhC consists of alternating isotropic and anisotropic dielectric
layers arranged along the z axis with period3. The thicknesses
and permittivities of anisotropic and isotropic layers are d , εe ,
εo and 3− d , εo , respectively. The optical axis of all aniso-
tropic layers is parallel to the x axis. The ADL is made of the
same anisotropic material with tilted optical axis orientation
determined by the unit vector

a= [cos(φ), sin(φ), 0], (1)
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Fig. 1. One-dimensional anisotropic PhC structure with ADL
inserted in the center of the structure. Analytic solution for the
BIC mode profile: x -wave component Re(E x ) (blue) and y -wave
component Re(E y ) (black).

whereφ is the tilt angle (see Fig. 1). The corresponding dielectric
tensor in the ADL is described as

ε̂ =

{
εe cos2(φ)+ εo sin2(φ) sin(2φ)(εe − εo )/2

sin(2φ)(εe − εo )/2 εe sin2(φ)+ εo cos2(φ)

}
.

(2)
The Maxwell’s equations governing propagation of a

monochromatic electromagnetic wave in non-magnetic
anisotropic media at normal incidence are [31]{

0 ∇×

−∇× 0

} {
E
B

}
=−ik0

{
ε̂E
B

}
, (3)

where E is the electric vector, B is the magnetic vector,
k0 =ω/c is the wavenumber in vacuum, and c is the speed
of light.

Figure 2(a) shows the reflectance spectrum of the system sur-
rounded by air. Although the PhC arms are always transparent
to y -polarized waves (y -waves), the reflectance exhibits a peak
at the x -polarized waves (x -waves) bandgap region, which is
caused by periodically alternating permittivities εe and εo [32].
This dip is due to a high-quality resonant mode predicted in
[19]. One can see that atφ = 0, π/2, the resonant line collapses,
indicating a symmetry protected BIC. As can be seen from
the spectra in Figs. 2(b)–2(d), the increase in ADL thickness
also leads to collapsing Fano features at ADL rotation angles
different from φ = 0, π/2. Thus, we conclude that the BIC
persists despite the broken symmetry, i.e., the BIC occurs via the
accidental [24] or Friedrich–Wintgen BIC mechanisms [25].
It is worth to point out that under given εo and εe , the ADL
thickness leading to the Fano feature collapse does not depend
on the ADL rotation angle φ. It is clearly seen from Figs. 2(b)–
2(d) that the Fano feature collapse in all subplots arises for ADL
thickness L = 1 µm despite different ADL rotation angles
φ = π/8, π/4, 3π/8. The explanation for that is provided in
Section 4 based on the analytic solution for BIC condition (20).

Fig. 2. Reflectance spectra computed by Berreman transfer matrix
method for the structure containing 20 periods in each PhC arm.
(a) Reflectance against the incident frequency and the ADL rotation
angle φ at constant ADL thickness L = 0.250 µm. Collapsing Fano
resonance at φ = 0, π/2 corresponds to symmetry-protected BICs.
(b)–(d) Reflectance against the incident frequency and ADL thickness
L at fixed rotation angles φ = π/8 (b), π/4 (c), 3π/8 (d). Collapsing
resonance at L = 1 µm corresponds to accidental BIC. The parameters
are εe = 4, εo = 1, d = 0.125 µm, (3− d)= 0.250 µm, and number
of periods in each PhC arm is 20.

3. RESONANT EIGENMODE

The dispersion equation for resonant eigenfrequencies in
our structure can be obtained by the wave matching method.
Let us write the general solution to Maxwell’s Eq. (3) in the
ADL and in the PhC arms. The general solution in the ADL,
z ∈ [−L/2, L/2], is written as a sum of forward (+) and
backward (−)propagating ordinary and extraordinary waves:

E =
∑
j=o ,e

(
E (+)

j e ik j z
+ E (−)

j e−ik j z
)
,

B =
∑
j=o ,e

(
B(+)

j e ik j z
+ B(−)

j e−ik j z
)

. (4)

Here, E (±)
j and B(±)

j ( j = o , e ) are electric and magnetic
vectors of the e -wave and o -wave, respectively [33]:

E (±)
e = E (±)

e a, B(±)
e =

ke

k0

[
κ (±) × E (±)

e

]
, (5)

E (±)
o = E (±)

o

[
a× κ (±)

]
, B(±)

o =
ko

k0

[
κ (±) × E (±)

o

]
, (6)

where E (±)
e and E (±)

o are unknown amplitudes, ke = k0
√
εe =

k0ne , ko = k0
√
εo = k0no , and κ (±) = [0, 0,±1] is the unit

vector along the propagation direction.
The general solution in the PhC arms for x -waves with field

components E x and By in the isotropic layer with the cell num-
ber m, z ∈ [L/2+m3, L/2+ (m + 1)3− d ], are written as
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E (m)
x = e i K3m

[
A(+)e iko (z−L/2−m3)

+ A(−)e−iko (z−L/2−m3)
]
,

B (m)
y =

ko

k0
e i K3m

[
A(+)e iko (z−L/2−m3)

− A(−)e−iko (z−L/2−m3)
]
,

(7)

where K is the Bloch wavenumber. In the anisotropic layer with
the cell number m, z ∈ [L/2+ (m + 1)3− d , L/2+ (m +
1)3], we have

E (m)
x = e i K3m[B (+)e ike (z−L/2−(m+1)3+d)

+ B (−)e−ike (z−L/2−(m+1)3+d)],
B (m)y =

ke

k0
e i K3m[B (+)e ike (z−L/2−(m+1)3+d)

− B (−)e−ike (z−L/2−(m+1)3+d)]. (8)

The outgoing wave is y polarized since it is not affected by the
PhC arm:

E y =−C (+)e iko (z−L/2),

Bx =
ko

k0
C (+)e iko (z−L/2). (9)

By applying the continuity condition for the tangential field
components (7) and (8) between the PhC arm layers, one can
obtain the following equations that govern the propagation of
the x -waves in the PhC arm:{

A(+)
[
e iko (3−d)

− e i K3e−ike d
]
− A(−)roe

[
e−iko (3−d)

− e i K3e−ike d
]
= 0,

−A(+)roe

[
e iko (3−d)

− e i K3e ike d
]
+ A(−)

[
e−iko (3−d)

− e i K3e ike d
]
= 0,
(10)

where roe = (ko − ke )/(ko + ke ) is the Fresnel coefficient.
The mirror symmetry of the system is exploited to write the

solution in the left PhC arm. In the antisymmetric case, we have

E (z)=−E (−z), (11)

while in the symmetric case, the condition is

E (z)= E (−z). (12)

By matching Eqs. (4), (7), and (9) on the interface between
the ADL and the right PhC arm and using Eqs. (10), (11), and
(12), we can obtain the final dispersion equation

ξ e iko (3−d)
− roee−iko (3−d)

ξ e−ike d − roee−ike d
−

e−iko (3−d)
− ξroee iko (3−d)

e ike d − ξroee ike d
= 0,

(13)
where

ξ =−e iko L sin2(φ)+
roe − e ike L

1− roee ike L
cos2(φ) (14)

for the antisymmetric case, and

ξ = e iko L sin2(φ)+
roe + e ike L

1+ roee ike L
cos2(φ), (15)

for the symmetric case. Equations (13)–(15) are solved for the
complex eigenfrequency

Fig. 3. (a) Zoomed-in reflectance spectrum from Fig. 2(c). Solid
red lines show the real part of solution to Eqs. (13) and (14) in the
antisymmetric case. The dashed line demonstrates the symmetric solu-
tion obtained from Eqs. (13) and (15). The magenta circle shows the
position of the BIC from Eq. (20). (b) Imaginary part of solution (13),
(15). (c) BIC field profile (21)–(23). All parameters are identical to
those in the Fig. 2(c) caption. The normalization condition is used (24)
to yield A=

√
2π/7. (d) Reflectance spectrum obtained by temporal

coupled-mode theory (TCMT), Eq. (26).

ωr = ω̃− iγ . (16)

The real part of the eigenfrequency ω̃ determines the position
of the resonance. The position of the resonance is shown in
Fig. 3(a), superposed with the reflectance spectrum. The imagi-
nary part of the eigenfrequency that determines the FWHM of
the resonance1ω= 2γ predicts a collapsing Fano feature at the
same point as found from the numerical reflectance spectrum
Fig. 3(b). Let us show that the point of collapse corresponds to a
BIC.

4. BOUND STATE IN THE CONTINUUM

To find the solution for an accidental BIC in the symmetric case,
we match Eqs. (4), (7), and (9) on the boundary between the
ADL and the PhC arms using (10) and (12) together with the
condition on destructive interference between ordinary and
extraordinary waves projected on the y axis:

E y (L/2)= 0, Bx (L/2)= 0. (17)

The solution for the BIC takes the following form:

no tan(ko L/2)− ne tan(ke L/2)= 0. (18)

Equation (18) transforms to identity when two conditions are
simultaneously fulfilled:

ko L/2=m1π, ke L/2=m2π, m1,2 ∈N. (19)

In the simplest case of m2 =m1 + 1, we have a full-wave
phase plate condition:

(ke − ko )L = 2π . (20)
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The solution (20) shown in Fig. 3(a) by a magenta circle
corresponds to the collapse of the Fano feature. The full-wave
phase plate preserves the linear polarization of the incident wave
independent of orientation of the optical axis. Therefore, the tilt
angle is absent from both the final solution for the BIC, Eq. (18),
and the reflectance spectra in Fig. 2.

The BIC field profile inside the ADL is
E x = 2A(cos(ke z) cot(φ) cos(φ)− cos(ko z) sin(φ)),
By = 2i A(ne sin(ke z) cot(φ) cos(φ)− no sin(ko z) sin(φ)),
E y = 2A(cos(ke z)+ cos(ko z)) cos(φ),
Bx =−2i A(ne sin(ke z)+ no sin(ko z)) cos(φ).

(21)
Inside the PhC arms, in the isotropic layer with the cell num-

ber m, z ∈ [L/2+m3, L/2+ (m + 1)3− d ], we have
E (m)

x =
2A

sin(φ) (−q)m cos(ko (z− L/2−m3)),
B (m)y =

2i A
sin(φ) (−q)mno sin(ko (z− L/2−m3)),

E y = 0,
Bx = 0.

(22)

Finally, inside the PhC arms, in the anisotropic layer with
the cell number m, z ∈ [L/2+ (m + 1)3− d , L/2+ (m +
1)3], we have

E (m)
x =

2A
sin(φ) (−q)m+1 sin(ke (z− L/2− (m + 1)3+ d)),

B (m)
y =−

2i A
sin(φ) (−q)m+1ne cos(ke (z− L/2− (m + 1)3+ d)),

E y = 0,
Bx = 0.

(23)
Here, q = no/ne , and the amplitude A has to be defined from a
proper normalization condition, for example, by equating the
total energy of BICE to unity:

E =
1

8π

∫
+∞

−∞

dz
[
E †ε̂(z)E + B† B

]
= 1, (24)

where

E =
{

E x

E y

}
, B =

{
Bx

By

}
. (25)

The BIC field profile is shown in Figs. 1 and 3(c).

5. TCMT AND ROBUSTNESS OF THE BIC

The general expression for the reflection/transmission ampli-
tudes was obtained in [19] based on temporal coupled mode
theory (TCMT) [34] as

ρ =
iγ

(ω̃−ω)+ iγ
, τ = 1− ρ, (26)

where ω̃ and γ are real and imaginary parts of the resonant
eigenfrequency (16), andω is the incident frequency. The single
resonance solution (26) coincides with the numerical data to
good accuracy [see Fig. 3(d)].

According to Eq. (26), the reflectance depends only on two
parameters, γ and ω̃. The radiative decay rate γ can be con-
trolled by detuning one of the system’s parameters from the BIC
point (see Fig. 2). Technically, both ω̃ and γ can be found from
solving Eqs. (13) and (15). In Fig. 4, we show the position of the

Fig. 4. (a) Solution to Eqs. (13) and (15) with γ = 0 (BIC).
(b)–(d) Real part of the solution to Eqs. (13) and (15) in the symmetric
case. Magenta lines show the positions of the BIC (γ = 0). Parameters
are the same as in the Fig. 2(c) caption.

BIC as a function any pair of two parameters L, ne , no . One
can see that the positions of the BIC form continuous lines in all
the considered cases. In other words, after variation of a single
parameter, any other parameter can be tuned to recover a BIC,
making it robust with respect to parameter variation.

6. CONCLUSION

In this paper, we considered BICs in a 1D multilayered system
of an ADL embedded into an anisotropic PhC. We analytically
demonstrated that the PhC-embedded full-wave phase plate
ADL supports accidental BICs. These BICs can be transformed
to high-Q resonances by variation of one of the system’s param-
eters, allowing for control of the resonant width. At the same
time, the BICs are remarkably robust in the sense that a true
BIC can be recovered by further tuning any of the system’s other
parameters, leading to tunability of the resonance position. The
demonstrated effect will lead to robustness of the BIC support-
ing setup with respect to fabrication tolerance, paving the way
for implementing microcavities with tunable Q-factors.
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